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Abstract.  This study demonstrates how a fitting graph can enhance explainability and 
robustness during the model development phase of a machine learning project. The approach is 
illustrated with a ridge regression task, where the goal is to identify the best-fitting 
regularization parameter, λ, from a range of values. A simple scatterplot of λ values (indicating 
model complexity) against average mean squared error, MSE (representing predictive 
accuracy), provides a visual representation to help the model developer determine if sufficient 
iterations of k-fold cross-validation have been performed. In addition, this study shows how 
fitting graph curves can be estimated and constructed from noisy scatterplots using regression 
splines. Instead of increasing the number of reps of cross-validation, a regression spline can 
save you time in estimating the fitting graph, using far fewer iterations. 
The fitting graph is also presented as a tool to promote model robustness, defined as the 
model's ability to maintain performance levels across variations in the hyperparameter λ. This 
concept is demonstrated through a case study on an unstable polynomial regression model. 
The simulation study reveals that standard k-fold cross-validation, even when repeated 5 or 10 
times, selects an incorrect and unstable λ by an overwhelming margin. In contrast, the fitting 
graph method reliably selects a λ that is both well-fitting and stable. Without the fitting graph, 
the model developer is led astray and is more likely to choose a highly unstable λ, leading to 
suboptimal model performance. 
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Trustworthy AI During Machine Learning Model Development:   
Enhancing Explainability and Robustness of ML Models with Fitting Graphs 

 

1 Introduction 
 

The need for trustworthy AI has become a critical research topic due to AI's growing influence on 
society. While AI systems, especially machine learning models, can provide fast and accurate 
predictions, they sometimes yield incorrect results. For instance, generative AI tools like ChatGPT have 
been known to produce plausible but false information, or "hallucinations," making it hard for users to 
distinguish accurate information from misinformation. A machine learning model used in pretrial 
detention decisions was found to be biased against Black defendants [40]. Epic Systems' AI model for 
predicting sepsis, the leading cause of death in hospitals, failed to detect 67% of sepsis cases and falsely 
flagged 88% of non-sepsis patients [41]. These examples show that the trustworthiness of many AI 
systems remain a central challenge. 
 
What are the components of Trustworthy AI?  Trustworthy AI is a broad and multi-dimensional concept, 
encompassing consideration of several issues.  In recent years, a number of frameworks have been 
proposed to help designers and developers build trustworthy AI systems(e.g., [11,21,25,32,40]). 
Although there are some differences as to what constitutes trustworthy AI, and what the most 
important aspects are, these frameworks commonly consider the following five dimensions: 
 

• Performance:  AI demonstrates competence in performing its task, such as the predictive 
accuracy of the machine learning model. 

• Explainability: AI is transparent and open to inspection.  This means that stakeholders can probe 
the AI system to understand how it makes its decisions.   

• Robustness:  AI is reliable and resilient, performing accurately over a wide range of conditions 
and scenarios.1 

• Fairness:  AI is free from bias and discrimination. 

• Ethical Considerations: AI is aligned to society's goals, including respect for human rights and 
values. 

 
It goes without saying that AI systems should exhibit strong performance, otherwise they cannot be 
trusted.  Hence, it is important for AI models to be evaluated on appropriate performance benchmarks 
such as predictive accuracy, F1 score, AUC, precision, and recall.  After all, a predictive machine learning 
model is only as good as how well it can make its predictions, free from errors.  This research centers on 
two related but distinct dimensions to performance, namely, explainability and robustness.   
 
Explainability and robustness are tied to performance, because they address different aspects on 
performance:  on the one hand, the ability to explain performance (explainability), or why a model 
performed in the way that it did, and on other the hand, the ability to sustain performance levels across 
a wide range of conditions (robustness).  Fairness and ethical considerations, though important 
dimensions, are not addressed in this study. 
 
Other components of trustworthy AI, not mentioned above, include accountability [21,25,32], safety 
[21,32], sustainability [21,32], privacy [21,32], security [21,25,32], lawfulness [11], and reproducibility 

 
1 Robustness is sometimes referred to as reliability. 
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[25], among others.  Sometimes the definitions of these concepts are intertwined with each other and 
not treated as separate and distinct.  For example, safety is frequently mentioned in conjunction with 
robustness because having safe AI presumes that the AI system can perform well under varying 
operational conditions.  Accountability involves justifying the decisions the AI system is making, so it is 
frequently associated with explainability—after all, justifying decisions means explaining how decisions 
are made.  Fairness, privacy, sustainability, and security are sometimes embedded in broader 
discussions of ethical AI. 
 
The first dimension we focus on is explainability. A large body of research on Explainable AI (XAI), also 
known as interpretable AI, explores how AI systems can explain their actions and decisions in ways 
humans can understand [6].  A common complaint leveled against AI systems is that they are black 
boxes that are hard to understand.  When an AI's decisions do not make sense to the end-user, it is hard 
to understand what factors determined its decision.  Explainable AI attempts to make the decision-
making process more transparent so that an end-user can use the system’s outputs in more thoughtful 
and critical ways.  Explanations in AI is not a new research topic but has been a decades-old concern.  It 
was notably a popular topic during the peak years of Expert Systems development, in the 1970s and 
1980s, when researchers were looking for ways to provide explanations for rule-based expert systems 
[5,7,37].  But the need for Explainable AI has emerged once again as an urgent topic given the problems 
and limitations associated with AI usage. 
 
Moreover, explainability more broadly considers how to make the entire lifecycle of the AI systems 
development more transparent, in terms of the steps on how the AI system was created, tested, and 
implemented.  To foster system transparency, a variety of information could be disclosed including "the 
design purposes, data sources, hardware requirements, configuations, working conditions, expected 
usage, and system performance" [25].  Hence, explainability entails the generation of documentation in 
all phases of AI systems development. 
 
Most previous research on Explainable AI has primarily focused on the end-user, aiming to help them 
interpret the system’s outputs. Hence, Explainable AI has dealt with human-centered design, and how to 
deliver explanations in a way that is easy to process and understand.  Much of the past research has 
focused on post-hoc explanations, or explanations provided to the end-user after the machine learning 
model is deployed.  For example, an important research area in explainable AI has considered feature 
importance, or how the features of a machine learning model contribute to the final prediction so that a 
non-expert end-user can better understand the rationale underlying an AI system's decision.  Subianto 
and Siebes [36] describe an approach that provides insights on the importance of a features. Each 
feature in the AI model is assigned a weight that refects the feature's overall influence on the prediction.  
Cortes and Embrechts [8] describe a visualization approach based on a sensitivity analysis method.  Their 
approach measures the effects on the outcome when the input features are varied along a range of 
values.  Goldstein et al. [15] considers individual conditional expectation (ICE) plots.  These plots display 
the average prediction of an AI model when an individual feature varies over its range.  This research 
stream considers the end-user who is trying to understand an AI's model outputs and how it makes its 
decisions. 
 
By contrast, this study focuses on a different stakeholder, the model developer, who is tasked to design, 
evaluate, and select the correct machine learning model.  Indeed, as Dhanorkar et al. [10] notes, "An AI 
system does not exist in a social vacuum. An AI system deployed in the real world has a wide range of 
stakeholders that extends beyond the immediate users (e.g., regulators, model developers, decision-
makers, consumers)" (p. 1593).  Each of these stakeholders may have different informational needs, 
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based on the tasks they are required to work on.  Whereas the end-user would be primarily concerned 
with what factors (or features) led to a system's prediction, the model developer is more concerned 
with understanding how to improve the AI model from a technical standpoint—e.g., how to improve its 
predictive accuracy and robustness.  In this study, we focus on an information visualization known as the 
fitting graph2, which is an explanations tool to support the model developer. 
 
The second dimension that we focus on is robustness, which refers to the development of AI systems 
that are reliable and resilient.  Braiek and Khomf [4] define robustness as the ability of the AI system to 
“maintain stable and reliable performance across a broad spectrum of conditions, variations, or 
challenges, demonstrating resilience and adaptability in the face of uncertainties or unexpected 
changes” (pp. 1-2).   One notable example, which illustrates the importance of robust AI, are self-driving 
cars that need to process real-time data from sensors like cameras, radar, and lidar to navigate roads 
and handle unpredictable driving conditions.  If these systems are to perform at a high level, they must 
be able to adapt to changes in road conditions, weather, and unexpected human behaviors from other 
vehicles. 
 
The importance of robust AI has garnered increasing attention in recent years, given the application of 
AI to safety-critical areas such as self-driving vehicles, medical diagnosis, aviation guidance, among 
others.  In response to this need, there is a large and growing body of literature that focuses on 
developing robust AI.  Hendrycks and Dietterich [18] investigate AI systems that can handle 
distributional shifts, adversarial inputs, and maintain reliable performance in uncertain environments. 
They discuss methods to achieve robust AI.  Goodfellow, Bengio, and Courville [16] address robustness 
in the context of developing deep learning models.  They discuss how deep learning models can be 
made more robust to adversarial inputs, noise, and shifts in data distribution.  Song et al. [34] describe 
robust AI as systems that maintain high performance even when its inputs are perturbed, or when they 
face adversarial attacks. 
 
In addition to limiting this study to explainability and robustness, we also focus solely on the model 
development phase within the AI development lifecycle.  To frame this study and provide it with some 
context, let’s consider what phases a typical AI project moves through. Decker et al. [9] provide a typical 
framework that considers six phases. We condensed their modeling and evaluation phases into a single 
phase—model development—because modeling and evaluation frequently occur together, leaving us 
with five phases. Moreover, addressing explainability and robustness involves both modeling and 
evaluation activities. Based on their framework, and the combining of modeling and evaluation into a 
single phase, here are the five phases of a typical machine learning development project: 
 

1. Business and Data Understanding.  Business requirements are gathered and scoped, and data 
collection occurs. 

2. Data Preparation.  Data cleaning and preprocessing occurs.  Among the tasks performed are 
data standardization, handling missing values, outlier detection and removal, and feature 
engineering. 

3. Model Development.  This is the model learning phase.  It involves model selection, model 
training, and hyperparameter tuning of the AI model.  In addition, the AI model is evaluated 
using appropriate performance metrics.  Other issues such as explainability and robustness are 
considered during this phase. 

 
2 The end-user, in fact, may not be interested in the fitting graph, which shows how model performance varies as a 
function of model complexity. 
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4. Deployment. The AI system is implemented into the production environment of the 
organization.   

5. Monitoring and Maintenance.  This post-implementation phase considers possible changes in 
the production environment and monitors the performance of the AI model to ensure that it 
meets expected performance metrics 

 
Li et al. [25] argue that AI trustworthiness should be established and promoted throughout the lifecycle 
of an AI development project.  To illustrate this point, the first phase (Business and Data Understanding) 
involves data collection.  In order to promote robustness, it is recommended to collect data that 
represent the diversity of situations that might arise in the real world.  At the other end of the lifecycle 
(Monitoring and Maintenance), monitoring the machine learning model is necessary to ensure that it 
continues to perform well and is able to correctly make predictions on new and unseen examples that 
may arise.  Indeed, creating trustworthy AI is an ongoing process that takes place across the lifecycle, 
and continues even after the AI system has been implemented and deployed in the organization. 
 
In this study, we focus on the model developer, who may not understand whether a machine learning 
model is the correct one or not.  The questions that we address are:  How do we support the model 
developer with explanations?  To make our ideas more concrete, this study illustrates model 
explainability and robustness with a machine learning task involving the creation of a linear regression 
model.  The task involves tuning the regularization parameter λ in a linear regression model. The model 
developer may require some explanatory support to help guide in the selection of the correct model.  
How is the model developer supported in this task, so that he/she is on the right track?  What type of 
information graphic would help a model developer trust that the correct model has been selected?  How 
can we be sure that the linear regression model selected is a robust one, or one that is insensitive to the 
miscalculation of its regularization parameter? 
 
The remainder of this paper is organized as follows:  Section 2 describes the task to be solved, namely, 
how to find the best-fitting regularization parameter λ, such that it does not overfit or underfit a linear 
regression model. Section 3 describes the visualization tool, the fitting graph, which is used to provide 
explanations during the model development phase. Section 4 shows how to derive and actively 
construct fitting graphs directly from your data. First, scatterplots of model complexity plotted against 
model error are generated; then, fitting graphs are generated from these scatterplots by using 
regression splines.  Section 5 describes a case study in which a highly unstable ridge regression model is 
analyzed. The results of a simulation study show how traditional validation methods utterly fail to find a 
good solution, while using a fitting graph is a more robust way of finding a well-fitting model. Section 6 
provides summary discussion and conclusions of these results. 
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2 The Task: Finding the Best-Fitting Regularization Parameter 
 

Linear regression is a popular technique for building a model that predicts, or estimates, a quantitative 
outcome.  Numerous textbooks have been written on the subject.  The technique involves fitting a linear 
model that minimizes the mean squared error (MSE) and then uses the linear model to make predictions 
on unseen data. Assume a linear regression model of the form 

 
Y =  𝛽0 +  𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑝𝑋𝑝 + 𝜖    (1) 

 
where Y is the target or outcome variable, and X1, X2,…, Xp are the independent, or feature variables. 
Ordinary least squares (OLS) regression will find the β coefficients that minimize the mean squared error 
(MSE): 

MSE =  
1

𝑛
 ∑(𝑦𝑖 − 𝑦𝑖̂)

2   (2)

𝑛

𝑖=1

 

 
where 𝑦𝑖  is the actual outcome and 𝑦𝑖̂ is the predicted outcome fitted by using the regression model for 
i = 1 to n observations. 
 
However, linear regression is susceptible to model overfitting.  Model overfitting occurs when a 
regression model tries to fit the training data as well as possible, at the expense of poor generalization 
to unseen data.  A graphical visualization of model overfit, involving a linear regression model, is 
provided by Fig. 1.  In this example, a set of x values (n=50) is randomly generated from a normal 
distribution (μ=50, σ=10).  The y values are calculated from the quadratic function:  y = x2 – 5x + 𝝐, with 
the error term 𝜖 also randomly generated from a normal distribution (μ=0, σ=10). The data is then fit 
with four different regression models: (a) a straight line (underfit model), (b) a quadratic curve (correct 
fit), (c) a polynomial of degree 10 (overfit model), and (d) a polynomial of degree 15 (overfit model).  Fig. 
1 shows how models (c) and (d) overfit the data.  Both models chase after noise in the data, and result in 
more erratic curves.  When a polynomial of degree 15 is fit to the data, the curve becomes extremely 
erratic.  Even though R2 continues to improve with higher order polynomials, the overfit models would 
not generalize well to unseen data. 
 
One popular technique that can reduce model overfitting is known as ridge regression (Hoerl and 
Kennard, 1970; Marquardt, 1970). The technique involves fitting a model of all predictors, like in OLS 
regression, but the estimated β coefficients are shrunken towards zero.  Mathematically, ridge 
regression penalizes the β parameter estimates by adding a penalty term to the MSE in Eq. (2): 
 

MSE =
1

𝑛
 ∑(𝑦𝑖 − 𝑦𝑖̂)

2 +  𝜆 ∑ 𝛽𝑗
2

𝑝

𝑗=1

𝑛

𝑖=1

     (3) 

where i is the observation from 1 to n and 𝛽𝑗 is the coefficient of the predictor variable from j = 1 to p. 

 
From Eq. (3), ridge regression would shrink the 𝛽 estimates towards 0 as λ becomes large, because of 
the penalty term:  To minimize MSE, you would need smaller β estimates.  On the other hand, the 𝛽 
estimates would remain unchanged as λ approaches 0: You can see that Eq. (3) reduces to Eq. (2) when 
λ = 0.  The effect of shrinking the coefficients (a process known as regularization) is that the regression 
model is less prone to model overfitting. The goal of the ridge regression modeler is to find the correct 
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value for the λ parameter. Choosing too small a λ will result in an overfit model, while choosing too large 
a λ will result in an underfit model.  Hence, the designer should find a λ that minimizes MSE. 
 

 
 
Fig. 1. A visualization of model overfit on four linear regression models, with different levels of model 
complexity. On the upper left panel, a line underfits the data (R2=0.269).  On the upper right panel, a 
correct quadratic model is fitted (R2=0.938).  On the bottom left, a polynomial of degree 10 is fitted 
(R2=0.945) and on the bottom right a polynomial of degree 15 is fitted (R2=0.954).  Even though the R2 
continues to improve, the higher degree polynomials (degree > 2) are overfit.  Source:  Nakatsu (2017). 
 

 
 
To perform model validation, and find the λ that minimizes MSE, the most straightforward method is to 
randomly split a dataset into two sets: (1) a training set and (2) a validation set. A ridge regression 
model is built using the training set.  The held-out validation set, which was not used to build the model, 
is used to validate the model.  The validation process involves calculating the MSE over a range of λ 
values.  The λ that results in the lowest MSE on the validation set is selected.  Because the validation 
dataset is held-out, this method is sometimes referred to as the holdout method. 
 
Unfortunately, the holdout method provides only a single estimate of a model’s validation error, MSE.  
The split between training and validation sets could be a particularly biased choice—even if 
randomized—and could either underestimate or overestimate MSE.  This could especially pose a 
problem when dealing with smaller datasets.  A standard way to address this problem is to use 
resampling, which means repeatedly drawing randomized samples from a dataset and refitting the 
model on each sample [20].  By resampling, the average error rate of multiple runs can provide a less 
biased estimate of error rate than a single-point estimate could.   
 
There are several approaches to resampling, but one of the most effective methods is k-fold cross-
validation (CV).  This method was introduced in 1974 [2,13,35] and over the years has emerged as the 
most popular resampling method.  Many practitioner guides and textbooks today advocate its use in 
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model validation (see e.g., [1,12,14,20,24]). The method begins by randomly splitting a dataset into k 
partitions called folds (k = 5 or 10 folds is most commonly used, but other k sizes can be used as well).  
Subsequently, the technique iterates k times:  on each iteration, one fold is set aside as the validation 
set, and the remaining k - 1 folds are used to train the model.  The model thus built is validated only on 
the validation set.  After iterating k times this way, an average of the k validation errors is calculated so 
that a more accurate and unbiased estimate of error can be obtained. 
 
Repeated k-fold cross-validation (CV) is a method that can further improve the estimate of the 
validation error.  Under this method, k-fold CV is repeated multiple times, and the average of the 
multiple repetitions is used to estimate the error rate.  Given n repetitions, there will be n*k validation 
errors; hence, the average validation error is calculated over the n*k repetitions.  The most common 
way of running k-fold CV is only once; thus, the repeated method has been suggested by others as a way 
of obtaining more accurate and reliable estimates of error rates [23,27].  In our own research lab, we 
have verified that repeated k-fold CV is the best general method for model validation on both classifiers 
[29] and regression models [30]. Because it has been shown empirically to produce the most accurate 
estimates of validation error, repeated k-fold CV is used in this study to understand model fit. 
 
 

3 The Fitting Graph 
 

Single estimates of model performance may be uninformative and lacking in context.  On the other 
hand, presenting a large table of numbers would provide the needed context, but may be difficult to 
comprehend because the volume of data can be overwhelming to process and make sense out of.  A 
solution is to create an information graphic, which can help the end-user gain insight into the data.  In 
machine learning and data science, one information graphic is known as the fitting graph.  This type of 
graphic shows model performance (predictive accuracy) as a function of model complexity [33]. Because 
level of complexity is the primary parameter to tweak to avoid model overfit and model underfit, a 
fitting graph is a natural choice for information visualization for many types of machine learning 
problems.  However, the fitting graph has not been extensively studied in the literature in terms of how 
to estimate them—this is a dearth of information and practical guidelines on how to construct them 
directly from your data. 
 
This study focuses exclusively on how fitting graphs can be used to support model development and 
validation and, thereby, result in a model selection process that is more trustworthy and explainable.  
Specifically, for ridge regression, the task involves the selection of the regularization parameter λ.  The 
task can be summarized as this:  How do you select λ, such that error, or MSE, in a ridge regression 
model is minimized? 
 
Fig. 2 illustrates a typical fitting graph that can be used to select the best-fitting λ in a ridge regression 
problem.  This fitting graph exhibits a familiar u-shape:  the MSE first declines as λ increases 
(representing model overfit), then reaches a minimum point, after which the MSE increases as λ 
increases (representing model underfit).  The point at which the MSE is at a minimum is the best-fitting 
λ value. 
 
If we had the correct fitting graph before us, then it would be a simple matter to read off the λ value 
where MSE is at a minimum.  However, arriving at an accurate fitting graph can be difficult to achieve, as 
we will illustrate in the next section. Even when repeated k-fold CV is used—whose intent is to find 
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more accurate estimates of MSE through multiple repetitions of k-fold CV—it can be difficult to 
construct an accurate fitting graph.  In the practitioner literature, fitting graphs (like the one in Fig. 2) 
are shown more as “idealizations” of how error changes as a function of model complexity but provides 
no guidance on how to construct them or estimate them from your data. 
 
The objectives of the study are to explore how to use the fitting graph as an explanations tool in model 
validation and address the following questions: 

• Using a scatterplot of model complexity, as represented by λ, plotted against error, as 
represented by MSE, how do you know when repeated k-fold CV is choosing the best-fitting λ?  
That is, when can you be confident that you have performed enough iterations of k-fold CV? 

• How do you estimate a fitting graph when there is significant noise in the data? 

• How is a fitting graph used to support explainable and robust model development? 
 
 
Fig. 2. A fitting graph for ridge regression modeling.  A fitting graph has a typical u-shape (or inverted u-
shape if you are looking at accuracy instead of error). This fitting graph shows error (MSE) as a function 
of model complexity, as determined by λ. 
 

 
 
 

 

3.1 Constructing fitting graphs 
 

To understand how to construct fitting graphs directly from your data, regression modeling is performed 
on two datasets. 
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1. Baseball [20].  Major League baseball data from the 1986 to 1987 seasons, n=263, p=19.  
Target variable: Salary 
Predictor variable examples: 

• Atbat (number of times at bat) 

• Hits (number of hits) 

• Runs (number of runs) 

• RBI (number of runs batted in) 

• Years (number of years in the major leagues) 
 

2. Boston [17].  Housing values in the suburbs of Boston, n=506, p=13.   
Target variable: Median Home Value 
Predictor variable examples: 

• Crim (per capita crime rate by town) 

• Zn (proportion of residential land zoned for lots over 25,000 sq. ft.) 

• Rm (average number of rooms per dwelling) 

• Age (proportion of owner-occupied units built prior to 1940) 

• Dis (weighted mean of distances to five Boston employment centers) 
 
Each modeling task involved the prediction of a numeric outcome (target variable) from a feature set 
(predictor variables).  Both datasets were relatively small, with n (number of rows) and p (number of 
predictor variables) indicated above for each.  Ridge regression was run on both datasets. The task 
involved determining which λ to select—i.e., which λ results in the lowest MSE. Although both datasets 
are small, it is shown in Appendix A how the same techniques will work on a larger dataset. 
 
You will typically not know the size of λ beforehand.  Finding a range of λ values to use will largely be a 
matter of trial and error.  To begin your search, you should start out with widely spaced-out λ values.  
Then, based on your results, you can zoom in on the where the best values lay, using a narrower range 
of values.  You might have to repeat this process a few times to find a suitable range of values.  Through 
a few iterations of testing, the following ranges of λ were arrived at on the two datasets: 
 

• On the baseball dataset, k-fold CV was run 100 times, for λ = 0.2 to 20, in 0.2 increments 

• On the Boston dataset, k-fold CV was run 100 times, for λ = 0.01 to 1.00, in 0.01 increments 
 

100 equally spaced λ values were used because the method of estimating the fitting graphs using 
regression splines (see discussion in Section 4) requires multiple λ values.  100 λ values turned out to be 
a good choice that allowed us to estimate fitting graphs directly from the data. 
 
Once ridge regression was run on the 100 λ values, average MSE was plotted on a scatterplot over the 
100 values of λ. Fig. 3 shows the results of k-fold CV for different levels of iterations (or reps) of k-fold CV 
on the baseball dataset.  Fig.s 3 (a) through (d) show the scatterplots of MSE when plotted against 
different values of λ for (a) no reps, (b) 10 reps, (c) 1,000 reps and (d) 75,000 reps.  The fitting graph 
curve can be more clearly discerned as the number of reps is increased.  In Fig. 3 (a), when only single-
run k-fold CV (no reps) is run, the scatterplot looks random, and it is hard to detect any trends in the 
data.  In Fig. 3 (b), when 10 reps of k-fold CV is run, trends in the data are starting to emerge, but they 
are not clear. In Fig. 3 (c), using 1000 reps, the u-shape of a fitting graph can be discerned. Finally, 
Fig. 3 (d) shows that by 75,000 reps, there is almost a perfect u-shaped line formed by the data. 
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The same thing happens on the Boston dataset.  Fig. 4 shows scatterplots on the Boston dataset for (a) 
no reps, (b) 10 reps, (c) 1,000 reps and (d) 10,000 reps.  10,000 reps were used on this dataset because it 
requied fewer iterations of k-fold CV to achieve a curved line, whereas 75,000 reps were required on the 
baseball dataset.  This shows that there is no single number of iterations to perform to achieve 
convergence; rather, it depends on characteristics of your dataset, including the size of the dataset.  
Another difference with this dataset is that regularization barely improved the performance of the ridge 
regression model:  λ = 0 (no regularization) was close to the minimum MSE, so the u-shape (or bend) in 
the curve is barely perceptible. Compare Fig. 3 (d) to Fig. 4 (d), where you can see the u-shape in the 
baseball dataset, but not in the Boston dataset 

 

3.2 Explainable and robust model selection using the fitting graph 
 
Earlier, we defined AI robustness broadly as AI that is reliable and resilent, performing accurately over 
a wide range of conditions.  In the model development context, we want to look at the task of tuning 
the hyperparameters of a machine learning model (i.e., selecting the correct model).  What does 
robustness mean in this context?  Robustness can be defined as demonstrating insensitivity of a 
model’s performance to variations in the hyperparameters [31,42]. That is, we expect the λ value that 
we choose will not be far off from the actual minimum.  Because the estimation of λ is imprecise, 
subject to the noise in the data, we want to choose a λ value that is robust—that is, one that will not 
deteriorate too much (result in a low MSE) if we either overshoot or undershoot the actual optimum λ 
value.  Let’s illustrate how we can use the fitting graph to support an explainable and robust model 
selection process. 

 
How can we be confident that we have chosen a λ value that is robust?  Furthermore, how many reps 
of k-fold CV does it take to reach that level of confidence?  Let’s take a closer look at the scatterplots 
for the baseball dataset (Fig. 3) to address this question.  As you can see from the four scatterplots, 
performing single-run (no reps) k-fold CV provides—see Fig. 3 (a)—provides little indication of which λ 
would result in the lowest MSE.  By performing repeated k-fold CV with 10 reps—see Fig. 3 (b)—you 
can see that the lowest λ values result in higher MSEs, but it is still hard to discern the fitting graph 
curve in the scatterplot for larger values.  It does appear, however, that λ values roughly from 2.5 to 
20 all fall within the range of 115,000 to 117,500.  If this is an acceptable range of variation in MSE, 
then you can accept any λ that falls within this range, and end your search at 10 reps.  When the 
number of reps increases to 1,000—see Fig. 3 (c)—then you can fine-tune your choice of λ even 
further:  λ values between 5 and 10 would all result in MSE values between 115,000 and 116,000.  By 
75,000 reps, the minimum MSE can be pinpointed almost precisely from the scatterplot:  It occurs at λ 
= 6.6, which results in a minimum MSE = 115,569. 
 
As this example illustrates, you can use the fitting graph plot to determine your level of confidence in 
the λ value:  more reps will generate a more precise curve, but at the expense of higher 
computational costs.  Moreover, the fitting graph will provide the range of values of your error (MSE).  
Even using the 10-rep plot—see Fig. 3 (b)—you can see that MSE falls between 115,000 and 118,000 
for all λ values between 5 and 20.  That result may be robust enough and achieve with few reps. 
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  Fig. 3.  Baseball dataset scatterplots: average MSE over a range of λ values. 
 

 
 

Fig. 4.  Boston dataset scatterplots: average MSE over a range of λ values. 
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4 Regression Splines 
 

75,000 reps of k-fold CV—and even 1,000 reps—would take a very long time to compute on all but the 
simplest of datasets. It is not the intent of this study to suggest that you should run k-fold CV a thousand 
times to estimate a fitting graph; rather, the large number of iterations was used to demonstrate that, 
given enough reps, you can generate a near-perfect curve. It was feasible enough to perform 1,000 
iterations on a small dataset like the Baseball dataset (n=267, p=13), but running 1,000 reps may not be 
practical on larger datasets having large n (number of rows) and/or large p (number of features). In 
general, if many reps are required to generate an accurate fitting graph, it is recommended that you use 
a shortcut method instead: Derive the fitting graph curve using a regression spline. Through this 
technique, you can estimate the curve using a scatterplot generated on a much smaller number of reps. 
 
 

Fig. 5.  Regression splines are used to generate fitting graphs.  The fitting graphs (the red curves) are 

estimated on (a) the baseball dataset using 100 reps and (b) the baseball dataset using 50 reps.  Both 

fitting graphs do a good job in selecting a λ value. 
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Let’s illustrate how this might be accomplished by using scatterplots for the baseball datasets, 
generated on 100 reps and 50 reps of k-fold CV.  These scatterplots are shown in Fig. 5 (a) and Fig. 5 (b) 
for 100 reps and 50 reps, respectively. Fig. 5 shows the red curves, generated by regression splines, that 
are fit and overlaid on the scatterplots.  We can then use these curves to estimate where the minimum 
MSE occurs.  Based on the minimum on the regression spline curves, Fig. 5 (a) selects λ = 6.8, while Fig. 5 
(b) selects λ = 7.6. 
 
As noted previously the “actual” minimum MSE is located at λ=6.6 on the baseball dataset. To derive 
this value, the scatterplot generated from 75,000 reps of k-fold CV—refer to Fig. 3 (d)—was used to 
select the λ that results in the lowest MSE. These results show that the regression splines did a good job 
in estimating the minimum values, even when generated on as few as 50 reps. To verify these choices, 
look at the fitting graph obtained from Fig. 3 (d); you can see that λ values between 5 and 8 all represent 
good choices with a low MSE. Although 75,000 reps was needed to generate a smooth fitting graph 
curve directly from the scatterplot, 50 reps was sufficient to select a good value for λ, thus 
demonstrating how this technique can be computationally feasible on a far smaller number of reps.3 In 
Appendix A, this result is replicated using a larger dataset where n=5,875; on this dataset only 10 reps 
are required to generate a reasonable fitting graph. In general, larger datasets will tend to require fewer 
reps to generate good fitting graphs. A rule-of-thumb recommendation is to use between 10 to 100 reps 
when estimating fitting graphs from your data.  
 
Why use regression splines to estimate the fitting curves?  Traditionally, the way to fit a non-linear curve 
onto a set of data points has been to replace the standard linear regression model with a polynomial 
function.  This approach, known as polynomial regression, replaces the linear model 

 
𝑦𝑖 =  𝛽0 +  𝛽1𝑥𝑖 + 𝜖𝑖   (4) 

 
with a polynomial function of the form 

 

𝑦𝑖 =  𝛽0 +  𝛽1𝑥𝑖 + 𝛽1𝑥𝑖
2 + 𝛽1𝑥𝑖

3 + ⋯ + 𝛽1𝑥𝑖
𝑑 + 𝜖𝑖   (5). 

 
 
Where i is the ith observation in the dataset. For large values of d, polynomial regression will fit very 
flexible curves on your data.  However, the problem with a high-order polynomial regression model is 
that it can take on highly irregular shapes and overfit your data as seen in Fig. 1.  For this reason, it is 
generally not recommended to use a value of d greater than 3. 
 
Regression splines typically perform better than polynomial regression, and result in better-fitting 
curves on your data.  This is because regression splines involve fitting separate lower-degree 
polynomials (e.g., quadratic, or cubic polynomials) over different regions of X, whereas polynomial 
regression will fit a single higher-degree polynomial over the entire range of X [20]. By dividing the range 
of X into k distinct regions (k is known as the number of knots), you can fit a lower-degree polynomial on 
each region separately; hence, this approach is sometimes referred to as piecewise polynomial 
regression.  Because you are fitting separate lower-degree polynomials on different sections of your 

 
3 The execution time for running 100 reps of k-fold CV over 100 λ values was 5 min 10 sec; and, for 50 reps, was 
half that, or 2 min 35 sec. These results were based on the execution time of running repeated k-fold CV on a 
computer equipped with an i7 Intel microprocessor. This shows how the generation of fitting graphs using 
repeated k-fold CV is computationally feasible for such datasets. 
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data, regression splines are less prone to overfitting.  In addition to fitting separate polynomial functions 
on each region, the polynomial functions are constrained so that they join smoothly at the knots, or the 
boundaries between the separate regions. 

 
How do you determine where the knots occur?  One way is to place a knot where the estimated fitting 
graph curve would pivot or change its direction.  For example, by looking at the scatterplot in Fig. 5 (a), 
you might create a knot somewhere in the data where the minimum point occurs—e.g., λ = 6.8.  By 
doing so, you would create two separate polynomial regression models, over two separate ranges of λ: 
(1) λ < 6.8, and (2) λ >= 6.8. (You may not know exactly where the minimum occurs, but you can 
estimate the minimum based on the scatterplot). To avoid having to choose your pivot value, you can 
also specify a k value, in which case, k separate regions are automatically generated for you in a uniform 
way across your X values.  For example, by specifying k = 4 on the baseball dataset, the software would 
divide your data into four uniformly sized regions:   
 
Region 1:  0 < λ <=  5 

Region 2:  5 < λ <= 10 

Region 3: 10 < λ <= 15 

Region 4: 15 < λ <= 20 

 
There are libraries and functions in Python, R, and other programming environments that allow you to 
generate regression splines on your data. For example, in R, you can fit regression splines, using 
functions in the library splines, by either specifying the precise location of the knots, or by specifying k 
(number of knots); the latter specification would result in a regression spline with knots created at 
uniform quantiles of your data. 
 

 

5 Case Study: Illustrating Robustness of the Fitting Graph Method on 
an Unstable Regression Model 

 

To generate a highly unstable ridge regression model, additional features were created from the Boston 
dataset, by raising the power of each of the original features up to a power of 8.  That is, each of the 13 
features in the Boston dataset was raised to a power from 1 through 8.  Thus, for a feature 𝑥𝑖 the 

features 𝑥𝑖, 𝑥𝑖
2, 𝑥𝑖

3, 𝑥𝑖
4, … , 𝑥𝑖

8 were created. Hence the number of features was expanded eight-fold to 
13*8 or 104 features—henceforth, this dataset is referred to as the Boston polynomial dataset. The 
intent was to illustrate a ridge regression model that is highly unstable in its results.  k-fold CV utterly 
fails in selecting the correct regression model.  On the other hand, the fitting graph method is a more 
robust way of selecting a good λ value and can withstand the instability of the high-order polynomial 
model. 

 

5.1  The fitting graph 
 

Fig. 6 graphically shows the average MSE after 10-fold CV was repeated 40,000 times for 100 values of λ 
ranging from 0.02 to 2.0, in 0.02 increments.  Due to the instability of the polynomial regression model, 
average MSE does not follow a smooth curve—even after 40,000 reps of 10-Fold CV—so a regression 
spline is used to estimate a fitting graph. See the red curve in Fig. 6.  
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Two things stand out in the fitting graph in Fig. 6.  First, for values of λ < 0.16 (indicated by the vertical 
line in Fig. 6), MSEs were significantly higher than MSEs for the other λ values.  You can see that MSE 
was above 25 for all these values and increased significantly as λ approaches 0.  Second, for λ  > 0.16, 
average MSE did not vary by that much, clustering around 20 – 22.  It appears that choosing λ >= 0.16 
and λ < 2.0 would result in reasonable and consistent results.  In other words, robustness of the model is 
assured when choosing a λ value between 0.16 and 2.0. 

 

 

 
Fig. 6.  Average MSE on Boston polynomial dataset, 40,000 reps. The data points represent the average 
MSE over a range of 100 λ values (0.2 – 2.0) run 40,000 times on the Boston polynomial dataset.  A 
regression spline is used to fit the red smooth curve to the data.  For λ < 0.16, the average MSE becomes 
unstable and is at its highest.  For all other λs average MSE is relatively stable, clustering in the 20 – 22 

range. 

 
 
 
This example demonstrates how a fitting graph, created with a regression spline, can be especially 
beneficial when the ridge regression results are highly unstable.  Despite the average MSE not 
converging to a curved line—as the scatterplot in Fig. 6 illustrates—a fitting graph could easily be 
estimated using a regression spline. 
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5.2  Simulation study 
 

The generation of a fitting graph can be important when there is instability in the ridge regression 
model. On the Boston polynomial dataset, a simulation study was conducted to investigate how k-fold 
CV would perform using either no iterations or a low number of iterations (1, 2, 5 or 10).  In standard 
practice, this is usually how k-fold CV is run—either once or a few times. Five variations of k-fold CV 
were run: 

 
1. 10-fold CV, single run 
2. 5-fold CV, 2 reps 
3. 50-fold CV, single run 
4. 5-fold CV, 10 reps 
5. 10-fold CV, 5 reps 
 
Using the regression spline generated in Fig. 6, three categories of λ values were designated: (1) good fit 
(top 20% of λs); (2) average fit (middle 60% of λs) and (3) poor fit (bottom 20% of λs).  These three 
categories were assigned based on the average MSE of the k-fold CV approach—the lower the MSE, the 
better the λ ranking.  The MSEs were estimated from the fitting graph determined by a regression 
spline, as shown in Fig. 6.   

 
Once fit types (good, average, poor) were assigned to the 100 λs, evaluation of the five variations could 
proceed as follows:  For each of the five variations of CV, 1,000 runs were performed to see how often a 
good fit, average fit, and poor fit λ were chosen. For example, for 5-fold CV 10 reps, the Boston 
polynomial dataset was randomly split into five folds and the MSE was calculated five times, each time 
validated on a held-out fold.  This was then repeated 10 times—each time on a randomized dataset—
resulting in 5*10 or 50 MSE calculations.  The average MSE was calculated over the 50 runs.  This entire 
process was repeated on each of the 100 λs ranging from 0.02 to 2.0, in 0.02 increments.  The λ that 
generated the lowest average MSE was selected.  Table 1 presents the results of the simulation study. 

 
The results are surprising:  In all five variations of k-fold CV, a poor fit λ was selected by a wide margin.4 
The worst performers were 50-fold CV and 10-fold CV 5 reps, which both chose a poor fit λ 99.8% of the 
time!  You do see some improvement when using 5-fold CV, 10 reps, which chose a poor fit λ 93% of the 
time, but no version of k-fold CV, either single-run or repeated, performed well. 

 
How is it possible that k-fold CV performed so poorly, across the board, on the Boston polynomial 
dataset? To better understand why this happened, let’s look more closely at the distribution of MSE 
over 1000 runs and compare two groups: (1) Group I (Poorest Fit λs) (.02,.04,.06,.08,.1)—the five λ 
values representing the poorest performance and (2) Group II (Best Fit λs) (.42,.44,.46,.48,.5)—the five λ 
values representing the best performance .  The distribution of the 5,000 MSE values representing 
Group I λs (i.e., highest average MSEs) was compared to the 5,000 MSE values representing Group II λs 
(i.e., the lowest average MSEs).  (Please note: There are a total of 5,000 values because there are five λs 
in each group). Table 2 shows the distributions of the two groups side-by-side. You can see that the 
distribution of Group I (poorest fit) is much more widely dispersed: it has more extreme values on both 
the low end as well as the high end (five values have MSE > 5000).  By contrast, the distribution of Group  

 
4 In our research lab, when running k-fold CV and repeated k-fold CV on most other datasets, this did not happen.  
k-fold CV and repeated k-fold CV usually do a much better job of finding good fit λ values (Nakatsu, 2021; Nakatsu, 
2023). 
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II (best fit) is much more concentrated:  MSE is concentrated in the 18-20 range 85.6% of the time (4280 
out of 5000).  Average MSE of Group II is about half that of Group I (19.71 vs. 40.13) and the standard 
deviation is much lower (5.69 vs. 447.89).  Hence, not only is bias higher but so is variance.  Clearly, 
running ridge regression using a Group I λ (.02,.04,.06,.08,.1) resulted in a much more unstable ridge 
regression model.   
 

 

Table 1. Simulation study results on five variations of k-fold CV, Boston polynomial dataset 
 

 
 
 

 
 

Table 2: Distribution of MSE for Group I vs. Group II 
 

 

 
 

 
Yet, despite Group II having both lower bias and lower variance, why did k-fold CV (both single-run and 
repeated variations) end up, predominantly, choosing a Group I λ value instead?  The answer is that 
Group I λ values were also unstable on the low side, generating a low-end MSE frequently as well (in 
Table 2, 2179 out of 5000 times).  This means that k-fold CV was able to find, simply by chance, a low 
average MSE using a Group I λ—in effect choosing an inappropriate λ value that would result in an 
unstable model. 

 

(1)

10-Fold CV

(2)

5-Fold CV

2 reps

(3)

50-Fold CV

(4)

5-Fold CV

10 reps

(5)

10-Fold CV

5 reps

Boston Polynomial Dataset

Good Fit:  Top 20% 8 18 1 24 0

Average Fit:  Middle 80% 4 17 1 46 2

Poor Fit:  Bottom 20% 988 965 998 930 998

Interval Frequency Interval Frequency

<=18 2179 <=18 5

(18-20] 2155 (18-20] 4280

(20-22] 199 (20-22] 687

(22-24] 55 (22-24] 5

(24-26] 108 (24-26] 0

(26-100] 257 (26-100] 21

(100-500] 8 (100-500] 2

(500-5000] 16 (500-5000] 0

(1000-5000] 18 (1000-5000] 0

>5000 5 >5000 0

Average 40.13 Average 19.71

SD 447.87 SD 5.69

Group I Group II

Poorest Fit λs Best Fit λs
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Varma and Simon [39] and Boulesteix and Strobl [3] point out that there is an inherent bias when 
estimating model performance (or error) over a large range of parameter values.  Because the λ value 
associated with the smallest average validation error (i.e., MSE) is selected, this error is likely to be 
optimistic.  It can be explained this way:  When there are several possible λ values—in this study, 100 
separate λ values are evaluated—the λ value that is finally chosen is likely to be optimistic because it is 
drawn from a random sample of possible errors.  With several λ values to choose from, the resulting 
average MSE error is likely to be low simply by chance, rather than truly representing the lowest average 
MSE.  This problem will especially be pronounced in unstable cases where there are many low-end 
extreme values, such as was reported in Table 2.   

 
The result is that k-fold CV does not always work well, and you cannot always trust its results.  In this 
example, the failure of k-fold CV is clear and unmistakable—in some cases an unstable λ would be 
selected close to 99% of the time. In situations like these, the fitting graph can provide the model 
developer with a more complete picture—more explanation about what is happening, and what to do 
instead.  Without the fitting graph, the model designer of an unstable model is likely to be led astray.  
Clearly, in this example, the fitting graph method led to a more robust selection of a λ value. 
 
   

6 Discussion and Conclusions 
 

In the practitioner literature, the standard recommendation for model validation is to perform k-fold 
CV—most typically using 5 or 10 folds [22]. In most cases, the model designer will perform this only 
once, rather than performing repeated k-fold CV.  In many cases, this k-fold CV procedure works fine, 
and will produce reasonable results.  However, this study demonstrates how k-fold CV (whether single-
run or repeated 5 - 10 times) may not provide enough accuracy in your results; moreover, the 
robustness of the model selected might be lacking. In some cases, more explanation may be required to 
understand whether the correct model has been selected. 

 
This research demonstrates how fitting graphs can enhance explainability for the model designer, 
leading to greater trust in the model selection process.  In this study, the fitting graph was actively 
constructed directly from the data and was used as a tool to support model validation, not merely 
created as a static rendering of how accuracy changes as a function of model complexity, which is how 
the current literature treats the fitting graph (see e.g., [3]). We know of no prior studies that have used 
the fitting graph in this way or have demonstrated how to create fitting graphs directly from your data. 
The model validation process was illustrated using a ridge regression task:  Find the best-fitting 
regularization parameter λ among a range of λ values. First, it was demonstrated how a simple 
scatterplot of the λ values (representing model complexity) plotted against average MSE (representing 
predictive accuracy) would provide the model designer with an information graphic on whether enough 
iterations of k-fold CV have been performed.  A highly erratic scatterplot may indicate more iterations 
might be necessary whereas a plot in which a u-shaped curve can be discerned may indicate that 
enough iterations have been performed. The scatterplots, alone, provide a useful explanatory 
visualization on whether the model designer is on the right track.  Second, fitting curves were 
constructed from noisy scatterplots using regression splines. Rather than increasing the number of 
iterations of k-fold CV, which would require more computational resources to perform, regression 
splines can save you time in estimating the fitting graphs.  One benefit of regression splines is that they 
require very little computational power to generate and are easy to compute using standard software 
routines readily available in R, Python, and other popular machine learning libraries. 
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Furthermore, model robustness is addressed in this study.  The type of model robustness that was 
addressed involves the selection of the hyperparameter λ when designing a ridge regression model.  As 
Nobandegani et al. [31] state, a robust model is one that is performance insensitive to variations in the 
parameters (i.e., hyperparameters).  In Section 3.2, we illustrate these ideas by showing how the fitting 
graph can help us choose a λ value that is insensitive to regression model performance, or MSE.  
Secondly, we illustrate model robustness by showing how k-fold CV can fail spectacularly on an unstable 
ridge regression model.  Again, the solution was to generate (or estimate) the fitting graph from a 
regression spline on a scatterplot of your data.  For the polynomial regression model described in 
Section 5, k-fold CV ended up choosing a poorly fit and unstable λ by an overwhelming margin. By 
applying the fitting graph method, the model developer can choose a better-fitting and more robust λ.  
Hence, fitting graphs not only reassure the model developer that they are on the right track—enhancing 
the trustworthiness of the model-building process—but also guide them toward better models. In ridge 
regression, for example, this can involve selecting a more stable and well-fitting λ value. 
 
Although this research deals exclusively with regression modeling, and the tuning of the regularization 
parameter λ, these principles and techniques can generalize to other machine learning algorithms. The 
fitting graph method can be extended to other popular machine learning algorithms, including logistic 
regression, random forests, support vector machines, and neural networks.  In all cases the basic 
application of the fitting graph remains the same: the curve provides a visualization on how error (or 
predictive accuracy) changes as a function of model complexity. Future work will look at how these 
concepts can be extended to create trustworthy AI for these other machine learning methods. 
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Appendix A: Verification of Results Using Parkinsons Dataset 
 
The Parkinsons dataset [38] contains biomedical voice measurements from 42 people with early-stage 
Parkinson’s disease (n=5875, p=17 voice measurements). The target variable is Total-UPDRS, which 
stands for Unified Parkinson’s Disease Rating Scale. Ridge regression was used to fit models on this 
dataset, using 100 λ values from 0.1 to 1.0. Fig. 7 (a) shows the results of MSE plotted against λ on 1000 
reps of k-fold CV. You can see that with a large number of reps, the scatterplot approaches a near-
perfect fitting graph curve with the familiar u-shape. Fig. 7 (b) shows the scatterplot generated on 10 
reps of k-fold CV. The fitting graph is estimated using a regression spline, as represented by the red 
curve that is overlaid on the data. Using the regression spline, λ = 0.18 is chosen as the best-fitting λ 
having the lowest MSE. The actual minimum value, from Fig. 7 (a) is λ = 0.19. Again, the regression spline 
does a very good job in selecting a good value, using only 10 reps of k-fold CV. 

 
Fig. 7.  Results on the Parkinsons dataset (n=5875, p=17).  (a) The scatterplot is generated on 1000 reps 
of k-fold CV. (b) The scatterplot is generated on 10 reps of k-fold CV, with the fitting graph (red curve) 
estimated by a regression spline. 

 

 
 

 
 


