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Abstract

Purpose: Open data platforms face a critical challenge: datasets designed for
expert users remain inaccessible to citizens and professionals with varying data lit-
eracy levels. This paper addresses the need for intuitive datasets whose complexity
can adapt to user needs and capabilities, enabling broader value extraction from
open data.

Methods: We develop a conceptual meta-design framework grounded in design
science research methodology and hierarchical design patterns. The framework de-
fines five levels of data abstraction (L0–L4), from atomic datums to unlinkable multi-
level datasets. We formalize dataset complexity mathematically and demonstrate
that transitions between abstraction levels achieve 75–100% complexity reduction.
The framework is implemented as the open-source intuitiveness Python package,
featuring AI-assisted entity discovery, semantic domain matching, and interactive
navigation. We validate the approach through a case study with a major interna-
tional logistics operator managing 8,368 indicators across multiple data sources.

Results: The descent phase (L4→L0) transformed chaotic metadata into a clear
atomic metric, revealing 40,279 relationships and enabling systematic identification
of redundancy clusters. The ascent phase (L0→L3) reconstructed intuitive multi-
level tables that directly answered business questions about indicator consolidation.
The accompanying Streamlit interface integrates with France’s data.gouv.fr plat-
form, making 45,000+ datasets accessible through guided workflows supporting both
descent and ascent operations.

Conclusions: The framework provides a principled method for designing in-
tuitive datasets that serve diverse data publics—from citizens seeking single facts
to data scientists building complex products. By formalizing complexity levels and
reduction mechanisms, we enable open data platforms to move beyond one-size-
fits-all presentations toward adaptive, user-responsive dataset designs. Future work
includes formal user studies across literacy levels and extension to streaming data
contexts.
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1 Introduction

1.1 Context and motivation

This conceptual meta-design framework aims at demonstrating how design can assist
in producing useful open datasets and related data products. The framework and the
associated package and interface (intuitiveness) was created to support the open data
community in their efforts to broaden the number of data publics (Ruppert 2012) who use
data to support decision-making, create new services and products, or produce innovative
information and knowledge (Safarov et al. 2017).

1.2 Problem statement

The conceptual meta-design framework meets the need for a method to design intuitive
datasets, that is datasets whose shape can adapt to the data literacy level and the need of
the user. There is a very diverse range of data users whose data literacy and needs differ
greatly considering data: some will only look for one piece of information in the dataset
while others will use data as a core artifact of a data product they are making. Yet, these
diverse needs and data literacy levels have not been considered by open data producers
while designing datasets (Dymytrova et al. 2018).

1.3 Contributions

In this paper, we make the following contributions:

1. We propose a conceptual meta-design framework based on five levels of data ab-
straction, enabling dataset designers to adapt complexity to user needs.

2. We provide a formal definition of dataset complexity and demonstrate mathemati-
cally how transitions between abstraction levels reduce complexity.

3. We implement this framework as a Python library (intuitiveness) and validate it
through a real-world case study with a major international logistics operator.

4. We propose an interface that demonstrate the value of the intuitiveness package
by making all CSVs files from the french public open data platform data.gouv.fr
accessible to the package.

5. We offer practical guidelines for open data platforms to design intuitive datasets that
address societal issues such as global warming, health, and public transparency.

1.4 Paper organization

The remainder of this paper is organized as follows. Section 2 reviews related work on data
literacy, open data reuse, and human-data interaction. Section 3 presents our conceptual
meta-design framework with five levels of abstraction. Section 4 provides the formal
complexity analysis. Section 5 describes the implementation and case study. Section 6
discusses implications and limitations. Finally, Section 7 concludes the paper and outlines
future work.
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2 Related Work
Our work on intuitive datasets draws from several research streams: adaptive data visu-
alization, user modeling and assessment, documentation design, and human-data interac-
tion. We review each in turn, highlighting how existing approaches inform our meta-design
framework.

2.1 Adaptive data visualization

A growing body of research addresses the challenge of adapting visualizations to users with
varying levels of expertise. Poetzsch et al. (2020) propose a taxonomy for adaptive data
visualization in analytics applications, distinguishing between user traits (e.g., statistical
expertise, graphical literacy) and user states (e.g., monitoring vs. analysis tasks). Their
empirical evaluation reveals that monitoring tasks with higher data complexity receive
better suitability ratings, while analysis tasks require richer interactive features such as
filtering, brushing, and drill-down capabilities. This suggests that different abstraction
levels may be appropriate for different analytical intents—a principle we formalize in our
framework. Steichen et al. (2013) demonstrate that eye gaze data can predict users’ cur-

rent visualization tasks and cognitive abilities, including perceptual speed, visual working
memory, and verbal working memory. Their work enables real-time adaptive interventions
such as highlighting relevant elements or de-emphasizing non-relevant data to reduce cog-
nitive load. Notably, they find that users with low perceptual speed particularly benefit
from adaptive assistance, reinforcing the need for interfaces that can dynamically adjust
complexity.

Amyrotos (2021) critiques the prevalent “one-size-fits-all approach” in data visualization
tools and proposes a human-centered adaptive visualization framework. This framework
incorporates a multi-dimensional user model considering cognitive factors, domain ex-
pertise, and task context. A data visualization engine then recommends best-fit visu-
alizations, while an intelligent analytics component continuously refines the user model
through interaction tracking. This work underscores the importance of moving beyond
static dataset presentations toward dynamic, user-responsive designs.

2.2 Visualization recommenders and progressive disclosure

Selecting appropriate visualizations poses significant challenges for non-expert users. Mutlu
et al. (2016) address this through VizRec, a recommender system that suggests personal-
ized visualizations by combining perceptual guidelines with user preferences. The system
uses tag vectors to describe visualization content for content-based filtering and quality
ratings for collaborative filtering. By reducing combinatorial explosion through percep-
tual constraints, VizRec alleviates choice overload—a key barrier to data accessibility for
users with limited visualization literacy.

Cockburn et al. (2014) examine the broader challenge of supporting novice-to-expert tran-
sitions in user interfaces. They document systems like FollowUs, which integrates online
tutorials within applications and enables community contributions, leading to higher task
completion and lower frustration. The Chronicle system visualizes user workflows via a
zoomable timeline, supporting reflection on interaction strategies. These mechanisms for
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progressive skill development complement our approach of progressive complexity reduc-
tion.

2.3 Dashboard Design and User-Centered Challenges

Alhamadi et al. (2022) provide empirical insights into the challenges of user-centered dash-
board design. Through interviews with dashboard developers, they identify a significant
gap between users’ visual literacy and dashboard requirements. Their work categorizes
three adaptation mechanisms: customization (user-initiated modifications), personaliza-
tion (system-driven adjustments at load time), and automatic adaptation (real-time up-
dates based on user models). Developers report implementing practices such as minimal
default charts, consistent color schemes, role-tailored filters, and explicit interpretation of
visualizations.

Crucially, Alhamadi et al. find that users often struggle not only with visualization com-
plexity but also with understanding data provenance and trusting displayed information.
They recommend layered documentation—high-level summaries, in-situ definitions, and
links to machine-readable metadata—to address these concerns. This resonates with our
goal of designing datasets whose structure can reveal or hide complexity based on user
needs.

2.4 User Modeling and Literacy Assessment

Effective adaptation requires accurate assessment of user capabilities. Steichen et al.
(2013) pioneer the use of behavioral telemetry for user modeling, demonstrating that gaze
patterns can infer cognitive abilities with accuracy significantly above baseline. Prior work
they reference shows that mouse click behavior and visualization selections can reveal user
expertise and suboptimal usage patterns.

Amyrotos (2021) extends this with reflective analytics and learning-curve modeling to re-
fine user models over time. The goal is a “generic data visualization engine” that renders
appropriate visualizations based on data characteristics, user models, and task specifi-
cations. Such systems move toward the vision of intuitive datasets that automatically
calibrate their presentation to each user’s proficiency level.

2.5 Positioning Our Contribution

Existing work focuses predominantly on adapting visualizations and interfaces to user
characteristics. However, comparatively little attention has been paid to adapting the
underlying dataset structure itself. Our framework addresses this gap by proposing that
datasets can be designed with multiple levels of abstraction, enabling not just different
visual presentations but fundamentally different data structures optimized for users at
different literacy levels.

While adaptive visualization systems adjust how data is shown, our approach adjusts
what data is shown and how it is organized. This represents a shift from presentation-
layer adaptation to data-layer adaptation. By formalizing complexity levels and reduction
mechanisms, we provide dataset designers with a principled method for creating intuitive
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open datasets that can serve diverse data publics—from citizens seeking a single fact to
data scientists building complex products.

3 Conceptual Meta-Design Framework
To create the conceptual meta-design framework we used the design science research
methodology (Hevner et al. 2004) and applied the Hierarchical design pattern (Vaishnavi
& Kuechler 2015). This pattern uses the divide and conquer strategy to design a complex
system. It designs a system (the conceptual meta-design framework) by decomposing
it into subsystems (five conceptual design frameworks to design each of the five levels
of abstraction of one dataset), designing each of them before designing the interactions
between them.

We also ensured, following the recursive principle of granular computing that secures a
high level of human-data interaction (Wilke & Portmann 2016), that datasets of an upper
level of abstraction could be constructed by human extrapolation of datasets of lower
levels of abstraction.

We consider five levels of abstraction for every dataset, hence five conceptual design
frameworks. At the highest level, Level 4 encompasses data made of unlinkable and
multi-level datasets. Descending to Level 3, we find data made of linkable and multi-
level datasets. Level 2 represents data made of a single dataset with several entities and
attributes. Moving further down, Level 1 consists of data made of a single entity and
several attributes, or alternatively of a single attribute and several entities. Finally, at the
most granular level, Level 0 comprises data made of a single entity, a single attribute,
and a single value—corresponding to the classical definition of data as a triplet entity-
value-attribute (Redman 1997), also considered as the fundamental information granule.
These five levels were designed according to the five stages of an intuitive process (Csik-
szentmihalyi 1997). Level 0 corresponds to the preparation stage, where the user becomes
interested in some datum (for example, discovering that 65 percent of the population uses
chatGPT on a daily basis). Level 1 corresponds to the incubation stage, where the user
unfolds the datum and makes unusual connections (for instance, hypothesizing that the
people using chatGPT on a daily basis should be the youngest). Level 2 corresponds to
the insight stage, where the user starts to put pieces together (such as comparing the ’age’
and the ’daily gpt use’ columns inside a data table to see if there is a pattern between
the two). Level 3 corresponds to the evaluation stage, where the user puts their insight
on trial (for example, the user challenges their intuition that people using chatGPT must
be the youngest by collecting a different dataset with the probability of being a chatGPT
daily user depending on age class). Finally, Level 4 corresponds to the elaboration stage
where the user will use other logical mechanisms than data aggregation to make sense
of different datasets (for instance, the user might look for demographic distributions to
see what proportion the youngest represent out of an entire population and then specify
that if 65 percent of the population are daily users of chatGPT, the users are mostly the
youngest, showing the technology has not spread yet to the entire population).

According to these definitions, data will be qualified as intuitive if it allows to go up the
level ladder in order to elaborate from a single value or, in the opposite direction, go down
the level ladder to unconver an insight that will trigger curiosity or decision-making.

5



All in all, this paper sets forth a meta-design framework that will enable data modelers,
architects, analysts and data platform editors to put data users in a position of experi-
encing the "flow", that is a mental state "expected to occur when individuals perceive
greater opportunities for action than they encounter on average in their daily lives, and
have skills adequate to engage them" (Nakamura & Csikszentmihalyi 2014)

3.1 Level 0: The Datum

Data made of a single entity, attribute, and value corresponds in our framework to a
Level 0 dataset, with no complexity. It can also be referred to as a “datum.” A datum is
defined as the smallest informational granule or the fundamental particle of data science.
In computer science, the datum is defined as a triple entity-attribute-value. It can be
represented by a table with a single cell (see Figure 1).

Figure 1: Table view of Level 0 data

At the lowest abstraction level, Level 0, data has no complexity as no interpretation is
required for its comprehension. This type of data is commonly referred to as “raw data.”
For instance, in our example, Michael weighs 45 kg, which is a fact.

3.2 Level 1: Single Entity or Single Attribute

To move from Level 0 to Level 1 of abstraction, we need to find a common element among
several data. It can be a common attribute (‘weight’), a common entity (‘Michael’), or a
common value. As a result, we can obtain a table with a single entity defined by multiple
attributes, or a table with a single attribute and multiple entities (see Figure 2). These
tables are the primary form of what we call ‘data’ (plural of ‘datum’).

Figure 2: Table view of two Level 1 data
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3.3 Level 2: Single Dataset with Multiple Entities and Attributes

To increase complexity and move from Level 1 to Level 2, it logically involves adding
attributes and/or entities to the table (see Figure 3).

Figure 3: Table view of Level 2 dataset

3.4 Level 3: Linkable Multi-Level Datasets

At a higher level of abstraction, data transition from one to many linkable datasets and
from one to many levels of entities and/or attributes. This results in linkable datasets,
consisting of multiple levels of entities and multiple levels of attributes (see Figure 4).

Figure 4: Enter Caption

In the above example, we have two levels of entities: individuals on one side, and
years on the other. We also have one level of attribute: individual physical characteristics
(weight and height).

3.5 Level 4: Unlinkable Multi-Level Datasets

At the highest level of abstraction, data transition from definable complexity to undefin-
able complexity. These are multi-level data tables that cannot be linked based on current
scientific knowledge. These multi-level tables are characterized by the fact that their
junction cannot be represented in the form of tables, since their level of complexity is
indefinable. At best, they could be represented by a disconnected graph.

It has become commonplace to state that there is an ever-increasing amount of data
available, which implies an underlying structure of extreme intelligence that can link data
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together. This structure would enable the discovery of fascinating knowledge and the
creation of innovative applications. In this article, we assume that the reality of newly
available data is quite different: there is no apparent structure to link them together, or if
it does exist, it is indefinable based on current scientific knowledge. From our conceptual
meta-design framework’s perspective, all newly available datasets are Level 4 data.

Indeed, the available data, in their vast majority, do not share any attributes or com-
mon elements that would allow them to be linked together. For example, the link between
daily shopping baskets in supermarkets and monthly water consumption in surrounding
households has not been established. It may not exist, but certainly the complexity of
the link is indefinable based on current scientific knowledge.

3.6 Summary

We have shown in this section that data can be represented according to five levels of
abstraction. Level 0 and Level 4 are purely theoretical in nature, being respectively the
domain of machines and human beings. Our main focus is to establish the conceptual
framework of intuitive data, which are defined as data whose level of abstraction and
complexity can adapt to the data literacy level of the user.

In the following section, we formally demonstrate that transitioning from a higher
abstraction level to a lower level decreases the complexity of the data, and we determine
to what extent this complexity decreases.

4 Formal Complexity Analysis

4.1 Definition of Dataset Complexity

The complexity of a dataset can be measured by the number of relationships that can
be extracted from it. In this framework, we consider that the order of complexity (C())
associated with a dataset relates to how fast the complexity increases with the size of the
dataset.

Let us consider the derivation of the order of complexity for each level:

Level 0: The complexity of a single data point is equal to zero. There is no complexity
associated with a single point of information. The order of complexity is C(0).

Level 1: For a variable or a single vector of values, there is only one way to interpret
the data: we look at how all data points compare to each other. Since there is only one
way to look at the data, the order of complexity is C(1).

Level 2: For a (single-level) table, we can consider the following: (1) we can interpret
each row/column independently; (2) we can combine one row (or column) with one or
more rows (or columns) to study the relationship they have.

The overall number of combinations we can make in a table with n rows is: 2n − 1.
We define the order of complexity as how fast the complexity grows with each new row:

2n+1 − 1− (2n − 1) = 2n+1 − 2n = 2n(2− 1) = 2n (1)

The order of complexity is: C(2n).

8



Level 3: For a multi-level table, the complexity depends on the number of rows/columns
(n) and the number of groups for each level (g). The total number of possible combinations
is: 2ng − 1.

Considering the growth of complexity when adding a new group:

2n(g+1) − 1− (2ng − 1) = 2n(g+1) − 2ng = 2ng(2n − 1) (2)

The order of complexity is: C(2ng(2n − 1)).

Level 4: Unlinkable tables correspond to infinite complexity: C(∞).

4.2 Complexity Reduction

We examine how to reduce the order of complexity by transforming a higher level into a
lower one. We consider single-level reductions and measure the relative reduction:

∆C =
Cafter − Cbefore

Cbefore
(3)

4.2.1 Level 4 to Level 3

Going from an infinitely complex dataset to a measurably complex dataset is, by definition,
an almost perfect reduction of complexity.

4.2.2 Level 3 to Level 2

For the upper bound:

∆C = lim
g→∞

2n − 2ng(2n − 1)

2ng(2n − 1)
= −100% (4)

For the lower bound (simplest Level 3: g = 2, n = 2):

∆C =
1

22(2−1)
− 1 =

1

4
− 1 = −75% (5)

The reduction is bounded: ∆C ∈ [−100%;−75%].

4.2.3 Level 2 to Level 1

∆C = lim
n→∞

1− 2n

2n
= −100% (6)

For the lower bound (simplest Level 2: n = 2):

∆C =
1

22
− 1 = −75% (7)

The reduction is bounded: ∆C ∈ [−100%;−75%].

4.2.4 Level 1 to Level 0

∆C =
0− 1

1
= −100% (8)

Any complexity reduced to Level 0 corresponds to a 100% reduction.
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5 Case Study and Implementation
We implemented this method in a Python library (intuitiveness), applied it to a dataset
from a major international logistics operator and developed an interface.

5.1 Case study

5.1.1 Problem context

The organization faced an overwhelming amount of metadata on their indicators, coming
from different sources and formats, making it difficult to manage their data ecosystem
effectively. Their core challenge was: given these metadata, how to identify which
indicators to delete for operational efficiency while maintaining analytical ca-
pabilities? With 8,368 indicators scattered across multiple sources, there was no intuitive
way to determine which were essential and which were redundant or obsolete.

5.1.2 The Descent Phase (L4 → L0)

Step 1: L4 → L3 (Graph Construction) We modeled the raw “unlinkable” files into a
knowledge graph, transforming a Level 4 dataset into Level 3. The graph revealed 40,279
relationships among 8,368 indicators (48 connections per indicator on average).

Step 2: L3 → L2 (Domain Isolation) We queried the graph to isolate indicators by domain:
revenues, volumes, and employees (ETP). This categorical structure provided the first
layer of intuitive organization.

Step 3: L2 → L1 (Feature Extraction) We extracted indicator names to analyze naming
conventions and identify duplicates.

Step 4: L1 → L0 (Atomic Metric) We derived the atomic metric: number of revenue
indicators. This precise formulation captures a business diagnostic—an overproduction
of indicators—and served as the ground truth for the audit.

5.1.3 The Ascent Phase (L0 → L3)

Step 5: L0 → L1 (Reconstructing the Vector) From the atomic metric, we reconstructed
a vector of naming signatures by extracting structural features from each indicator name.

Step 6: L1 → L2 (Initial Classification) We added categories to the indicators. The
business_objects category captures the business domain (volume, revenue, ETP). The
calculated category provides a binary flag distinguishing raw data from calculated met-
rics. We also introduced three binary flags: weight_flag, rse_flag, and surcharges_flag
to capture specific business attributes.

Step 7: L2 → L3 (Analytic Dimensions) We added analytic dimensions to enable multi-
level analysis. The client_segmentation dimension specifies which client segments are
addressed. The sales_location dimension captures geographic usage patterns. The
product_segmentation dimension identifies which products are included. The financial_view
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dimension provides the financial perspective of the indicator. Finally, the lifecycle_view
dimension indicates the business lifecycle stage being measured.

5.1.4 Results

The descent (L4 → L0) moved the organization from chaos to a clear atomic metric.
The ascent (L0 → L3) produced intuitive Level 3 tables answering the business question.

The Level 3 table reveals clusters of indicators sharing identical analytic dimensions:

Indicator Object Client Location Product Financial Lifecycle

CA|4p|12caps revenue All Global All operational current
CA|4p|11caps revenue All Global All operational current
CA|4p|10caps revenue All Global All operational current

Table 1: Example of redundant indicators sharing all analytic dimensions

These three indicators share all six analytic dimensions—making them candidates
for consolidation. By grouping indicators with identical dimension profiles, the organi-
zation can systematically identify redundancy clusters, select representatives per
cluster, and then delete duplicates with confidence.

This demonstrates the power of the Descent-Ascent cycle: transforming “data
swamps” into “intuitive datasets.”

5.2 Implementation : the Intuitivness package

We implemented the framework as intuitiveness, an open-source Python package that
operationalizes the descent-ascent methodology through three core capabilities: AI-assisted
data modelling, semantic domain matching, and interactive navigation.

5.2.1 Adaptive data structures.

The package represents each abstraction level as a typed Python class. Level 4 wraps
dictionaries of DataFrames representing disconnected CSV files. Level 3 holds NetworkX
graphs or multi-level DataFrames with explicit relationships. Level 2 contains single
pandas DataFrames for domain-specific tables. Level 1 stores pandas Series as feature
vectors. Level 0 encapsulates scalar values with optional parent references enabling reverse
navigation. A unified Redesigner class dispatches transitions between adjacent levels,
enforcing the constraint that users cannot return to Level 4 once they descend—ensuring
commitment to the linking decisions that transform chaos into structure.

5.2.2 AI-powered entity discovery.

The L4→L3 transition—often the most daunting for non-experts—leverages large lan-
guage models to suggest data models from raw CSVs. The system extracts column names,
data types, and sample values, then prompts an LLM (supporting both local models via
Ollama and cloud models via OpenAI) to propose entities, key properties, and relation-
ships. Users review suggestions through an interactive schema visualization before graph
construction. For users preferring manual control, a rule-based generator creates star
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schemas from user-specified entity lists. A three-tier relationship discovery system identi-
fies connections between files: name heuristics (∼5 ms) detect common ID patterns; value
overlap analysis (∼100ms) computes Jaccard similarity on stratified samples; semantic
embeddings (∼2 s) find conceptually related columns when exact matches fail.

5.2.3 Semantic domain matching.

The L3→L2 transition employs embedding-based categorization using the multilingual-e5-
small model?. Users specify target domains in natural language; the system first attempts
keyword matching against domain-specific vocabularies, then batch-processes unmatched
items through semantic similarity computation. This hybrid approach handles multilin-
gual datasets and accommodates users unfamiliar with precise terminology—a query for
“revenus” correctly matches columns labelled “CA” (chiffre d’affaires) or “income.”

5.2.4 Navigation and persistence.

A NavigationSession class enforces the framework’s rules: entry exclusively at L4,
vertical-only movement, and no return to L4 once departed. The system tracks accu-
mulated outputs at each visited level, enabling export of complete analysis trails. A
branching NavigationTree structure preserves alternative exploration paths, supporting
time-travel to previous decision points. Sessions persist across browser restarts through
localStorage serialization with version checking and corruption detection.

5.2.5 Interactive interface.

An accompanying Streamlit application provides guided workflows for each transition:
file upload with drag-and-drop, entity discovery with confidence indicators, relationship
confirmation with sample matches, domain categorization with keyword/semantic toggles,
column extraction with data type handling, and aggregation selection. Ascent-phase
forms support enrichment function selection (L0→L1), dimension addition with preview
(L1→L2), and drag-and-drop relationship building (L2→L3). A sidebar decision tree
visualizes exploration branches; a JSON exporter produces audit trails compatible with
visualization tools. The interface supports French and English with runtime language
switching.

5.2.6 Data.gouv.fr integration.

To demonstrate real-world applicability, we integrated search capabilities for the French
national open data platform. Users search datasets using natural language queries, pre-
view metadata and sample records, then import CSV resources directly into the redesign
workflow—applying the full descent-ascent cycle to any of the platform’s 45,000+ datasets.

6 Discussion

6.1 Implications for Practice

The conceptual meta-design framework and its implementation as the intuitiveness
Python package offer several practical pathways for adoption by open data platforms,
dataset designers, and data literacy initiatives.

12



6.1.1 For Open Data Platforms

International open data platforms such as data.gouv.fr, UIS.stat, or the World Bank Open
Data can integrate the framework as a “data redesign plugin.” Our interface demon-
strates this feasibility by making all CSV files from data.gouv.fr accessible through the
intuitiveness package, allowing users to query datasets in natural language and navi-
gate through abstraction levels. Specifically, platforms could adopt three key strategies.
First, they could expose multiple abstraction levels—rather than providing a sin-
gle download option, platforms could offer users the choice to access data at L0 (atomic
metrics for quick facts), L1 (feature vectors for trend analysis), L2 (filtered tables for
domain exploration), or L3 (linked multi-level datasets for advanced analytics). Second,
they could implement guided descent workflows—following our Q&A approach, plat-
forms could guide users through progressive complexity reduction, asking questions such
as “What is your main indicator of interest?” and “Which domains are relevant to your
analysis?” Third, they could enable user-driven ascent—once users reach L0 ground
truth, platforms could support intentional reconstruction with user-specified analytic di-
mensions, producing datasets tailored to specific audiences or use cases.

6.1.2 For Dataset Designers

Data architects and analysts can apply the framework to redesign existing datasets or
design new ones with intuitiveness in mind through three core practices. First, designers
should start with L0—defining the atomic metric(s) that capture the essential truth
of the data before adding complexity. This “ground truth first” approach ensures that
even the most complex datasets can be traced back to fundamental, interpretable val-
ues. Second, they should document complexity levels—for each dataset, explicitly
documenting what L1, L2, and L3 representations exist and how to navigate between
them. Our data model validation tools (validate_data_model) can verify that transi-
tions are well-defined. Third, designers should use semantic matching for domain
isolation—the L3→L2 transition employs embedding-based categorization (using models
like intfloat/multilingual-e5-small) to group data by semantic similarity, not just
exact keyword matching. This approach handles multilingual datasets and accommodates
users who may not know the precise terminology.

6.1.3 For Data Literacy Initiatives

Educational programs and training initiatives can leverage the framework to scaffold learn-
ing through three key mechanisms. First, the framework enables progressive skill de-
velopment—the five abstraction levels align with increasing data literacy competencies,
allowing beginners to start at L0 (understanding single facts) and progressively advance to
L3 (working with linked, multi-level structures). Second, it facilitates flow-based learn-
ing experiences—drawing on Csikszentmihalyi’s flow theory, the framework positions
data users to experience optimal challenge-skill balance at each level, reducing frustration
and increasing engagement. Third, it supports adaptive interfaces—following recom-
mendations from the visualization literacy literature (Alhamadi et al. 2022, Amyrotos
2021), our Streamlit interface implements progressive disclosure, minimal default visual-
izations, and contextual guidance that adapts to user actions.
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6.1.4 Integration with Knowledge Graphs

The framework’s L4→L3 transition leverages Neo4j and knowledge graph technologies
to transform unlinkable datasets into structured, queryable graphs. Organizations can
adopt three graph-based strategies. First, they can use LLM-assisted entity discovery to
automatically suggest data models from raw CSV files. Second, they can map columns
to entities rather than entire files, enabling finer-grained graph construction. Third, they
can query the resulting knowledge graph using Cypher to isolate domain-specific subsets
for further analysis. Our case study with the international logistics operator demon-
strated that this approach can handle 8,368 indicators across multiple sources, producing
actionable redundancy clusters within a single descent-ascent cycle.

6.2 Limitations

While the framework provides a principled approach to designing intuitive datasets, sev-
eral limitations should be acknowledged.

6.2.1 Theoretical Constraints

Several theoretical limitations constrain the framework’s applicability. First, L4 and L0
function as theoretical extremes—Level 4 (unlinkable datasets) and Level 0 (atomic
datums) represent boundary conditions that are more useful as conceptual anchors than
practical states. L4 assumes complete disconnection between datasets, which is rarely
absolute in practice, as some implicit relationships often exist. Similarly, L0’s single-value
representation may oversimplify nuanced phenomena. Second, the complexity formula
makes simplifying assumptions—the complexity order calculations assume that all
possible combinations of rows and columns are equally meaningful. In practice, many
combinations may be semantically invalid or analytically irrelevant. The formal bounds
(75%–100% reduction per level) represent mathematical upper limits, not guaranteed
practical outcomes. Third, the framework maintains a tabular data focus—it was
developed primarily for tabular data (CSV files, relational tables). Extension to other
data modalities, such as time series, geospatial data, or unstructured text, would require
additional abstraction mechanisms.

6.2.2 Package and interface implementation Constraints

The implementation introduces several practical constraints. First, there is an LLM de-
pendency for entity discovery—the L4→L3 transition relies on large language mod-
els (via Ollama or OpenAI) to suggest entities and relationships. LLM outputs can
be inconsistent, requiring manual validation and editing of the generated data model.
Users without access to suitable LLMs may find this step challenging. Second, semantic
matching requires threshold tuning—the embedding-based domain categorization
(L3→L2) requires careful threshold configuration. A threshold too low produces false
positives; too high yields missed matches. The optimal threshold varies by domain and
language, complicating cross-domain generalization. Third, the system has a Neo4j in-
frastructure requirement—the knowledge graph functionality requires a running Neo4j
instance. While Docker deployment simplifies setup, this dependency may be prohibitive
for users seeking a lightweight, standalone solution. Fourth, performance at scale re-
mains limited—the current implementation processes datasets in memory and executes
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Cypher queries sequentially. For very large datasets (millions of rows), batch processing,
pagination, or distributed computation would be necessary.

6.2.3 Validation Scope

The validation of the framework remains limited in several respects. First, the empir-
ical evidence comes from a single case study—the validation is based on one case
study with a logistics operator. While the results are promising (40,279 relationships
discovered, actionable redundancy clusters identified), broader validation across diverse
domains, dataset sizes, and user populations is needed to confirm generalizability. Second,
there has been no formal user study—we have not yet conducted formal user studies
to measure intuitiveness gains, task completion times, or user satisfaction across different
data literacy levels. The claim that the framework produces “intuitive” datasets remains
theoretically grounded but empirically untested with end users. Third, the ascent phase
is less mature—while the descent phase (L4→L0) is well-developed with comprehensive
tooling, the ascent phase (L0→L3) relies on manually specified dimensions and enrich-
ment functions. Automated dimension suggestion based on user intent remains an open
research challenge.

6.2.4 Scope Boundaries

Finally, several scope boundaries define what the framework does not address. First,
data quality is assumed—the framework assumes input data is reasonably clean and
well-structured. It does not address data quality issues such as missing values, inconsis-
tent encodings, or schema drift. Preprocessing steps are the user’s responsibility. Second,
the implementation operates on static snapshots—the current implementation oper-
ates on static dataset snapshots. Real-time or streaming data would require additional
mechanisms for incremental updates and complexity recalculation. Third, the framework
provides a single-user workflow—it supports individual users navigating abstraction
levels. Collaborative features, such as shared navigation sessions, annotation, or version
control of redesigned datasets, are not yet implemented.

7 Conclusion and Future Work
The Data Redesign Method provides a rigorous path out of the “data swamp.” By quanti-
fying complexity and enforcing a descent to atomic levels before any ascent, organizations
can create datasets that adapt to the data literacy level of their users.

This methodology, implemented as a Python package, can be used by designers, data
scientists, and citizens dealing with real-world data. International open data platforms
such as UIS.stat or the World Bank Open Data can use it to design data redesign plugins
that increase dataset intuitiveness.

7.1 Future Work

[This section requires development with specific future directions.]
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