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illustrated with a ridge regression task, where the goal is to identify the best-fitting
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model complexity) against average mean squared error, MSE (representing predictive
accuracy), provides a visual representation to help the model developer determine if sufficient
iterations of k-fold cross-validation have been performed. In addition, this study shows how
fitting graph curves can be estimated and constructed from noisy scatterplots using regression
splines. Instead of increasing the number of reps of cross-validation, a regression spline can
save you time in estimating the fitting graph, using far fewer iterations.

The fitting graph is also presented as a tool to promote model robustness, defined as the
model's ability to maintain performance levels across variations in the hyperparameter A. This
concept is demonstrated through a case study on an unstable polynomial regression model.
The simulation study reveals that standard k-fold cross-validation, even when repeated 5 or 10
times, selects an incorrect and unstable A by an overwhelming margin. In contrast, the fitting
graph method reliably selects a A that is both well-fitting and stable. Without the fitting graph,
the model developer is led astray and is more likely to choose a highly unstable A, leading to
suboptimal model performance.
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Trustworthy Al During Machine Learning Model Development:
Enhancing Explainability and Robustness of ML Models with Fitting Graphs

1 Introduction

The need for trustworthy Al has become a critical research topic due to Al's growing influence on
society. While Al systems, especially machine learning models, can provide fast and accurate
predictions, they sometimes yield incorrect results. For instance, generative Al tools like ChatGPT have
been known to produce plausible but false information, or "hallucinations," making it hard for users to
distinguish accurate information from misinformation. A machine learning model used in pretrial
detention decisions was found to be biased against Black defendants [40]. Epic Systems' Al model for
predicting sepsis, the leading cause of death in hospitals, failed to detect 67% of sepsis cases and falsely
flagged 88% of non-sepsis patients [41]. These examples show that the trustworthiness of many Al
systems remain a central challenge.

What are the components of Trustworthy AlI? Trustworthy Al is a broad and multi-dimensional concept,
encompassing consideration of several issues. In recent years, a number of frameworks have been
proposed to help designers and developers build trustworthy Al systems(e.g., [11,21,25,32,40]).
Although there are some differences as to what constitutes trustworthy Al, and what the most
important aspects are, these frameworks commonly consider the following five dimensions:

e Performance: Al demonstrates competence in performing its task, such as the predictive
accuracy of the machine learning model.

e Explainability: Al is transparent and open to inspection. This means that stakeholders can probe
the Al system to understand how it makes its decisions.

e Robustness: Al is reliable and resilient, performing accurately over a wide range of conditions
and scenarios.’

e Fairness: Al is free from bias and discrimination.

e Ethical Considerations: Al is aligned to society's goals, including respect for human rights and
values.

It goes without saying that Al systems should exhibit strong performance, otherwise they cannot be
trusted. Hence, it is important for Al models to be evaluated on appropriate performance benchmarks
such as predictive accuracy, F1 score, AUC, precision, and recall. After all, a predictive machine learning
model is only as good as how well it can make its predictions, free from errors. This research centers on
two related but distinct dimensions to performance, namely, explainability and robustness.

Explainability and robustness are tied to performance, because they address different aspects on
performance: on the one hand, the ability to explain performance (explainability), or why a model
performed in the way that it did, and on other the hand, the ability to sustain performance levels across
a wide range of conditions (robustness). Fairness and ethical considerations, though important
dimensions, are not addressed in this study.

Other components of trustworthy Al, not mentioned above, include accountability [21,25,32], safety
[21,32], sustainability [21,32], privacy [21,32], security [21,25,32], lawfulness [11], and reproducibility

1 Robustness is sometimes referred to as reliability.



[25], among others. Sometimes the definitions of these concepts are intertwined with each other and
not treated as separate and distinct. For example, safety is frequently mentioned in conjunction with
robustness because having safe Al presumes that the Al system can perform well under varying
operational conditions. Accountability involves justifying the decisions the Al system is making, so it is
frequently associated with explainability—after all, justifying decisions means explaining how decisions
are made. Fairness, privacy, sustainability, and security are sometimes embedded in broader
discussions of ethical Al.

The first dimension we focus on is explainability. A large body of research on Explainable Al (XAl), also
known as interpretable Al, explores how Al systems can explain their actions and decisions in ways
humans can understand [6]. A common complaint leveled against Al systems is that they are black
boxes that are hard to understand. When an Al's decisions do not make sense to the end-user, it is hard
to understand what factors determined its decision. Explainable Al attempts to make the decision-
making process more transparent so that an end-user can use the system’s outputs in more thoughtful
and critical ways. Explanations in Al is not a new research topic but has been a decades-old concern. It
was notably a popular topic during the peak years of Expert Systems development, in the 1970s and
1980s, when researchers were looking for ways to provide explanations for rule-based expert systems
[5,7,37]. But the need for Explainable Al has emerged once again as an urgent topic given the problems
and limitations associated with Al usage.

Moreover, explainability more broadly considers how to make the entire lifecycle of the Al systems
development more transparent, in terms of the steps on how the Al system was created, tested, and
implemented. To foster system transparency, a variety of information could be disclosed including "the
design purposes, data sources, hardware requirements, configuations, working conditions, expected
usage, and system performance" [25]. Hence, explainability entails the generation of documentation in
all phases of Al systems development.

Most previous research on Explainable Al has primarily focused on the end-user, aiming to help them
interpret the system’s outputs. Hence, Explainable Al has dealt with human-centered design, and how to
deliver explanations in a way that is easy to process and understand. Much of the past research has
focused on post-hoc explanations, or explanations provided to the end-user after the machine learning
model is deployed. For example, an important research area in explainable Al has considered feature
importance, or how the features of a machine learning model contribute to the final prediction so that a
non-expert end-user can better understand the rationale underlying an Al system's decision. Subianto
and Siebes [36] describe an approach that provides insights on the importance of a features. Each
feature in the Al model is assigned a weight that refects the feature's overall influence on the prediction.
Cortes and Embrechts [8] describe a visualization approach based on a sensitivity analysis method. Their
approach measures the effects on the outcome when the input features are varied along a range of
values. Goldstein et al. [15] considers individual conditional expectation (ICE) plots. These plots display
the average prediction of an Al model when an individual feature varies over its range. This research
stream considers the end-user who is trying to understand an Al's model outputs and how it makes its
decisions.

By contrast, this study focuses on a different stakeholder, the model developer, who is tasked to design,
evaluate, and select the correct machine learning model. Indeed, as Dhanorkar et al. [10] notes, "An Al
system does not exist in a social vacuum. An Al system deployed in the real world has a wide range of
stakeholders that extends beyond the immediate users (e.g., regulators, model developers, decision-
makers, consumers)" (p. 1593). Each of these stakeholders may have different informational needs,
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based on the tasks they are required to work on. Whereas the end-user would be primarily concerned
with what factors (or features) led to a system's prediction, the model developer is more concerned
with understanding how to improve the Al model from a technical standpoint—e.g., how to improve its
predictive accuracy and robustness. In this study, we focus on an information visualization known as the
fitting graph?, which is an explanations tool to support the model developer.

The second dimension that we focus on is robustness, which refers to the development of Al systems
that are reliable and resilient. Braiek and Khomf [4] define robustness as the ability of the Al system to
“maintain stable and reliable performance across a broad spectrum of conditions, variations, or
challenges, demonstrating resilience and adaptability in the face of uncertainties or unexpected
changes” (pp. 1-2). One notable example, which illustrates the importance of robust Al, are self-driving
cars that need to process real-time data from sensors like cameras, radar, and lidar to navigate roads
and handle unpredictable driving conditions. If these systems are to perform at a high level, they must
be able to adapt to changes in road conditions, weather, and unexpected human behaviors from other
vehicles.

The importance of robust Al has garnered increasing attention in recent years, given the application of
Al to safety-critical areas such as self-driving vehicles, medical diagnosis, aviation guidance, among
others. In response to this need, there is a large and growing body of literature that focuses on
developing robust Al. Hendrycks and Dietterich [18] investigate Al systems that can handle
distributional shifts, adversarial inputs, and maintain reliable performance in uncertain environments.
They discuss methods to achieve robust Al. Goodfellow, Bengio, and Courville [16] address robustness
in the context of developing deep learning models. They discuss how deep learning models can be
made more robust to adversarial inputs, noise, and shifts in data distribution. Song et al. [34] describe
robust Al as systems that maintain high performance even when its inputs are perturbed, or when they
face adversarial attacks.

In addition to limiting this study to explainability and robustness, we also focus solely on the model
development phase within the Al development lifecycle. To frame this study and provide it with some
context, let’s consider what phases a typical Al project moves through. Decker et al. [9] provide a typical
framework that considers six phases. We condensed their modeling and evaluation phases into a single
phase—model development—because modeling and evaluation frequently occur together, leaving us
with five phases. Moreover, addressing explainability and robustness involves both modeling and
evaluation activities. Based on their framework, and the combining of modeling and evaluation into a
single phase, here are the five phases of a typical machine learning development project:

1. Business and Data Understanding. Business requirements are gathered and scoped, and data
collection occurs.

2. Data Preparation. Data cleaning and preprocessing occurs. Among the tasks performed are
data standardization, handling missing values, outlier detection and removal, and feature
engineering.

3. Model Development. This is the model learning phase. It involves model selection, model
training, and hyperparameter tuning of the Al model. In addition, the Al model is evaluated
using appropriate performance metrics. Other issues such as explainability and robustness are
considered during this phase.

2 The end-user, in fact, may not be interested in the fitting graph, which shows how model performance varies as a
function of model complexity.



4. Deployment. The Al system is implemented into the production environment of the
organization.

5. Monitoring and Maintenance. This post-implementation phase considers possible changes in
the production environment and monitors the performance of the Al model to ensure that it
meets expected performance metrics

Li et al. [25] argue that Al trustworthiness should be established and promoted throughout the lifecycle
of an Al development project. To illustrate this point, the first phase (Business and Data Understanding)
involves data collection. In order to promote robustness, it is recommended to collect data that
represent the diversity of situations that might arise in the real world. At the other end of the lifecycle
(Monitoring and Maintenance), monitoring the machine learning model is necessary to ensure that it
continues to perform well and is able to correctly make predictions on new and unseen examples that
may arise. Indeed, creating trustworthy Al is an ongoing process that takes place across the lifecycle,
and continues even after the Al system has been implemented and deployed in the organization.

In this study, we focus on the model developer, who may not understand whether a machine learning
model is the correct one or not. The questions that we address are: How do we support the model
developer with explanations? To make our ideas more concrete, this study illustrates model
explainability and robustness with a machine learning task involving the creation of a linear regression
model. The task involves tuning the regularization parameter A in a linear regression model. The model
developer may require some explanatory support to help guide in the selection of the correct model.
How is the model developer supported in this task, so that he/she is on the right track? What type of
information graphic would help a model developer trust that the correct model has been selected? How
can we be sure that the linear regression model selected is a robust one, or one that is insensitive to the
miscalculation of its regularization parameter?

The remainder of this paper is organized as follows: Section 2 describes the task to be solved, namely,
how to find the best-fitting regularization parameter A, such that it does not overfit or underfit a linear
regression model. Section 3 describes the visualization tool, the fitting graph, which is used to provide
explanations during the model development phase. Section 4 shows how to derive and actively
construct fitting graphs directly from your data. First, scatterplots of model complexity plotted against
model error are generated; then, fitting graphs are generated from these scatterplots by using
regression splines. Section 5 describes a case study in which a highly unstable ridge regression model is
analyzed. The results of a simulation study show how traditional validation methods utterly fail to find a
good solution, while using a fitting graph is a more robust way of finding a well-fitting model. Section 6
provides summary discussion and conclusions of these results.



2 The Task: Finding the Best-Fitting Regularization Parameter

Linear regression is a popular technique for building a model that predicts, or estimates, a quantitative
outcome. Numerous textbooks have been written on the subject. The technique involves fitting a linear
model that minimizes the mean squared error (MSE) and then uses the linear model to make predictions
on unseen data. Assume a linear regression model of the form

Y= Bo+ BiXs+ B Xo+ -+ BpXp+e (1)

where Y is the target or outcome variable, and X, X,,..., Xp are the independent, or feature variables.
Ordinary least squares (OLS) regression will find the B coefficients that minimize the mean squared error
(MSE):

1\ .
MSE = = > (= 5)? (2)
i=1

where y; is the actual outcome and ¥, is the predicted outcome fitted by using the regression model for
i =1 to n observations.

However, linear regression is susceptible to model overfitting. Model overfitting occurs when a
regression model tries to fit the training data as well as possible, at the expense of poor generalization
to unseen data. A graphical visualization of model overfit, involving a linear regression model, is
provided by Fig. 1. In this example, a set of x values (n=50) is randomly generated from a normal
distribution (u=50, 0=10). The y values are calculated from the quadratic function: y = x> = 5x + €, with
the error term € also randomly generated from a normal distribution (u=0, 6=10). The data is then fit
with four different regression models: (a) a straight line (underfit model), (b) a quadratic curve (correct
fit), (c) a polynomial of degree 10 (overfit model), and (d) a polynomial of degree 15 (overfit model). Fig.
1 shows how models (c) and (d) overfit the data. Both models chase after noise in the data, and result in
more erratic curves. When a polynomial of degree 15 is fit to the data, the curve becomes extremely
erratic. Even though R? continues to improve with higher order polynomials, the overfit models would
not generalize well to unseen data.

One popular technique that can reduce model overfitting is known as ridge regression (Hoerl and
Kennard, 1970; Marquardt, 1970). The technique involves fitting a model of all predictors, like in OLS
regression, but the estimated B coefficients are shrunken towards zero. Mathematically, ridge
regression penalizes the B parameter estimates by adding a penalty term to the MSE in Eq. (2):

1 n ., 14 ,
MSE=— > i =902+ 2 ) 7 (3)
i=1 j=1
where i is the observation from 1 to n and f; is the coefficient of the predictor variable from j =1 to p.

From Eq. (3), ridge regression would shrink the f estimates towards 0 as A becomes large, because of
the penalty term: To minimize MSE, you would need smaller B estimates. On the other hand, the
estimates would remain unchanged as A approaches 0: You can see that Eq. (3) reduces to Eq. (2) when
A =0. The effect of shrinking the coefficients (a process known as regularization) is that the regression
model is less prone to model overfitting. The goal of the ridge regression modeler is to find the correct



value for the A parameter. Choosing too small a A will result in an overfit model, while choosing too large
a A will result in an underfit model. Hence, the designer should find a A that minimizes MSE.

Fig. 1. A visualization of model overfit on four linear regression models, with different levels of model
complexity. On the upper left panel, a line underfits the data (R2=0.269). On the upper right panel, a
correct quadratic model is fitted (R2=0.938). On the bottom left, a polynomial of degree 10 is fitted
(R?=0.945) and on the bottom right a polynomial of degree 15 is fitted (R%=0.954). Even though the R?
continues to improve, the higher degree polynomials (degree > 2) are overfit. Source: Nakatsu (2017).
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To perform model validation, and find the A that minimizes MSE, the most straightforward method is to
randomly split a dataset into two sets: (1) a training set and (2) a validation set. A ridge regression
model is built using the training set. The held-out validation set, which was not used to build the model,
is used to validate the model. The validation process involves calculating the MSE over a range of A
values. The A that results in the lowest MSE on the validation set is selected. Because the validation
dataset is held-out, this method is sometimes referred to as the holdout method.

Unfortunately, the holdout method provides only a single estimate of a model’s validation error, MSE.
The split between training and validation sets could be a particularly biased choice—even if
randomized—and could either underestimate or overestimate MSE. This could especially pose a
problem when dealing with smaller datasets. A standard way to address this problem is to use
resampling, which means repeatedly drawing randomized samples from a dataset and refitting the
model on each sample [20]. By resampling, the average error rate of multiple runs can provide a less
biased estimate of error rate than a single-point estimate could.

There are several approaches to resampling, but one of the most effective methods is k-fold cross-
validation (CV). This method was introduced in 1974 [2,13,35] and over the years has emerged as the
most popular resampling method. Many practitioner guides and textbooks today advocate its use in



model validation (see e.g., [1,12,14,20,24]). The method begins by randomly splitting a dataset into k
partitions called folds (k = 5 or 10 folds is most commonly used, but other k sizes can be used as well).
Subsequently, the technique iterates k times: on each iteration, one fold is set aside as the validation
set, and the remaining k - 1 folds are used to train the model. The model thus built is validated only on
the validation set. After iterating k times this way, an average of the k validation errors is calculated so
that a more accurate and unbiased estimate of error can be obtained.

Repeated k-fold cross-validation (CV) is a method that can further improve the estimate of the
validation error. Under this method, k-fold CV is repeated multiple times, and the average of the
multiple repetitions is used to estimate the error rate. Given n repetitions, there will be n*k validation
errors; hence, the average validation error is calculated over the n*k repetitions. The most common
way of running k-fold CV is only once; thus, the repeated method has been suggested by others as a way
of obtaining more accurate and reliable estimates of error rates [23,27]. In our own research lab, we
have verified that repeated k-fold CV is the best general method for model validation on both classifiers
[29] and regression models [30]. Because it has been shown empirically to produce the most accurate
estimates of validation error, repeated k-fold CV is used in this study to understand model fit.

3 The Fitting Graph

Single estimates of model performance may be uninformative and lacking in context. On the other
hand, presenting a large table of numbers would provide the needed context, but may be difficult to
comprehend because the volume of data can be overwhelming to process and make sense out of. A
solution is to create an information graphic, which can help the end-user gain insight into the data. In
machine learning and data science, one information graphic is known as the fitting graph. This type of
graphic shows model performance (predictive accuracy) as a function of model complexity [33]. Because
level of complexity is the primary parameter to tweak to avoid model overfit and model underfit, a
fitting graph is a natural choice for information visualization for many types of machine learning
problems. However, the fitting graph has not been extensively studied in the literature in terms of how
to estimate them—this is a dearth of information and practical guidelines on how to construct them
directly from your data.

This study focuses exclusively on how fitting graphs can be used to support model development and
validation and, thereby, result in a model selection process that is more trustworthy and explainable.
Specifically, for ridge regression, the task involves the selection of the regularization parameter A. The
task can be summarized as this: How do you select A, such that error, or MSE, in a ridge regression
model is minimized?

Fig. 2 illustrates a typical fitting graph that can be used to select the best-fitting A in a ridge regression
problem. This fitting graph exhibits a familiar u-shape: the MSE first declines as A increases
(representing model overfit), then reaches a minimum point, after which the MSE increases as A
increases (representing model underfit). The point at which the MSE is at a minimum is the best-fitting
A value.

If we had the correct fitting graph before us, then it would be a simple matter to read off the A value
where MSE is at a minimum. However, arriving at an accurate fitting graph can be difficult to achieve, as
we will illustrate in the next section. Even when repeated k-fold CV is used—whose intent is to find



more accurate estimates of MSE through multiple repetitions of k-fold CV—it can be difficult to
construct an accurate fitting graph. In the practitioner literature, fitting graphs (like the one in Fig. 2)
are shown more as “idealizations” of how error changes as a function of model complexity but provides
no guidance on how to construct them or estimate them from your data.

The objectives of the study are to explore how to use the fitting graph as an explanations tool in model
validation and address the following questions:
e Using a scatterplot of model complexity, as represented by A, plotted against error, as
represented by MSE, how do you know when repeated k-fold CV is choosing the best-fitting A?
That is, when can you be confident that you have performed enough iterations of k-fold CV?
e How do you estimate a fitting graph when there is significant noise in the data?
e How is a fitting graph used to support explainable and robust model development?

Fig. 2. A fitting graph for ridge regression modeling. A fitting graph has a typical u-shape (or inverted u-
shape if you are looking at accuracy instead of error). This fitting graph shows error (MSE) as a function
of model complexity, as determined by A.
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3.1 Constructing fitting graphs

To understand how to construct fitting graphs directly from your data, regression modeling is performed
on two datasets.



1. Baseball [20]. Major League baseball data from the 1986 to 1987 seasons, n=263, p=19.
Target variable: Salary
Predictor variable examples:
e Atbat (number of times at bat)
e Hits (number of hits)
e Runs (number of runs)
e RBI (number of runs batted in)
e Years (number of years in the major leagues)

2. Boston [17]. Housing values in the suburbs of Boston, n=506, p=13.
Target variable: Median Home Value
Predictor variable examples:
e Crim (per capita crime rate by town)
e Zn (proportion of residential land zoned for lots over 25,000 sq. ft.)
e Rm (average number of rooms per dwelling)
e Age (proportion of owner-occupied units built prior to 1940)
e Dis (weighted mean of distances to five Boston employment centers)

Each modeling task involved the prediction of a numeric outcome (target variable) from a feature set
(predictor variables). Both datasets were relatively small, with n (number of rows) and p (humber of
predictor variables) indicated above for each. Ridge regression was run on both datasets. The task
involved determining which A to select—i.e., which A results in the lowest MSE. Although both datasets
are small, it is shown in Appendix A how the same techniques will work on a larger dataset.

You will typically not know the size of A beforehand. Finding a range of A values to use will largely be a
matter of trial and error. To begin your search, you should start out with widely spaced-out A values.
Then, based on your results, you can zoom in on the where the best values lay, using a narrower range
of values. You might have to repeat this process a few times to find a suitable range of values. Through
a few iterations of testing, the following ranges of A were arrived at on the two datasets:

e On the baseball dataset, k-fold CV was run 100 times, for A = 0.2 to 20, in 0.2 increments
e On the Boston dataset, k-fold CV was run 100 times, for A = 0.01 to 1.00, in 0.01 increments

100 equally spaced A values were used because the method of estimating the fitting graphs using
regression splines (see discussion in Section 4) requires multiple A values. 100 A values turned out to be
a good choice that allowed us to estimate fitting graphs directly from the data.

Once ridge regression was run on the 100 A values, average MSE was plotted on a scatterplot over the
100 values of A. Fig. 3 shows the results of k-fold CV for different levels of iterations (or reps) of k-fold CV
on the baseball dataset. Fig.s 3 (a) through (d) show the scatterplots of MSE when plotted against
different values of A for (a) no reps, (b) 10 reps, (c) 1,000 reps and (d) 75,000 reps. The fitting graph
curve can be more clearly discerned as the number of reps is increased. In Fig. 3 (a), when only single-
run k-fold CV (no reps) is run, the scatterplot looks random, and it is hard to detect any trends in the
data. In Fig. 3 (b), when 10 reps of k-fold CV is run, trends in the data are starting to emerge, but they
are not clear. In Fig. 3 (c), using 1000 reps, the u-shape of a fitting graph can be discerned. Finally,

Fig. 3 (d) shows that by 75,000 reps, there is almost a perfect u-shaped line formed by the data.
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The same thing happens on the Boston dataset. Fig. 4 shows scatterplots on the Boston dataset for (a)
no reps, (b) 10 reps, (c) 1,000 reps and (d) 10,000 reps. 10,000 reps were used on this dataset because it
requied fewer iterations of k-fold CV to achieve a curved line, whereas 75,000 reps were required on the
baseball dataset. This shows that there is no single number of iterations to perform to achieve
convergence; rather, it depends on characteristics of your dataset, including the size of the dataset.
Another difference with this dataset is that regularization barely improved the performance of the ridge
regression model: A =0 (no regularization) was close to the minimum MSE, so the u-shape (or bend) in
the curve is barely perceptible. Compare Fig. 3 (d) to Fig. 4 (d), where you can see the u-shape in the
baseball dataset, but not in the Boston dataset

3.2 Explainable and robust model selection using the fitting graph

Earlier, we defined Al robustness broadly as Al that is reliable and resilent, performing accurately over
a wide range of conditions. In the model development context, we want to look at the task of tuning
the hyperparameters of a machine learning model (i.e., selecting the correct model). What does
robustness mean in this context? Robustness can be defined as demonstrating insensitivity of a
model’s performance to variations in the hyperparameters [31,42]. That is, we expect the A value that
we choose will not be far off from the actual minimum. Because the estimation of A is imprecise,
subject to the noise in the data, we want to choose a A value that is robust—that is, one that will not
deteriorate too much (result in a low MSE) if we either overshoot or undershoot the actual optimum A
value. Let’s illustrate how we can use the fitting graph to support an explainable and robust model
selection process.

How can we be confident that we have chosen a A value that is robust? Furthermore, how many reps
of k-fold CV does it take to reach that level of confidence? Let’s take a closer look at the scatterplots
for the baseball dataset (Fig. 3) to address this question. As you can see from the four scatterplots,
performing single-run (no reps) k-fold CV provides—see Fig. 3 (a)—provides little indication of which A
would result in the lowest MSE. By performing repeated k-fold CV with 10 reps—see Fig. 3 (b)—you
can see that the lowest A values result in higher MSEs, but it is still hard to discern the fitting graph
curve in the scatterplot for larger values. It does appear, however, that A values roughly from 2.5 to
20 all fall within the range of 115,000 to 117,500. If this is an acceptable range of variation in MSE,
then you can accept any A that falls within this range, and end your search at 10 reps. When the
number of reps increases to 1,000—see Fig. 3 (c)—then you can fine-tune your choice of A even
further: A values between 5 and 10 would all result in MSE values between 115,000 and 116,000. By
75,000 reps, the minimum MSE can be pinpointed almost precisely from the scatterplot: It occurs atA
= 6.6, which results in a minimum MSE = 115,569.

As this example illustrates, you can use the fitting graph plot to determine your level of confidence in
the A value: more reps will generate a more precise curve, but at the expense of higher
computational costs. Moreover, the fitting graph will provide the range of values of your error (MSE).
Even using the 10-rep plot—see Fig. 3 (b)—you can see that MSE falls between 115,000 and 118,000
for all A values between 5 and 20. That result may be robust enough and achieve with few reps.
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Fig. 3. Baseball dataset scatterplots: average MSE over a range of A values.

Fig. 4. Boston dataset scatterplots: average MSE over a range of A values.
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4 Regression Splines

75,000 reps of k-fold CV—and even 1,000 reps—would take a very long time to compute on all but the
simplest of datasets. It is not the intent of this study to suggest that you should run k-fold CV a thousand
times to estimate a fitting graph; rather, the large number of iterations was used to demonstrate that,
given enough reps, you can generate a near-perfect curve. It was feasible enough to perform 1,000
iterations on a small dataset like the Baseball dataset (n=267, p=13), but running 1,000 reps may not be
practical on larger datasets having large n (number of rows) and/or large p (number of features). In
general, if many reps are required to generate an accurate fitting graph, it is recommended that you use
a shortcut method instead: Derive the fitting graph curve using a regression spline. Through this
technique, you can estimate the curve using a scatterplot generated on a much smaller number of reps.

Fig. 5. Regression splines are used to generate fitting graphs. The fitting graphs (the red curves) are
estimated on (a) the baseball dataset using 100 reps and (b) the baseball dataset using 50 reps. Both
fitting graphs do a good job in selecting a A value.
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Let’s illustrate how this might be accomplished by using scatterplots for the baseball datasets,
generated on 100 reps and 50 reps of k-fold CV. These scatterplots are shown in Fig. 5 (a) and Fig. 5 (b)
for 100 reps and 50 reps, respectively. Fig. 5 shows the red curves, generated by regression splines, that
are fit and overlaid on the scatterplots. We can then use these curves to estimate where the minimum
MSE occurs. Based on the minimum on the regression spline curves, Fig. 5 (a) selects A = 6.8, while Fig. 5
(b) selects A =7.6.

As noted previously the “actual” minimum MSE is located at A=6.6 on the baseball dataset. To derive
this value, the scatterplot generated from 75,000 reps of k-fold CV—refer to Fig. 3 (d)—was used to
select the A that results in the lowest MSE. These results show that the regression splines did a good job
in estimating the minimum values, even when generated on as few as 50 reps. To verify these choices,
look at the fitting graph obtained from Fig. 3 (d); you can see that A values between 5 and 8 all represent
good choices with a low MSE. Although 75,000 reps was needed to generate a smooth fitting graph
curve directly from the scatterplot, 50 reps was sufficient to select a good value for A, thus
demonstrating how this technique can be computationally feasible on a far smaller number of reps.? In
Appendix A, this result is replicated using a larger dataset where n=5,875; on this dataset only 10 reps
are required to generate a reasonable fitting graph. In general, larger datasets will tend to require fewer
reps to generate good fitting graphs. A rule-of-thumb recommendation is to use between 10 to 100 reps
when estimating fitting graphs from your data.

Why use regression splines to estimate the fitting curves? Traditionally, the way to fit a non-linear curve
onto a set of data points has been to replace the standard linear regression model with a polynomial
function. This approach, known as polynomial regression, replaces the linear model

Vi = Bo+ Bixi t€ (4)

with a polynomial function of the form

yi = Bo+ Bixi + Pux? + Pix} 4+ -+ Pixf + e (5).

Where i is the ith observation in the dataset. For large values of d, polynomial regression will fit very
flexible curves on your data. However, the problem with a high-order polynomial regression model is
that it can take on highly irregular shapes and overfit your data as seen in Fig. 1. For this reason, it is
generally not recommended to use a value of d greater than 3.

Regression splines typically perform better than polynomial regression, and result in better-fitting
curves on your data. This is because regression splines involve fitting separate lower-degree
polynomials (e.g., quadratic, or cubic polynomials) over different regions of X, whereas polynomial
regression will fit a single higher-degree polynomial over the entire range of X [20]. By dividing the range
of X into k distinct regions (k is known as the number of knots), you can fit a lower-degree polynomial on
each region separately; hence, this approach is sometimes referred to as piecewise polynomial
regression. Because you are fitting separate lower-degree polynomials on different sections of your

3 The execution time for running 100 reps of k-fold CV over 100 A values was 5 min 10 sec; and, for 50 reps, was
half that, or 2 min 35 sec. These results were based on the execution time of running repeated k-fold CV on a
computer equipped with an i7 Intel microprocessor. This shows how the generation of fitting graphs using
repeated k-fold CV is computationally feasible for such datasets.
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data, regression splines are less prone to overfitting. In addition to fitting separate polynomial functions
on each region, the polynomial functions are constrained so that they join smoothly at the knots, or the
boundaries between the separate regions.

How do you determine where the knots occur? One way is to place a knot where the estimated fitting
graph curve would pivot or change its direction. For example, by looking at the scatterplot in Fig. 5 (a),
you might create a knot somewhere in the data where the minimum point occurs—e.g., A = 6.8. By
doing so, you would create two separate polynomial regression models, over two separate ranges of A:
(1) A < 6.8, and (2) A >= 6.8. (You may not know exactly where the minimum occurs, but you can
estimate the minimum based on the scatterplot). To avoid having to choose your pivot value, you can
also specify a k value, in which case, k separate regions are automatically generated for you in a uniform
way across your X values. For example, by specifying k = 4 on the baseball dataset, the software would
divide your data into four uniformly sized regions:

Region 1: 0 < A <= 5
Region 2: 5 < A <= 10
Region 3: 10 < A <= 15
Region 4: 15 < A <= 20

There are libraries and functions in Python, R, and other programming environments that allow you to
generate regression splines on your data. For example, in R, you can fit regression splines, using
functions in the library splines, by either specifying the precise location of the knots, or by specifying k
(number of knots); the latter specification would result in a regression spline with knots created at
uniform quantiles of your data.

5 Case Study: lllustrating Robustness of the Fitting Graph Method on
an Unstable Regression Model

To generate a highly unstable ridge regression model, additional features were created from the Boston
dataset, by raising the power of each of the original features up to a power of 8. That is, each of the 13
features in the Boston dataset was raised to a power from 1 through 8. Thus, for a feature x; the
features x;, xiz,x?,xf, ...,x? were created. Hence the number of features was expanded eight-fold to
13*8 or 104 features—henceforth, this dataset is referred to as the Boston polynomial dataset. The
intent was to illustrate a ridge regression model that is highly unstable in its results. k-fold CV utterly
fails in selecting the correct regression model. On the other hand, the fitting graph method is a more
robust way of selecting a good A value and can withstand the instability of the high-order polynomial

model.

5.1 The fitting graph

Fig. 6 graphically shows the average MSE after 10-fold CV was repeated 40,000 times for 100 values of A
ranging from 0.02 to 2.0, in 0.02 increments. Due to the instability of the polynomial regression model,
average MSE does not follow a smooth curve—even after 40,000 reps of 10-Fold CV—so a regression
spline is used to estimate a fitting graph. See the red curve in Fig. 6.
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Two things stand out in the fitting graph in Fig. 6. First, for values of A < 0.16 (indicated by the vertical
line in Fig. 6), MSEs were significantly higher than MSEs for the other A values. You can see that MSE
was above 25 for all these values and increased significantly as A approaches 0. Second, for A >0.16,
average MSE did not vary by that much, clustering around 20 — 22. It appears that choosing A >= 0.16
and A < 2.0 would result in reasonable and consistent results. In other words, robustness of the model is
assured when choosing a A value between 0.16 and 2.0.

Fig. 6. Average MSE on Boston polynomial dataset, 40,000 reps. The data points represent the average
MSE over a range of 100 A values (0.2 — 2.0) run 40,000 times on the Boston polynomial dataset. A
regression spline is used to fit the red smooth curve to the data. For A <0.16, the average MSE becomes
unstable and is at its highest. For all other As average MSE is relatively stable, clustering in the 20 — 22
range.
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This example demonstrates how a fitting graph, created with a regression spline, can be especially
beneficial when the ridge regression results are highly unstable. Despite the average MSE not
converging to a curved line—as the scatterplot in Fig. 6 illustrates—a fitting graph could easily be
estimated using a regression spline.
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5.2 Simulation study

The generation of a fitting graph can be important when there is instability in the ridge regression
model. On the Boston polynomial dataset, a simulation study was conducted to investigate how k-fold
CV would perform using either no iterations or a low number of iterations (1, 2, 5 or 10). In standard
practice, this is usually how k-fold CV is run—either once or a few times. Five variations of k-fold CV
were run:

10-fold CV, single run
5-fold CV, 2 reps
50-fold CV, single run
5-fold CV, 10 reps
10-fold CV, 5 reps

vk wNRE

Using the regression spline generated in Fig. 6, three categories of A values were designated: (1) good fit
(top 20% of As); (2) average fit (middle 60% of As) and (3) poor fit (bottom 20% of As). These three
categories were assigned based on the average MSE of the k-fold CV approach—the lower the MSE, the
better the A ranking. The MSEs were estimated from the fitting graph determined by a regression
spline, as shown in Fig. 6.

Once fit types (good, average, poor) were assigned to the 100 As, evaluation of the five variations could
proceed as follows: For each of the five variations of CV, 1,000 runs were performed to see how often a
good fit, average fit, and poor fit A were chosen. For example, for 5-fold CV 10 reps, the Boston
polynomial dataset was randomly split into five folds and the MSE was calculated five times, each time
validated on a held-out fold. This was then repeated 10 times—each time on a randomized dataset—
resulting in 5*10 or 50 MSE calculations. The average MSE was calculated over the 50 runs. This entire
process was repeated on each of the 100 As ranging from 0.02 to 2.0, in 0.02 increments. The A that
generated the lowest average MSE was selected. Table 1 presents the results of the simulation study.

The results are surprising: In all five variations of k-fold CV, a poor fit A was selected by a wide margin.*
The worst performers were 50-fold CV and 10-fold CV 5 reps, which both chose a poor fit A 99.8% of the
time! You do see some improvement when using 5-fold CV, 10 reps, which chose a poor fit A 93% of the
time, but no version of k-fold CV, either single-run or repeated, performed well.

How is it possible that k-fold CV performed so poorly, across the board, on the Boston polynomial
dataset? To better understand why this happened, let’s look more closely at the distribution of MSE
over 1000 runs and compare two groups: (1) Group | (Poorest Fit As) (.02,.04,.06,.08,.1)—the five A
values representing the poorest performance and (2) Group Il (Best Fit As) (.42,.44,.46,.48,.5)—the five A
values representing the best performance . The distribution of the 5,000 MSE values representing
Group | As (i.e., highest average MSEs) was compared to the 5,000 MSE values representing Group Il As
(i.e., the lowest average MSEs). (Please note: There are a total of 5,000 values because there are five As
in each group). Table 2 shows the distributions of the two groups side-by-side. You can see that the
distribution of Group | (poorest fit) is much more widely dispersed: it has more extreme values on both
the low end as well as the high end (five values have MSE > 5000). By contrast, the distribution of Group

41n our research lab, when running k-fold CV and repeated k-fold CV on most other datasets, this did not happen.
k-fold CV and repeated k-fold CV usually do a much better job of finding good fit A values (Nakatsu, 2021; Nakatsu,
2023).
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I (best fit) is much more concentrated: MSE is concentrated in the 18-20 range 85.6% of the time (4280
out of 5000). Average MSE of Group Il is about half that of Group I (19.71 vs. 40.13) and the standard
deviation is much lower (5.69 vs. 447.89). Hence, not only is bias higher but so is variance. Clearly,
running ridge regression using a Group | A (.02,.04,.06,.08,.1) resulted in a much more unstable ridge
regression model.

Table 1. Simulation study results on five variations of k-fold CV, Boston polynomial dataset

(1) (2) (3) (4) (5)
10-Fold CV 5-Fold CV 50-Fold CV 5-Fold CV 10-Fold CV
2 reps 10 reps 5 reps
Boston Polynomial Dataset
Good Fit: Top 20% 8 18 1 24 0
Average Fit: Middle 80% 4 17 1 46 2
Poor Fit: Bottom 20% 988 965 998 930 998

Table 2: Distribution of MSE for Group | vs. Group Il

Group | Group Il

Poorest Fit As Best Fit As
Interval |Frequency Interval |Frequency
<=18 2179 <=18 5
(18-20] 2155 (18-20] 4280
(20-22] 199 (20-22] 687
(22-24] 55 (22-24] 5
(24-26] 108 (24-26] 0
(26-100] 257 (26-100] 21
(100-500] 8 (100-500] 2
(500-5000] 16 (500-5000] 0
(1000-5000] 18 (1000-5000] 0
>5000 5 >5000 0
Average 40.13 Average 19.71
SD 447.87 SD 5.69

Yet, despite Group Il having both lower bias and lower variance, why did k-fold CV (both single-run and
repeated variations) end up, predominantly, choosing a Group | A value instead? The answer is that
Group | A values were also unstable on the low side, generating a low-end MSE frequently as well (in
Table 2, 2179 out of 5000 times). This means that k-fold CV was able to find, simply by chance, a low
average MSE using a Group | A—in effect choosing an inappropriate A value that would result in an
unstable model.
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Varma and Simon [39] and Boulesteix and Strobl [3] point out that there is an inherent bias when
estimating model performance (or error) over a large range of parameter values. Because the A value
associated with the smallest average validation error (i.e., MSE) is selected, this error is likely to be
optimistic. It can be explained this way: When there are several possible A values—in this study, 100
separate A values are evaluated—the A value that is finally chosen is likely to be optimistic because it is
drawn from a random sample of possible errors. With several A values to choose from, the resulting
average MSE error is likely to be low simply by chance, rather than truly representing the lowest average
MSE. This problem will especially be pronounced in unstable cases where there are many low-end
extreme values, such as was reported in Table 2.

The result is that k-fold CV does not always work well, and you cannot always trust its results. In this
example, the failure of k-fold CV is clear and unmistakable—in some cases an unstable A would be
selected close to 99% of the time. In situations like these, the fitting graph can provide the model
developer with a more complete picture—more explanation about what is happening, and what to do
instead. Without the fitting graph, the model designer of an unstable model is likely to be led astray.
Clearly, in this example, the fitting graph method led to a more robust selection of a A value.

6 Discussion and Conclusions

In the practitioner literature, the standard recommendation for model validation is to perform k-fold
CV—most typically using 5 or 10 folds [22]. In most cases, the model designer will perform this only
once, rather than performing repeated k-fold CV. In many cases, this k-fold CV procedure works fine,
and will produce reasonable results. However, this study demonstrates how k-fold CV (whether single-
run or repeated 5 - 10 times) may not provide enough accuracy in your results; moreover, the
robustness of the model selected might be lacking. In some cases, more explanation may be required to
understand whether the correct model has been selected.

This research demonstrates how fitting graphs can enhance explainability for the model designer,
leading to greater trust in the model selection process. In this study, the fitting graph was actively
constructed directly from the data and was used as a tool to support model validation, not merely
created as a static rendering of how accuracy changes as a function of model complexity, which is how
the current literature treats the fitting graph (see e.g., [3]). We know of no prior studies that have used
the fitting graph in this way or have demonstrated how to create fitting graphs directly from your data.
The model validation process was illustrated using a ridge regression task: Find the best-fitting
regularization parameter A among a range of A values. First, it was demonstrated how a simple
scatterplot of the A values (representing model complexity) plotted against average MSE (representing
predictive accuracy) would provide the model designer with an information graphic on whether enough
iterations of k-fold CV have been performed. A highly erratic scatterplot may indicate more iterations
might be necessary whereas a plot in which a u-shaped curve can be discerned may indicate that
enough iterations have been performed. The scatterplots, alone, provide a useful explanatory
visualization on whether the model designer is on the right track. Second, fitting curves were
constructed from noisy scatterplots using regression splines. Rather than increasing the number of
iterations of k-fold CV, which would require more computational resources to perform, regression
splines can save you time in estimating the fitting graphs. One benefit of regression splines is that they
require very little computational power to generate and are easy to compute using standard software
routines readily available in R, Python, and other popular machine learning libraries.
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Furthermore, model robustness is addressed in this study. The type of model robustness that was
addressed involves the selection of the hyperparameter A when designing a ridge regression model. As
Nobandegani et al. [31] state, a robust model is one that is performance insensitive to variations in the
parameters (i.e., hyperparameters). In Section 3.2, we illustrate these ideas by showing how the fitting
graph can help us choose a A value that is insensitive to regression model performance, or MSE.
Secondly, we illustrate model robustness by showing how k-fold CV can fail spectacularly on an unstable
ridge regression model. Again, the solution was to generate (or estimate) the fitting graph from a
regression spline on a scatterplot of your data. For the polynomial regression model described in
Section 5, k-fold CV ended up choosing a poorly fit and unstable A by an overwhelming margin. By
applying the fitting graph method, the model developer can choose a better-fitting and more robust A.
Hence, fitting graphs not only reassure the model developer that they are on the right track—enhancing
the trustworthiness of the model-building process—but also guide them toward better models. In ridge
regression, for example, this can involve selecting a more stable and well-fitting A value.

Although this research deals exclusively with regression modeling, and the tuning of the regularization
parameter A, these principles and techniques can generalize to other machine learning algorithms. The
fitting graph method can be extended to other popular machine learning algorithms, including logistic
regression, random forests, support vector machines, and neural networks. In all cases the basic
application of the fitting graph remains the same: the curve provides a visualization on how error (or
predictive accuracy) changes as a function of model complexity. Future work will look at how these
concepts can be extended to create trustworthy Al for these other machine learning methods.
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Appendix A: Verification of Results Using Parkinsons Dataset

The Parkinsons dataset [38] contains biomedical voice measurements from 42 people with early-stage
Parkinson’s disease (n=5875, p=17 voice measurements). The target variable is Total-UPDRS, which
stands for Unified Parkinson’s Disease Rating Scale. Ridge regression was used to fit models on this
dataset, using 100 A values from 0.1 to 1.0. Fig. 7 (a) shows the results of MSE plotted against A on 1000
reps of k-fold CV. You can see that with a large number of reps, the scatterplot approaches a near-
perfect fitting graph curve with the familiar u-shape. Fig. 7 (b) shows the scatterplot generated on 10
reps of k-fold CV. The fitting graph is estimated using a regression spline, as represented by the red
curve that is overlaid on the data. Using the regression spline, A = 0.18 is chosen as the best-fitting A
having the lowest MSE. The actual minimum value, from Fig. 7 (a) is A = 0.19. Again, the regression spline
does a very good job in selecting a good value, using only 10 reps of k-fold CV.

Fig. 7. Results on the Parkinsons dataset (n=5875, p=17). (a) The scatterplot is generated on 1000 reps
of k-fold CV. (b) The scatterplot is generated on 10 reps of k-fold CV, with the fitting graph (red curve)
estimated by a regression spline.
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