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Abstract

Heart disease remains a leading cause of mortality worldwide, underscoring the importance of accurate and transparent
methods for early diagnosis. While many machine learning and artificial intelligence models have demonstrated
strong predictive performance, their limited interpretability poses challenges for clinical adoption. In this study, we
evaluate three interpretable linear classification models—Generalized Linear Model (GLM) logistic regression, L1-
regularized (Lasso) logistic regression, and Linear Discriminant Analysis (LDA)—for heart disease prediction using
the Cleveland Heart Disease dataset. Following comprehensive data preprocessing, the models are assessed on
a held-out test set using standard evaluation metrics, including accuracy, precision, recall, F1-score, and the area
under the receiver operating characteristic curve (ROC-AUC). The results show that all three models achieve strong
discriminative performance. Among them, Lasso logistic regression attains the highest accuracy and F1-score,
reflecting a favorable balance between sensitivity and specificity, while GLM and LDA exhibit comparable performance
with slightly lower recall. Importantly, the GLM framework enables identification of clinically meaningful predictors,
reinforcing its interpretability and relevance for medical decision-making. These findings demonstrate that interpretable
linear models can provide reliable and transparent tools for heart disease prediction, offering a practical alternative to

more complex black-box approaches in clinical settings.
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Introduction

Heart disease or cardiovascular disease (CVD) remains
one of the most significant threats to human health and
is the leading cause of mortality worldwide. According
to the report of the World Health Organization (WHO),
cardiovascular diseases (CVDs) account for over 17.9
million deaths annually, WHO (2024), Shah et al. (2020).
In 2021, CVD accounted for approximately 20.5 million
deaths globally, representing nearly 32% of all deaths.
Among these, ischemic heart disease was responsible for 9.1
million deaths and stroke accounted for 6.6 million, together
comprising 85% of all CVD-related mortality, World Heart
Federation (2023). The burden is particularly severe in
low- and middle-income countries, where more than 80%
of CVD deaths occur and access to early detection and
care remains limited, Di Cesare et al. (2024). The global
burden of cardiovascular disease (CVD) has continued to
escalate, with an estimated 523 million people living with
CVD in 2022. The rising prevalence is largely driven by
aging populations and modifiable risk factors such as high
systolic blood pressure, obesity, and diabetes, Mensah et al.
(2023), Savarese et al. (2022).

In the United States, the situation is equally dire:
heart disease continues to be the leading cause of death
among men, women, and most racial and ethnic groups.
According to recent data from the Centers for Disease
Control and Prevention (CDC), an estimated 702,880
individuals died from heart disease in 2022, accounting for
approximately 1 in every 5 deaths nationwide. On average,
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one person dies every 33 seconds due to cardiovascular-
related complications. Coronary artery disease (CAD), the
most common form of heart disease, alone accounted
for more than 371,500 deaths. Moreover, about 1 in 20
adults aged 20 or older—roughly 5% of the U.S. adult
population—are living with CAD, and nearly 20% of all
cardiovascular deaths occur in individuals under the age of
65, highlighting its impact across age groups, CDC (2024).

These statistics emphasize the urgent need for effective,
accessible, and proactive diagnostic tools for early heart
disease detection. Early identification of at-risk individuals
significantly improves treatment outcomes, reduces long-
term healthcare costs, and enhances patient quality of life.
However, traditional diagnostic methods for heart disease,
such as electrocardiograms (ECG), stress testing, coronary
angiography, and blood biomarker analysis, often involve
time-consuming, invasive, and expensive procedures that are
not always feasible in low-resource settings or for routine
screening.

To address these limitations, there has been growing inter-
est in adopting data-driven predictive modeling techniques
that leverage statistical learning and artificial intelligence
(AI). The increasing availability of clinical datasets, along
with advancements in computing power and algorithm devel-
opment, has enabled the use of machine learning (ML) and
Al models for risk prediction in cardiovascular medicine.
These approaches can automatically learn complex patterns
from patient data, such as age, cholesterol levels, blood
pressure, and family history, to identify individuals at high
risk for heart disease without requiring invasive testing.
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By doing so, ML/AI models offer a promising pathway to
improve diagnostic accuracy, reduce diagnostic delays, and
support more timely clinical decision-making, Ahsan and
Siddique (2022), Azmi et al. (2022), Zhou et al. (2024).

Several recent studies have explored the effectiveness
of various ML algorithms for heart disease classification.
For instance, Shah et al. (2020) conducted a comparative
analysis using K-nearest neighbors (KNN), decision trees,
and random forests on the Cleveland Heart Disease dataset,
reporting encouraging results for KNN in terms of predictive
accuracy. Yadav et al. (2023) extended this work by
examining decision trees, logistic regression, random forests,
and ensemble techniques, highlighting the performance
benefits of tree-based models. Furthermore, Jha et al.
(2025) incorporated artificial neural networks (ANNSs) into
their analysis, demonstrating that deep learning models can
outperform traditional classifiers across multiple evaluation
metrics such as accuracy, F1-score, and ROC-AUC.

While these findings underscore the predictive strength
of complex ML models, one of the most significant
challenges to their deployment in clinical practice is
interpretability. Many of the high-performing models—such
as neural networks, support vector machines, and ensemble
methods—are considered “black-box” models, meaning that
their internal decision logic is not easily understandable by
human experts. In the context of healthcare, this opacity
limits the trust clinicians can place in model outputs,
especially when these outputs inform critical diagnostic
or treatment decisions. Moreover, regulatory standards and
ethical considerations increasingly demand transparency
and accountability in Al-driven medical tools, Mamun and
Alouani (2022).

Motivated by the need for interpretable yet effective
predictive models, this study focuses on developing
and evaluating interpretable machine learning models
for heart disease prediction. We specifically investigate
three linear classification approaches—Generalized Linear
Models (GLMs), L1-regularized (Lasso) logistic regression,
and Linear Discriminant Analysis (LDA)—that offer the
dual benefits of transparency and performance. These
models are designed to be both statistically robust and
clinically explainable, allowing healthcare providers to
understand how individual features contribute to the model’s
predictions. Using the widely recognized Cleveland Heart
Disease dataset, we assess each model’s effectiveness across
multiple evaluation metrics, including accuracy, precision,
recall, Fl-score, and ROC-AUC. Our overarching goal
is to contribute a framework that balances predictive
power with interpretability, enabling practical, cost-effective,
and ethically sound applications in real-world medical
environments.

For interpretable, accurate, and clinically actionable
models for heart disease prediction, the present study is
designed with the following objectives:

* To evaluate the predictive performance of three trans-
parent linear classification models—Generalized Lin-
ear Models (GLMs), L1-regularized (Lasso) logis-
tic regression, and Linear Discriminant Analysis
(LDA)—using the Cleveland Heart Disease dataset.
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* To ensure model interpretability by identifying the
most significant clinical features contributing to heart
disease prediction and examining their associations
with patient outcomes.

e To assess and compare the models across standard
evaluation metrics, including accuracy, precision,
recall, Fl-score, and ROC-AUC, with particular
attention to sensitivity and false-positive rates.

e To highlight the practical value of interpretable
models for real-world clinical integration, especially in
resource-constrained environments where black-box
models may be less viable.

Data

The dataset used for this study is the Cleveland Heart
Disease dataset, obtained from the UCI Machine Learning
Repository, Dua and Taniskidou (2017). Table 1 summarizes
the dataset features used in this study. The dataset consists of
303 instances and includes both continuous and categorical
variables relevant to cardiovascular health assessment. Con-
tinuous features, such as age, trestbps (resting blood
pressure), chol (serum cholesterol), thalach (maximum
heart rate achieved), and oldpeak (ST depression induced
by exercise), capture various physiological measurements.

Table 1. Dataset overview.

Feature | Feature Type Count | Description

age Continuous 303 Age in years

sex Categorical 303 1 = male; 0 = female

cp Categorical 303 Chest pain type (0-3)

trestbps Continuous 303 Resting blood pressure (mm Hg)

chol Continuous 303 Serum cholesterol (mg/dl)

fbs Categorical 303 Fasting blood sugar, > 120 mg/dl (1 = true)
restecg Categorical 303 Resting electrocardiographic result (0-2)
thalach Continuous 303 Maximum heart rate achieved

exang Categorical 303 Exercise-induced angina (1 = yes)
oldpeak Continuous 303 ST depression induced by exercise

slope Categorical 303 Slope of peak exercise ST segment (0-2)
ca Categorical 299 Number of major vessels colored by fluor.
thal Categorical 301 Thalassemia (1 = normal; 2 = fixed def.)
condition | Categorical (Target Variable) 303 0 = no disease; 1 = disease

Categorical variables capture clinical indicators and
demographic factors. The sex feature encodes gender as 1
for male and O for female. The cp feature categorizes the
type of chest pain into four classes: typical angina, atypical
angina, non-anginal pain, and asymptomatic. Fasting blood
sugar levels, indicated by the fbs feature, represent whether
the patient’s fasting blood sugar exceeds 120 mg/dl (1 =
true, 0 = false). Resting electrocardiographic results are
captured by the restecgqg feature, with values indicating
normal findings, ST-T wave abnormalities, or left ventricular
hypertrophy based on Estes’ criteria. The exang feature
reflects the presence of exercise-induced angina (1 = yes,
0 = no), while slope describes the slope of the peak
exercise ST segment as upsloping, flat, or downsloping. The
ca feature records the number of major vessels (ranging
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from O to 3) visualized by fluoroscopy. The thal feature
indicates thalassemia status, differentiating between normal
blood flow, fixed defects (regions with no blood flow), and
reversible defects (abnormal blood flow that improves with
rest). Missing values originally present in ca and thal have
been addressed during preprocessing.

The target variable, labeled as condition, is binary,
indicating the presence (1) or absence (0) of heart
disease. This combination of demographic, clinical, and
physiological features enables comprehensive modeling and
analysis of heart disease prediction.

Methodology

Figure 1 provides an overview of the step-by-step workflow
implemented in this study. The dataset will undergo
preprocessing to address missing values, encode categorical
variables, and normalize features as required. The binary
classification task will involve splitting the data into training
and test sets using stratified sampling to preserve class
proportions. The first model to be implemented is a
generalized linear model using logistic regression with a
logit link function. This model serves as the baseline due to
its statistical rigor and interpretability. The second model,
Lasso Logistic Regression, introduces L1 regularization
to the logistic regression framework. This approach helps
in selecting the most relevant features by shrinking the
coefficients of less informative predictors to zero, thereby
offering a more parsimonious model. The third model,
Linear Discriminant Analysis (LDA), classifies instances
based on the assumption that each class follows a Gaussian
distribution with equal covariance matrices.
Let’s

D = {(w4,yi) }iz1,

denote our Cleveland Heart Disease dataset, where p = 13
clinical features and n = 303 patients. We describe below
the preprocessing, model formulations, training procedures,
and evaluation metrics.

x; € Rpa Yi € {05 1}

Data Preprocessing

The following preprocessing steps have been applied to
prepare the dataset for model training:

* Missing-value: To assess the presence of missing
values in the dataset, a heatmap visualization has
been generated, as shown in Figure 2. This initial
analysis has identified a few missing entries, primarily
concentrated in the ca and thal features. To
address this issue, samples containing missing values
have been removed from the dataset. Following this
removal process, a second heatmap has been produced
(Figure 3), confirming that the resulting dataset is free
of missing values. After removing missing values, the
number of samples in this dataset is 297.

» Categorical encoding: Categorical features cp,
restecqg, slope, thal, and ca have been
transformed using one-hot encoding.

* Feature scaling: Continuous variables have been
standardized to zero mean and unit variance
using the standard scalar package from
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Figure 2. Missing values visualization heatmap.
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Figure 3. Heatmap visualization after removing missing values.

scikit—-learn library to ensure uniform scaling
across features.
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* Train/test split: The dataset has been partitioned into
training (80%) and test (20%) subsets using stratified N
sampling, preserving the proportion of positive-class 5 _ ar mm lo (1 —yi)log(1 — p;)) + A
instances in each split. In the training data, there are p=arg ; yilogpi + yi)log(1 = pi)) + AllB
237 samples, and in the test data, there are 60 samples. (8)
where the predicted probability is given by:
Models )
Generalized Linear Model (GLM): The generalized linear bi = m )]
model (GLM) provides a unified framework for modeling ]
response variables that follow a distribution from the and the L1 penalty term is:
exponential family, McCullagh and Nelder (1989), Agresti »
(2015). For binary classification tasks, where the response 18l = Z 1851 (10)
variable Y € {0, 1}, the GLM with a binomial family and a = !

logistic (logit) link is appropriate.
The GLM comprises three components:

1. Random Component: The response variable Y
follows a Bernoulli distribution:

Y ~ Bernoulli(p), with P(Y =1|X)=p (1)
2. Systematic Component: The linear predictor is

defined as:

n=Xpg )
where X € R™*P is the matrix of predictors, and 3 €
R? is the coefficient vector.

3. Link Function: The logistic link function relates the
expected value 4 = E[Y | X] to the linear predictor:

log (1“M> = X3 3)

Solving for . gives the probability of success:

1
- 4
a 1+ exp(—Xp3) @
Let {(x;,y:;)}{, denote the dataset, where y; =Y €

{0,1}. The likelihood function for logistic regression is
given by:

Hp/ (1—p) v )

where
1

1+ exp(—x;ﬂ)

The corresponding log-likelihood function is:

pi = (6)

Z Yi log p7 1 - yz) log(l - pl)] (N
=1

This function is concave in 3 and is typically maximized
using iterative numerical optimization techniques, such as
Newton-Raphson or Iteratively Reweighted Least Squares
(IRLS).

Lasso Logistic Regression (L1 Regularization): Lasso
logistic regression extends the GLM by introducing an L1
penalty on the coefficients to perform variable selection and
regularization, Tibshirani (1996). The optimization problem
is:
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Here, A controls the strength of the regularization.

Linear Discriminant Analysis (LDA): Linear discriminant
analysis (LDA) is a generative classification method that
models the joint distribution of the predictors and the
response, Hastie et al. (2009). It assumes that the feature
vectors x € R? for each class are drawn from a multivariate
normal distribution with class-specific means g, but a
shared covariance matrix 3 across all classes.

Under this assumption, LDA predicts the class label y
for a given observation x by maximizing the following
discriminant function:

. - 1 _
y = arg max (XTE 1uk — 5“’1—2 1!% + logwk)
(

ke{0,1}
11)
where:

e q: Predicted class label (0 or 1),

e k: Class index (0 or 1),

* p.: Mean vector of predictors for class &,
e 3: Common covariance matrix,

* my,: Prior probability of class k.

The discriminant function in Equation (11) arises from
taking the log of the posterior probability (via Bayes’
theorem) under the Gaussian assumption. The quadratic
terms cancel due to the shared covariance matrix, resulting
in a linear decision boundary.

LDA performs well when the Gaussian assumption holds
and the classes are linearly separable. It is particularly
effective when p (number of features) is not large compared
to the number of observations and when class covariances
are reasonably similar.

Model Training and Hyperparameter Tuning

Three classification models have been utilized in this
study: Generalized Linear Model (GLM), Lasso Logistic
Regression, and Linear Discriminant Analysis (LDA). The
GLM has been implemented using the statsmodels
library, Seabold and Perktold (2010), specifying a bino-
mial family with a logistic link function. This setup
models the log-odds of the binary outcome as a lin-
ear function of the predictors, without involving addi-
tional hyperparameter tuning. In contrast, Lasso Logis-
tic Regression and LDA have been implemented using
the scikit-learn library, Pedregosa et al. (2011). The
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Lasso model has employed the LogisticRegression
class with penalty="11’ and the 1liblinear solver
to apply ¢;-norm regularization, encouraging sparsity in
the coefficient estimates. LDA has been performed using
the LinearDiscriminantAnalysis class with default
settings, which assume equal covariance structures across
classes. No further hyperparameter tuning has been accom-
plished beyond these standard configurations, ensuring com-
parability among the models.

Evaluation Metrics

The performance of the classification models has been
evaluated using several standard metrics: accuracy, precision,
recall, Fl-score, and the area under the Receiver Operating
Characteristic (ROC) curve (ROC-AUC). For each model,
predicted class labels and predicted probabilities have
been obtained on the test set. Model predictions and
probability estimates have been generated using the
respective predict and predict_proba functions in
scikit-learn. For GLM, the probability estimates from
the logistic regression output have been thresholded at 0.5
to generate class predictions. Subsequently, the following
metrics have been computed using the test set. ROC curves
have been plotted for each model, and the ROC AUC scores
have been reported to evaluate each model’s performance.

* Accuracy: The proportion of correct predictions
among the total number of instances, defined as:

TP+TN
TP+TN+FP+FN

Accuracy =

where TP, TN, F P, and F' N represent true positives,
true negatives, false positives, and false negatives,
respectively.

* Precision: The proportion of correctly predicted
positive instances among all predicted positives:

TP

P .. _
recision TP+ FP

* Recall (Sensitivity): The proportion of correctly
predicted positive instances among all actual positives:

TP

Recall = —
= TP YFEN

* F1-score: The harmonic mean of precision and recall,
providing a balance between the two:

Fl-score — 2 x Precision x Recall

Precision + Recall

¢ ROC-AUC: The area under the ROC curve, which
quantifies the trade-off between the true positive rate
and false positive rate across different classification
thresholds.

* ROC Curve: A graphical plot that illustrates the
diagnostic ability of a binary classifier as its
discrimination threshold is varied. It plots the true
positive rate against the false positive rate.

We also present confusion matrices to visualize trade-offs
between sensitivity and specificity.

Prepared using sagej.cls

Results and Discussion

Data Visualization

At the beginning of the data visualization stage, first, we
visualized the response variable "condition". Figure 4
illustrates the distribution of patients by heart disease status.
The non-diseased group (condition = 0) contains slightly
more patients than the diseased group (condition = 1). This
figure demonstrates that the dataset maintains a balanced
representation of both classes.

count

condition

Figure 4. Class distribution of patients with and without heart
disease. (Condition = 0, No Heart Disease; Condition = 1, Heart
Disease).

Figure 5 presents the distribution of the key continuous
variables in the Cleveland Heart Disease dataset. The age
distribution (Figure 5a) is approximately normal, with most
patients falling between 45 and 65 years, highlighting
the higher prevalence of heart disease among middle-
aged and older adults. Resting blood pressure (trestbps),
Figure 5b, shows a unimodal pattern centered around
120-140 mm Hg, indicating that many patients exhibit
borderline to moderately elevated systolic blood pressure.
Serum cholesterol (chol) graph, Figure 5c, displays a
right-skewed distribution, with the majority of patients
clustered between 200 and 300 mg/dl, though a small
subset demonstrates extreme hypercholesterolemia with
values exceeding 400 mg/dl. The maximum heart rate
achieved (thalach), Figure 5d, follows a slightly left-skewed
distribution, with most individuals achieving 140-170 beats
per minute, whereas lower values are more frequent among
patients with heart disease, consistent with reduced exercise
capacity. These patterns provide clinically relevant insights
into the population, as elevated cholesterol, higher blood
pressure, and lower maximum heart rate are well-recognized
risk factors for cardiovascular disease.

Figure 6 presents the correlation heatmap depicting
pairwise Pearson correlation coefficients among the dataset
features, including the target variable condition.

Among the features, thal (thalassemia status) and
condition exhibit the strongest positive correlation
(0.52), followed closely by ca (number of major vessels
colored by fluoroscopy) with a correlation of 0.46, and
cp (chest pain type) at 0.41. These associations suggest
that these features are potentially important indicators for
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Figure 5. Distribution of continuous variables in the Cleveland Heart Disease dataset: (a) age, (b) resting blood pressure
(trestbps), (c) serum cholesterol (chol), and (d) maximum heart rate achieved (thalach). The plots highlight typical ranges in the
study population, with elevated cholesterol, higher blood pressure, and reduced maximum heart rate aligning with established

cardiovascular risk factors.

predicting heart disease. Additionally, exang (exercise-
induced angina) and oldpeak (ST depression) also show
moderate positive correlations with condition, with
coefficients of 0.42 and 0.33, respectively.
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Figure 6. Correlation heatmap of each feature.

Conversely, thalach (maximum heart rate achieved)
demonstrates the strongest negative correlation with
condition at -0.42, implying that lower heart rates are
associated with the presence of heart disease. Similarly, age
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and trestbps (resting blood pressure) exhibit weaker
positive correlations with condition, at 0.23 and 0.15,
respectively.

Overall, the correlation analysis highlights several features
with moderate associations with heart disease status, which
may contribute meaningfully to predictive modeling.

Figure 7 illustrates the distribution of key continuous
variables in the Cleveland Heart Disease dataset using a
swarm-violin plot, stratified by disease status. The age
distribution (Figure 7a) illustrates that patients diagnosed
with heart disease (condition = 1) exhibit an age distribution
concentrated primarily between 50 and 65 years, with
the central tendency near 60 years of age. In contrast,
patients without heart disease (condition = 0) demonstrate
a broader age range, spanning approximately from 35 to
75 years, with a greater proportion of younger individuals
and a central tendency around 50 years. The density of
younger individuals, particularly those below 35 years, is
notably higher in the no-disease group, whereas very few
patients in this age bracket present with heart disease. This
visualization suggests that while heart disease occurs across
a broad age range, it is relatively more concentrated among
older individuals, supporting the well-established association
between advancing age and increased cardiovascular risk.
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(d) Maximum heart rate achieved by patients, grouped by heart
disease status.

Figure 7. The distribution of key continuous variables in the heart disease dataset, grouped by presence (1) or absence (0) of
heart disease. Each plot visualizes the spread and central tendency of the data for: (a) age, (b) resting blood pressure, (c) serum

cholesterol, and (d) maximum heart rate achieved.

Resting blood pressure (Figure 7b) shows a modest
upward shift among patients with heart disease, with
noticeably higher median values relative to those without
disease, consistent with hypertension as a well-established
cardiovascular risk factor. Among the diseased group
(condition = 1), values cluster primarily between 120 and
150 mm Hg, but the distribution also exhibits a broader
spread and an extended upper tail exceeding 200 mm Hg.
In contrast, the non-diseased group (condition = 0) displays
a more compact distribution, concentrated around 120 to 140
mm Hg, with relatively fewer extreme cases. This wider
variability and heavier upper tail in the diseased cohort
suggest that elevated blood pressure is more common and
more severe in patients with heart disease. Although some
overlap exists between the two groups, the greater density of
readings above 140 mm Hg in the diseased group reinforces
the strong association between higher resting blood pressure
and cardiovascular risk.

Figure 7c compares the distribution of serum cholesterol
levels (chol) between patients with and without heart dis-
ease. For both groups, cholesterol values are predominantly
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clustered around 200 to 300 mg/dl. However, the non-
diseased group (condition = 0) exhibits a slightly wider
spread, with cholesterol levels extending beyond 500 mg/dl
in a few cases, which indicates an outlier. The diseased group
(condition = 1) shows a comparatively narrower distribution,
with most values concentrated between 180 and 300 mg/dl
and fewer extreme outliers.

The maximum heart rate achieved (thalach, Figure 7d
reveals a clear distinction between patients with and without
heart disease. The non-diseased group (condition = 0)
generally attains higher maximum heart rates, with values
clustering between 140 and 170 beats per minute (bpm)
and some extending beyond 190 bpm. By contrast, the
diseased group (condition = 1) exhibits a lower distribution,
concentrated around 120 to 150 bpm, with relatively
few observations exceeding 170 bpm. This divergence
suggests that patients without heart disease possess greater
cardiovascular fitness and fewer physiological restrictions
during exercise testing, whereas lower maximum heart
rates in the diseased group likely reflect underlying
cardiac limitations. Overall, the inverse relationship between
thalach and disease status underscores its value as a
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discriminative feature in distinguishing between groups,
supporting its role as a meaningful predictor in classification
models.

Collectively, these comparisons emphasize that age, blood
pressure, cholesterol, and heart rate all exhibit clinically
meaningful differences between the two groups, aligning
with established cardiovascular risk profiles.

Model Performance and Discussion

The three linear classifiers—generalized linear model
(GLM), Lasso logistic regression, and linear discriminant
analysis (LDA)—all demonstrated strong discriminative
ability on the held-out test set (Table 2).Among them,
the Lasso logistic regression model achieved the highest
accuracy (0.90), while GLM logistic and LDA attained
accuracies of 0.87 and 0.88, respectively. In terms
of precision, recall, and Fl-score, the Lasso Logistic
Regression model also achieved the best performance
compared to the other two models. As shown in Figure 12,
all three models exhibit steep ROC curves with high AUCs,
confirming their strong discriminative capability. Notably,
each model achieves a true positive rate exceeding 0.80 at
a false positive rate below 0.10, which is a desirable property
for clinical screening applications where minimizing false
alarms is critical.

Table 2. Performance metrics for each model.

Model Accuracy | Precision | Recall | F1-score | ROC-AUC
GLM Logistic 0.87 0.83 0.83 0.83 0.94
Lasso Logistic 0.90 0.88 0.88 0.88 0.94
LDA 0.88 0.87 0.83 0.85 0.95

Importantly, as illustrated in Figure 8-10, all three
classifiers produced a small but non-negligible number of
false positives and false negatives, indicating a balanced
trade-off between sensitivity and specificity rather than
perfect classification. The GLM logistic regression model
yielded four false positives and four false negatives, resulting
in a recall of 0.83 and an F1-score of 0.83. The Lasso logistic
regression model showed slightly improved performance,
with three false positives and three false negatives, achieving
higher precision and recall (both 0.88) and the highest
Fl-score among the three models. In contrast, the LDA
model produced three false positives and four false negatives,
leading to a recall of 0.83 and a marginally lower F1-score of
0.85. Overall, the confusion matrices confirm the quantitative
results in Table 2, with Lasso logistic regression offering the
most balanced classification performance, while GLM and
LDA exhibit comparable but slightly reduced sensitivity.

The results of the Generalized Linear Model (GLM)
analysis (Figure 11, Table 3) provide insight into the
key clinical features associated with heart disease. Among
the thirteen predictors considered, five variables emerged
as statistically significant contributors to the model’s
performance (Table 3), highlighting factors with meaningful
associations after adjusting for all covariates.

The number of major vessels colored by fluoroscopy
(ca) exhibited the strongest positive association with heart
disease, with a highly significant p-value (p < 0.001),
indicating that patients with a greater number of affected
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Figure 10. Confusion metrics of Linear Discriminant Analysis
Model.

vessels are at substantially higher risk. Sex (sex) was
also significantly associated with disease status (p = 0.005),
with male patients showing an increased likelihood of heart
disease. Resting blood pressure (t restbps) demonstrated
a significant positive association (p = 0.012), reinforcing the
well-established role of hypertension as a cardiovascular risk
factor. In addition, thalassemia status (thal) was positively
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associated with heart disease (p = 0.011), underscoring its
importance as a clinically relevant biomarker.

Fasting blood sugar (fbs) exhibited a statistically
significant negative association with heart disease (p =
0.023). This inverse relationship reflects the conditional
effect of fbs within the multivariable model and should be
interpreted in the context of interactions with other clinical
covariates rather than as an isolated physiological effect.

Overall, these findings underscore the clinical relevance of
the identified predictors in cardiovascular risk stratification.
The interpretability of the GLM framework enables clear
identification of influential variables, supporting transparent
clinical decision-making. The significance of factors such as
ca, trestbps, and thal aligns with established medical
knowledge, further validating the reliability and clinical
applicability of the proposed model.

Generalized Linear Model Regression Results

Dep. Variable: condition No. Observations: 237
Model: 6LM  Df Residuals: 223
Model Family: Binomial Df Model: 13

Link Functien: Logit Scale:

Method: IRLS  Log-Likelihood: 84.751
Date: Fri, 19 Dec 20825 Deviance: 169.50
Time: 06:56:56  Pearson chi2: 236.
No. Iterations: 6 Pseudo R-squ. (CS): 0.4877
Covariance Type: nonrobust

coef std err z P>|z| [0.625 0.975]
const 0.0727 0.206 9.353 0.724 0.331 0.477
x1 0.0988 0.234 9.423 0.672 8.557 0.359
x2 0.6903 0.247 2.795 0.005 0.206 1.174
x3 0.3725 0.201 1.853 0.064 0.022 0.766
x4 ©.5155 0.206 2.502 0.012 0.112 0.919
x5 0.3619 0.215 1.686 0.092 0.059 0.783
x6 0.4936 0.217 2.272 0.0823 0.920 0.068
X7 0.2105 0.202 1.045 0.296 0.184 0.606
x8 0.5054 0.256 1.974 0.048 1.007 0.004
x9 ©.4514 0.217 2.080 0.038 0.026 0.877
x10 0.3317 0.269 1.233 0.218 0.196 0.859
x11 0.2675 0.242 1.106 0.269 0.207 0.742
x12 1.2448 0.271 4.594 0.000 0.714 1.776
x13 0.5378 0.213 2.530 0.011 0.121 0.954

Figure 11. Generalized Linear Model performance

Table 3. Most significant variables identified by the generalized
linear model.

Variable | Interpretation

ca Number of major vessels colored by fluoroscopy is strongly and
positively associated with heart disease.

sex Male sex is positively associated with the presence of heart disease.

trestbps | Higher resting blood pressure increases the likelihood of heart disease.

thal Thalassemia status is positively associated with heart disease.

fbs Fasting blood sugar level is negatively associated with heart disease.

Beyond GLM performance, the Lasso logistic regression
model enforces sparsity—retaining a subset of key predictors
(e.g., chest pain type, maximum heart rate, ST depression)
and shrinking others to zero—which reduces measurement
burden and highlights the most relevant biomarkers. LDA,
though not explicitly sparse, projects patients onto a single
continuous risk axis that can be readily visualized and
thresholded in practice. The GLM model strikes a balance
between full-feature modeling and straightforward odds-
ratio interpretation.

Comparison with existing literature

Due to the high stakes of early diagnosis and treatment, heart
disease prediction has been a prominent application area
for machine learning. Numerous studies have evaluated a
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wide variety of classifiers, ranging from traditional statistical
methods to advanced ensemble techniques, each offering
unique advantages in terms of accuracy, interpretability, and
generalization. Table 4 presents a comprehensive summary
of the relevant literature and compares the performance of
our proposed models with those from previous studies.

Jha et al. (2025) explored a series of machine learning
models including Decision Trees, Support Vector Machines
(SVM), Random Forests, and Artificial Neural Networks
(ANN) for heart disease classification. While ANN achieved
the best overall performance with an accuracy of 0.86 and
a balanced Fl1-score of 0.83, the SVM model showed a
significant drop in recall (0.42) despite a similar accuracy,
indicating a tendency toward false negatives—a critical
concern in medical diagnostics. Decision Trees, while
interpretable, yielded moderate results with an Fl-score
of 0.80, reflecting their limitations when applied without
ensemble enhancements.

Yadav et al. (2023) demonstrated high accuracies for
Decision Tree and Random Forest classifiers (0.97), but their
study lacked additional evaluation metrics such as precision,
recall, and ROC-AUC. This omission makes it challenging to
fully assess the models’ reliability, especially in imbalanced
datasets where accuracy alone can be misleading. Similarly,
Logistic Regression and KNN achieved accuracies of 0.81
and 0.70, respectively, suggesting that simpler linear models
may require more feature engineering or regularization to
perform competitively.

Bhatt et al. (2023) conducted a more comprehensive
evaluation, incorporating metrics like precision, recall, F1-
score, and ROC-AUC. Their use of Multilayer Perceptron,
Random Forest, Decision Tree, and XGBoost models
yielded consistent and high performance, with XGBoost
achieving the best Fl-score (0.86) and ROC-AUC (0.95).
This emphasizes the strength of ensemble-based learning in
capturing complex feature interactions, particularly in health
data where nonlinear relationships are prevalent.

Shah et al. (2020) and Choudhary and Singh (2020)
also employed traditional classifiers, with Naive Bayes
reaching an accuracy of 0.88 and Decision Trees up to
0.97. Choudhary’s study is notable for reporting all key
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Table 4. Performance comparison of classification models from literature.
Author name Model \ Accuracy Precision Recall F1 Score RoC-AUC
Decision Tree (DT) 0.78 0.77 0.83 0.80
L Support Vector Machine (SVM) 0.78 0.69 0.42 -
Tha et al. (2025) Random Forest (RF) 0.67 0.64 0.63 0.66
Artificial Neural Networks (ANN) 0.86 0.86 0.84 0.83
Logistic Regression (LR) 0.81
o ) Decision Tree (DT) 0.97
Yadavetal. (2023) Random Forest (RF) 0.97
K-Nearest Neighbor (KNN) 0.70
Multilayer Perceptron (MLP) 0.87 0.89 0.83 0.86 0.95
) ) Random Forest (RF) 0.87 0.89 0.83 0.86 0.95
Bhatt etal. (2023) Decision Tree (DT) 0.87 0.90 0.81 0.85 0.94
Xgboost (XGB) 0.87 0.90 0.82 0.86 0.95
Naive Bayes (NB) 0.88
) . K-Nearest Neighbor (KNN) 0.79
Shah et al. (2020) Decision Tree (DT) 0.74
Random Forest (RF) 0.84
o - Decision Tree (DT) 0.97
Choudhary and Singh (2020) 4 1oost (AB) 0.89 0.91 0.89 0.90
K-Nearest Neighbor (KNN) 0.89
Jindal et al. (2021) Logistic Regression (LR) 0.89
Random Forest (RF) 0.85
Multinomial Naive Bayes (MNB) 0.93
Support Vector Machine (SVM) 0.97
Logistic Regression (LR) 0.87
CART 0.84
Saboor et al. (2022) Linear Discriminant Analysis (LDA) 0.95
Ada-boost (AB) 0.93
Random Forest (RF) 0.90
Extra Tree (ET) 0.95
Xgboost (XGB) 0.92
Liu and Fu (2014) CS-PSO-SVM \ 0.85 0.82 0.90 0.86
Yang et al. (2015) PCA with quasi linear SVM ‘ 0.87 0.86 0.84 0.85
Ensemble classifier (k = 50) 0.89
Ensemble classifier (k = 100) 0.93
. . Ensemble classifier (k = 150) 0.91
Liuetal. (2017) C 4.5 tree 0.87
Naive Bayes (NB) 0.83
Bayesian Neural Network (BNN) 0.85
Naive Bayes (NB) 0.86 0.86 0.86 0.86
Support Vector Machine (SVM) 0.98 0.96 0.98 0.97
Nashif et al. (2018) Random Forest (RF) 0.96 0.96 0.96 0.96
Simple Logistic 0.95 0.95 0.95 0.95
Artificial Neural Networks (ANN) 0.77 0.78 0.77 0.77
. Artificial Neural Networks (ANN) 0.88
Ayatollahi et al. (2019) Support Vector Machine (SVM) 0.92
Generalized Linear Model (Logistic) 0.87 0.83 0.83 0.83 0.94
Our model Lasso Logistic Regression 0.90 0.88 0.88 0.88 0.94
Linear Discriminant Analysis (LDA) 0.88 0.87 0.83 0.85 0.95

metrics for AdaBoost (e.g., Fl-score of 0.90), highlighting
how ensemble strategies can elevate even basic learners’
performance. However, the lack of full metric coverage
in some of these works reduces transparency in model
comparison.

Jindal et al. (2021) and Saboor et al. (2022) expanded on
this by benchmarking a wide range of classifiers. Saboor’s
study stands out with nine algorithms, among which SVM
and LDA achieved the highest accuracies (up to 0.97 and

Prepared using sagej.cls

0.95, respectively). These results reinforce the robustness of
margin-based classifiers and discriminant analysis in medical
classification tasks. However, simpler models like CART
and Logistic Regression showed slightly lower performance
(1 0.84-0.87), suggesting that they might be better suited as
baselines rather than final models.

More novel approaches were explored by Liu and Fu
(2014), who implemented a hybrid PSO-SVM model, and
Yang et al. (2015), who applied PCA-based clustering with
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quasi-linear SVM. Both studies reported strong, balanced
performance across key metrics, highlighting the benefit
of combining optimization techniques and dimensionality
reduction for medical data.

Ensemble classifiers were further studied by Liu et
al. (2017), who varied ensemble sizes (k=50 to 150),
noting that larger ensembles (k=100) improved classification
outcomes (accuracy up to 0.93). Nashif et al. (2018)
evaluated five different classifiers on real-time cardiovascular
data, reporting very high accuracy for SVM (0.98) and
Random Forest (0.96), with comprehensive metric coverage.
These findings suggest that models with higher capacity
and regularization perform better under noisy, real-world
conditions.

Ayatollahi et al. (2019) focused on Fl-scores for SVM
and ANN, reporting values of 0.92 and 0.88, respectively.
The preference toward SVM aligns with previous findings,
especially in datasets with well-separated classes.

In summary, the literature highlights that ensemble
and neural network-based models generally outperform
traditional classifiers in heart disease prediction, especially
when evaluated across multiple metrics. However, many
works still emphasize accuracy alone, neglecting critical
measures like recall and ROC-AUC that are vital in clinical
settings. Additionally, some studies lack reproducibility due
to limited reporting of experimental setups and metrics.
These gaps motivate the development of more interpretable
yet high-performing models, which our work aims to address
by combining generalized linear and regularized classifiers
with full performance evaluation.

Conclusion

This study has systematically evaluated the predictive capa-
bilities of three interpretable linear classifiers—Generalized
Linear Model (GLM), L1-regularized (Lasso) logistic regres-
sion, and Linear Discriminant Analysis (LDA)—on the
Cleveland Heart Disease dataset. Addressing the clini-
cal demand for models that balance accuracy with trans-
parency, the results demonstrate that relatively simple linear
approaches can achieve strong discriminative performance
while remaining interpretable and clinically meaningful.

Across all models, ROC-AUC values exceeded 0.94,
indicating robust class separation. Among the three
approaches, Lasso logistic regression achieved the highest
overall accuracy and F1-score, reflecting the most balanced
trade-off between precision and recall. The GLM and LDA
models produced comparable results, with slightly lower
sensitivity but similarly strong discrimination. Analysis of
the confusion matrices revealed that all models incurred
small but non-negligible numbers of false positives and
false negatives, emphasizing realistic performance trade-offs
rather than idealized classification outcomes.

Beyond predictive accuracy, the GLM analysis provided
valuable clinical insights by identifying significant predictors
such as chest pain type, thalassemia status, number of major
vessels visualized by fluoroscopy, exercise-induced angina,
and maximum heart rate achieved. These variables align well
with established cardiovascular risk factors, reinforcing the
clinical credibility and interpretability of the model. While
Lasso regression further enhances interpretability through
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coefficient sparsity and feature selection, LDA offers a
compact one-dimensional risk score that can be flexibly
thresholded in practice.

In summary, this work demonstrates that interpretable lin-
ear models—particularly Lasso-regularized and generalized
linear approaches—can serve as effective and transparent
tools for heart disease prediction. Their combination of com-
petitive performance, interpretability, and ease of implemen-
tation makes them well suited for real-world clinical decision
support. Future research should extend this analysis to larger
and more diverse cohorts and explore hybrid approaches that
preserve interpretability while capturing more complex data
relationships.
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