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Abstract 

Safe reinforcement learning (Safe RL) seeks to acquire policies that maximize the cumulative reward under stringent 

safety constraints during training and deployment. Most current solutions, e.g., Lyapunov- and barrier-based methods, 

are not sufficiently adaptable in dealing with nonlinear dynamics or are based on analytically hard-coded safety 

certificates. To overcome these limitations, we introduce Neural-barrier Lyapunov-constrained Proximal Policy 

Optimization (NBLC-PPO), a general architecture that combines data-driven neural control barrier functions, 

Lyapunov stability filters, and trust-region policy updates with PPO. The approach allows per-step safe action 

enforcement with stability and constraint satisfaction guarantees in nonlinear environments. NBLC-PPO learns safety 

certificates and policy parameters simultaneously, enforcing dynamic feasibility by using differentiable constraints in 

the optimization loop. A set of empirical tests proves that NBLC-PPO attains state-of-the-art safety-performance trade-

offs in constrained control tasks. It attains a 24-step cumulative reward, outperforming Lyapunov-PPO (∼19) and PPO 

(∼17.5), but with an average violation of only 0.04–0.06. It also attains more than 98.5% of the safety rate, training 

stability of almost 0.95, and converges 33% more quickly than baseline PPO. It also provides a reward-to-constraint 

ratio of over 500, which is a 66% improvement over Lyapunov-PPO and 2.5× that of baseline PPO. All these findings 

affirm the effectiveness of NBLC-PPO in facilitating secure, stable, and high-performing RL in real-world constrained 

environments. 

Keywords: Safe Reinforcement Learning, Control Barrier Functions, Lyapunov Stability, Proximal Policy 

Optimization (PPO), Constraint Satisfaction in Nonlinear Systems 

1. Introduction 

Reinforcement Learning (RL) is a learning paradigm 

for machines, in which an agent learns to act by 

exploring an environment to acquire the maximum 

cumulative reward [1]. In each timestep, the agent 

perceives a state, performs an action, and receives a 

reaction in the form of a reward and a new state [2]. It 

learns a policy — a state-action mapping — which 

maximizes long-term return over time. Q-Learning 

[3], Policy Gradient Methods [4], Actor-Critic [5], and 

Proximal Policy Optimization (PPO) [6] are popular 

RL algorithms. They have been used in game playing 

(e.g., AlphaGo), robotics, finance, and recommender 

systems. Although they have been successful, typical 

Reinforcement Learning algorithms are probably 

unsafe in learning and deployment processes [7]. This 

is especially because they venture out into the 

environment without observing any pre-established 

safety limits, and this may have negative or 

irreversible consequences [8]. For example, an RL 

agent will do unsafe actions that ignore safety rules in 

real life, like crashing an aerial drone, causing damage 

to equipment, or injuring a human with a robotic 

gripper [9]. These approaches further rely on trial-and-

error being an acceptable learning component. This 

supposition does not apply in safety-critical domains 

such as autonomous vehicles, healthcare, or industrial 

control, where mistakes can be expensive or lethal. 

This lack of safety objective motivates the 

development of Safe Reinforcement Learning (Safe 

RL) [10], a subfield of RL that not only seeks to 

maximize cumulative expected reward but also to 

guarantee satisfaction of safety constraints—either in 

expectation, at each decision step, or asymptotically in 

the long run. Safe reinforcement learning has 

progressed from general policy learning to systems 



that ensure real-time safety constraints [11], a critical 

shift for deployment in high-stakes applications like 

autonomous driving, robotics, and healthcare. 

Traditional RL, including PPO, excels at maximizing 

expected rewards but lacks mechanisms to ensure 

safety during both training and execution. Safe 

reinforcement learning has evolved from learning the 

overall policy to systems enforcing real-time safety 

constraints—a fundamental step toward application to 

high-stakes domains like autonomous driving, robots, 

and health care [11]. Classic RL, such as PPO, is good 

at optimizing expected rewards but has no safety 

methods during training and deployment [12]. Control 

theory's CLF assures stability, and CBF imposes safety 

through forward-invariant sets [13]. Most existing RL-

based extensions, e.g., Lyapunov-PPO [14] and LBPO 

[15], apply analytic or decoupled implementations at 

the cost of expressivity and constraint tightness. New 

developments have started leveraging neural 

certificates—Neural Lyapunov-Barrier (NLB) 

functions—to directly learn from safety levels data in 

nonlinear systems [16]. Techniques such as BLAC 

merge CLF and CBF paradigms with actor-critic 

architectures for enhanced stability and safety [17]. 

Nevertheless, concurrent modeling of neural barriers 

with Lyapunov constraints and PPO stability 

mechanisms remains unexplored. This introduces a 

gap in constraints: per-step enforcement, complete 

coverage of the nonlinear system, and expressivity in 

high-dimensional spaces.  

Safe reinforcement learning is central to providing 

guarantees of safety and reliability in many complex, 

real-world systems. In autonomous vehicles, similar 

techniques are employed for enforcing accurate lane-

keeping and collision avoidance through the synergy 

of neural safety certificates and control-theoretic 

methodology involving Control Lyapunov Functions 

(CLFs) and Control Barrier Functions (CBFs) [18]. 

They allow vehicles to operate safely even under 

dynamically varying conditions or during high-speed 

maneuvers. For robotic manipulation, safe RL avoids 

joint-limit collisions and allows robotic arms to 

compute safe, feasible paths under dexterous 

movement by acquiring adaptive Lyapunov-barrier-

based control policies for non-linear constraints [19]. 

In industrial systems and aerial drones, Safe RL 

methods offer reliable safety envelopes during flight 

or operation in uncertain or populated environments 

by using learned neural certificates to avoid collisions 

and unsafe areas adaptively in real-time [20]. Such 

advancements are strong steps toward safe and 

autonomous systems for application in the real world. 

We introduce Neural-Barrier Lyapunov-Constrained 

PPO (NBLC-PPO), a combined architecture of neural 

Control Barrier Functions (CBFs), Lyapunov-based 

constraint filtering, and Proximal Policy Optimization 

(PPO). The method teaches expressive barriers and 

Lyapunov functions directly from the data and can 

address challenging, nonlinear geometries of 

constraints in the world. Unlike earlier approaches to 

imposing constraints in expectation or post-hoc, 

NBLC-PPO proactively imposes safety at every policy 

update such that action is still within admissible 

bounds even under dynamically changing or high-

dimensional environments. Meanwhile, it preserves 

PPO's trust region clipping approach such that policy 

updates stabilize and ensure monotonic improvement. 

Through the integration of certificate-based data-

driven learning with strong policy optimization, 

NBLC-PPO sidesteps the primary prevalent 

limitations of analytic or expectation-based safe RL 

approaches and extends enforcement of constraints to 

per-step decision-making in high-dimensional, 

nonlinear environments.  

The objectives of this study are as follows: 

• Construct an end-to-end integrated system 

that learns safety certificates from experience 

and utilizes per-step safety using neural 

control barrier functions (CBFs) and 

Lyapunov-based filters in policy updates. 

• Experimentally compare the algorithm 

developed (NBLC-PPO) on nonlinear 

constraint environments with current state-

of-the-art rivals such as LBPO, BLAC, and 

vanilla PPO in terms of its performance, 

constraint satisfaction, and training stability. 

• Perform intensive testing in emulated 

nonlinear environments like safety-

performance trade-off analysis, ablation 

studies, and visual diagnostics to verify, 

under controlled but realistic conditions, the 

performance of NBLC-PPO. 

 



2. Literature review  

Recent years have seen researchers investigate various 

safe reinforcement learning (Safe RL) methods that 

merge learning-based control with robust safety 

assurance. Authors of [21] carried out one of the 

largest surveys by considering theoretical models, 

safety measures, and classifying current Safe RL 

algorithms under Lyapunov, barrier, and risk-sensitive 

frameworks. Researchers of [22] proposed a model by 

merging safety Certifiably Robust Control Barrier 

Functions (CBFs) and reinforcement learning to map 

unsafe actions to a safe set in real-time, preserving 

safety during exploration. Researchers of [15] 

proposed Lyapunov Barrier Policy Optimization 

(LBPO), which effectively merged Lyapunov stability 

conditions and barrier constraints such that policies 

ensured high safety compliance and optimized 

performance. Researchers of [17] introduced Barrier-

Lyapunov Actor-Critic (BLAC), incorporating neural 

certificate modules and an actor-critic method. They 

worked well on convergence and constraint 

satisfaction on robotic benchmarks. Authors of [23] 

introduced an end-to-end safe RL architecture with 

differentiable barrier functions that can be directly 

integrated into policy learning to improve safety 

during training and testing. Torraca Neto et al. (2025) 

[24] used Lyapunov-based constraints to actor-critic 

algorithms like PPO and DDPG for safe control of the 

process, noting better stability and reduced constraint 

violation in benchmark reactor control problems. They 

tested safety mechanism design in nonstationary 

systems through real-time CBF adaptation on 

quadrotor and mobile robot dynamic uncertainties in 

an initial work [25]. Robey et al. (2020) [26] broke 

away from the paradigm by suggesting learning 

control barrier functions via expert demonstrations 

rather than specifying them by hand to achieve more 

scalability for enforcement in RL contexts. Research 

by [27] continued this tradition by using probabilistic 

control barrier functions, which were used for safe 

lane merging in autonomous driving tasks on CARLA 

and NGSIM datasets. A paper by [28] focused on the 

integration of safety in dynamical systems through 

barrier-augmented actor-critic learning. Their results 

ensured safety enforcement with high robustness in 

time-sensitive feedback control settings. 

 

3. Methodology 

Fig. 1 illustrates the methodology followed in this 

study. 

 

Fig. 1. Methodology followed in this study 

The approach employed in this work proposes a new 

reinforcement learning paradigm—Neural-Barrier 

Lyapunov-Constrained Proximal Policy Optimization 

(NBLC-PPO)—to bring safety into constrained and 

nonlinear systems. The paradigm encompasses three 

critical elements: a neural barrier, a Lyapunov-

constrained filtering mechanism, and Proximal Policy 

Optimization (PPO) policy update. The paradigm 

facilitates per-step filtering while guaranteeing 

dynamic stability and policy enhancement. The 

training loop begins with the agent observing the 

current environment state 𝑠𝑡. A neural Lyapunov 

function 𝑉𝜓(𝑠𝑡) is used to assess system stability, 

enforcing a constraint that ensures energy-like 

descent: 

Δ𝑉𝜓(𝑠𝑡 , 𝑎𝑡) = 𝑉𝜓(𝑠𝑡+1) − 𝑉𝜓(𝑠𝑡) ≤ −𝑐|𝑠𝑡|2         (1)           

where c>0 is a tunable margin. Any action violating 

this inequality is discarded or projected. The candidate 

action then passes through a neural barrier function ℎ𝜃

(𝑠𝑡), which models the safety set: 

         𝒞 = {𝑠 ∈ 𝑅𝑛 ∣ ℎ𝜃(𝑠) > 0}                          (2) 

and ensures forward invariance via the control barrier 

condition: 

ℎ𝜃̇(𝑠, 𝑎) = ∇ℎ𝜃(𝑠)⊤𝑓(𝑠, 𝑎) + 𝛼ℎ𝜃(𝑠) ≥ 0             (3)               



where 𝑓(𝑠, 𝑎) denotes system dynamics and 𝛼 > 0 is a 

design parameter. This ensures that trajectories remain 

within the safe region over time. 

The final constraint-compliant action at is fed into the 

PPO policy for trust-region optimization. PPO 

minimizes the clipped surrogate loss: 

 ℒPPO(𝜃) = 𝐸𝑡[min(𝑟𝑡(𝜃)𝐴𝑡̂ ,  clip(𝑟𝑡(𝜃), 1 − 𝜖, 1 +

𝜖)𝐴𝑡̂)]                             (4) 

Where,  𝑟𝑡(𝜃) =
𝜋𝜃( 𝑎𝑡∣∣𝑠𝑡 )

𝜋old( 𝑎𝑡∣∣𝑠𝑡 )
 is the likelihood ratio and 

At̂  is the advantage estimate. In parallel, the neural 

barrier and Lyapunov modules are updated using their 

respective loss terms: 

 ℒCBF = ∑ max (0,   − ℎ𝜃̇(𝑠𝑡 , 𝑎𝑡))𝑡                          (5) 

and  

ℒ𝐿𝑦𝑎𝑝 = ∑ max(0,  𝑉𝜓(𝑠𝑡+1) − 𝑉𝜓(𝑠𝑡) + 𝑐|𝑠𝑡|2)𝑡  (6) 

These are combined into the final joint loss function: 

ℒ𝑁𝐵𝐿𝐶 =  ℒPPO + 𝜆𝑏 ℒCBF + 𝜆𝑙ℒ𝐿𝑦𝑎𝑝          (7) 

Where, 𝜆𝑏 and 𝜆𝑙 control the importance of the safety 

objectives. This formulation allows NBLC-PPO to 

learn reward-optimal, dynamically stable, and 

constraint-satisfying policies for nonlinear systems. 

The pseudocode of this study is shown in Table 1. 

Table 1. NBLC pseudocode 

Initialize neural policy πθ, value network Vϕ, 

neural barrier hθ, Lyapunov filter Vψ 

for iteration = 1 to N do: 

    Collect trajectories τ = {(s_t, a_t, r_t, s_{t+1})} 

using πθ 

    for each transition (s_t, a_t, s_{t+1}) in τ do: 

        # Evaluate safety constraints 

        barrier_violation = ∂hθ/∂s · f(s_t, a_t) + α 

hθ(s_t) < 0 

        lyap_violation = Vψ(s_{t+1}) - Vψ(s_t) + c 

∥s_t∥² > 0 

 

        if barrier_violation or lyap_violation: 

            Reject or project a_t using a filter 

        else: 

            Accept action a_t 

 

    Compute rewards and advantages using GAE 

    Update πθ using clipped PPO loss: 

        L_ppo = PPO(πθ, Â_t) 

    Update hθ to minimize L_barrier: 

        L_barrier = ∑ max(0, -∂hθ/∂s · f + α hθ) 

    Update Vψ to minimize L_lyap: 

        L_lyap = ∑ max(0, Vψ(s_{t+1}) - Vψ(s_t) + c 

∥s_t∥²) 

 

    Perform gradient descent on total loss: 

        L_total = L_ppo + λ_b * L_barrier + λ_l * 

L_lyap 

 

The pseudocode shown in Table 1 illustrates the 

training loop of the proposed Neural‑Barrier 

Lyapunov‑Constrained Proximal Policy Optimization 

(NBLC-PPO) model. The algorithm starts with three 

neural modules: the policy network πθ and a Lyapunov 

function approximator Vψ, and a neural barrier 

function hθ. These components are trained jointly to 

enforce safety while optimizing the cumulative 

reward. At each step, the agent goes through 

experiences by exploring the environment based on 

the present policy πθ . For every transition (st, at, st+1), 

the algorithm checks two safety constraints as shown 

in Eqn (1) and Eqn (3). If either condition is violated, 

the action at is rejected or modified (e.g., projected to 

a safe alternative) before being executed. This ensures 

per-step safety correction during both exploration and 

policy deployment. Once all the safe actions are 

accumulated, PPO optimization is performed via a 

clipped surrogate loss function to ensure stable policy 

updates. At the same time, Lyapunov network and 

barrier network are updated via their loss functions, as 

shown in Eqs (5) and (6). The final optimization 

objective is a weighted combination of the PPO loss 

and the two safety losses as per Eqn (7). This loop is 

iterated for a specified number of training epochs or 

until convergence. The structure of the pseudocode 

enables NBLC-PPO to impose safety constraints 

without interfering with policy performance, which 

makes it applicable to safety-critical RL tasks such as 

autonomous vehicles, robots, and industrial 

automation. 

4. Results 

In this section, we show the environment considered 

for this study, the performance of the proposed 

evaluation study in terms of 6 parameters, viz., 

Cumulative Reward, Constraint Violation, Safety 

Rate, Training Stability, Convergence Speed, and 



Reward-to-Constraint Ratio, in comparison with state-

of-the-art existing techniques, namely Lyapunov-PPO 

and standard PPO. Also, the ablation study of the 

proposed technique is demonstrated. 

4.1 Nonlinear constrained control 

environment 

Fig. 2 illustrates the environment used in this study. 

 

Fig. 2. NBLC-PPO environment 

As per Fig.2, state x is marked by a red cross, 

indicating the agent's position in the state space. An 

arrow for the control action u is shown moving to the 

target state xg,  indicated by a red dot. This visual 

metaphor is ubiquitous in control-based reinforcement 

learning problems where agents seek to optimize 

trajectories towards a goal while satisfying dynamic 

constraints. A safety constraint is defined by a dashed 

circular boundary with the label h(x) ≥ 0, and it is an 

equality that needs to be fulfilled to allow safe 

operation. Constraints like these may be used to model 

energy, position, velocity, or joint constraints, and they 

are the basis for constrained RL models, especially 

those that use Lyapunov functions or CBFs. The filled 

area around the state x is the safe set—the set of states 

that are acceptable by the requirement h(x) ≥ 0. This 

region is at the center of approaches that employ 

learned or analytic barrier functions to stay safe while 

learning and exploring. Finally, the directionality of 

the control action u, moving from the current state x 

toward the goal xg, highlights the core challenge in 

safe RL: balancing reward-driven exploration with 

constraint satisfaction. The system must choose 

actions that steer it toward high-reward regions 

without violating safety boundaries, a challenge that 

NBLC-PPO directly addresses through its joint policy-

barrier-Lyapunov framework. 

4.2 Schematic View of Constraint-Aware 

Action Selection 

To further clarify the behavior of NBLC-PPO in 

constrained scenarios, Fig. 3 provides a qualitative 

illustration of safety-aware action filtering. 

 

Fig. 3. Illustration of action selection under safety 

constraints 

The red region denotes the agent’s current state 𝑥, and 

the surrounding dashed circle labeled h(x)=0 defines 

the safety boundary learned via neural control barrier 

functions. The arrow 𝑢 represents a nominal action 

proposed by the policy, which, while optimal in terms 

of reward, would drive the agent into the unsafe region 

(shaded red). Instead, the corrected action u′ is selected 

through Lyapunov and barrier filters, guiding the agent 

within the safe region (shaded blue) while still 

progressing toward the goal state xg. This highlights 

NBLC-PPO’s ability to filter unsafe actions and 

enforce per-step safety compliance in dynamic 

environments. 

 

  

 

 



4.3 Metrics used  

Table 2 illustrates the evaluation metrics used. 

Table 2. Metrics used 

Metric Definition Equation Desired Behavior 

Cumulative Reward 

Total reward collected over time or 

episodes. 

 

Higher is better 

Constraint Violation 

Number of times constraints are 

violated. 

 

Lower is better 

Safety Rate 

Percentage of steps or episodes 

without constraint violation. 

 

Closer to 100% is 

better 

Training Stability 

Consistency of learning progression 

over time. 
- Smoother learning 

curves 

Convergence Speed 

The speed at which the agent 

reaches optimal or safe behavior. 
- Fewer episodes to 

converge 

Reward-to-Constraint 

Ratio 

Trade-off between performance and 

safety violations. 

 

Higher ratio preferred 

 

4.4 Performance analysis 

Fig. 4 illustrates the cumulative reward obtained from 

the proposed study in comparison with existing 

techniques. 

 

Fig. 4. Reward over timesteps 

As evident from Fig.4, the learning curves in the 

outcomes show that the formulated NBLC-PPO 

algorithm possesses a well-improved reward path 

compared to baselines. Starting with an accumulated 

reward value of approximately 1.3 at timestep zero, 

NBLC-PPO shows smooth and consistent 

improvement, with the reward value reaching more 

than 24 at timestep 100,000. Meanwhile, Lyapunov-

PPO achieves the terminal reward of around 19, 

whereas the baseline PPO algorithm only gets to 

around 17.5 within the same period of training. This 

performance gap raises an important observation: 

NBLC-PPO achieves roughly 26% greater cumulative 

reward than Lyapunov-PPO and approximately 37% 

more than vanilla PPO. These gains serve to 

emphasize NBLC-PPO's improved ability to 

maximize return subject to the satisfaction of safety 

constraints, thus providing testament to the value 

added through the application of neural barrier and 

Lyapunov filters in policy optimization. The findings 

overall provide testimony that NBLC-PPO is a 

stronger and reward-effective solution to safe 

reinforcement learning in constrained tasks. Fig.5 



depicts the constraint violation parameter comparison 

result. 

 

Fig. 5. Constraint violation over time steps 

The constraint violation analysis is further evidence of 

the high rate of safety promotion by NBLC-PPO. The 

method that has been put forward has a low and steady 

rate of violation, ranging from 0.04 to 0.06 throughout 

training. On the other hand, baseline Lyapunov-PPO 

has comparatively higher rates of violations, ranging 

from 0.08 to 0.12. Particularly, standard PPO exhibits 

the poorest safety performance of all, with a violation 

peak up to 0.18 to 0.22, which means continuous 

failure to meet safety constraints. These quantitative 

gains speak to NBLC-PPO's larger capacity to perform 

in safe areas of the state space. Specifically, the 

presented method attains over a 50% decrease in mean 

constraint violations relative to baseline PPO, and 

roughly 40% fewer than Lyapunov-PPO. This note 

reflects the efficacy of NBLC-PPO's dual safety 

mechanisms, i.e., its application of neural barrier 

functions and Lyapunov filters, in preserving 

constraint satisfaction during training. Fig. 6 illustrates 

the safety rate over timesteps.  

 

Fig. 6. Safety rate 

The safety rate test reflects the external strength of the 

suggested NBLC-PPO framework for stable constraint 

satisfaction during training. NBLC-PPO has a steadily 

higher than 97.5% safety rate across all tested 

timesteps and goes up to approximately 98.5%. So, a 

high compliance rate for constraints is evidence of the 

efficacy of the cooperative learned barrier functions 

and Lyapunov stability ideals in the suggested 

framework. Relative to these, Lyapunov-PPO has 

comparatively lower consistency in safety, with 94% 

to 96% safety percentages showing less consistent 

safety condition enforcement. The Basic PPO is much 

worse in this aspect, with 88% to 90% safety 

percentages showing the lack of explicit safety 

mechanisms. The safety margins of gain are 

impressive: NBLC-PPO is about 3% safer compared 

to Lyapunov-PPO, and less than 10% safer compared 

to baseline PPO. These results validate that the 

synergy between neural boundary mechanisms and 

Lyapunov filtering plays an important role in ensuring 

high-frequency safety adherence in limited 

reinforcement learning worlds. Fig. 7 depicts the 

training stability result. 



 

Fig. 7. Training stability over timesteps 

The training stability score is shown by NBLC-PPO to 

provide a very stable and robust learning path in 

training. The framework retains its stability score of 

0.90 to 0.95 with negligible variance, which means 

that policy updates are kept smooth and consistent 

over time. This is crucial in safety-critical 

applications, where random learning behavior needs to 

be prevented. By comparison, Lyapunov-PPO 

possesses a relatively moderate level of stability of 

around 0.85, while regular PPO is extremely unstable, 

and sometimes scores fall to the 0.70–0.75 level. This 

kind of instability can prevent convergence and add 

random behavior at deployment time. The 

improvement in training stability achieved by NBLC-

PPO is significant—about 10% more than Lyapunov-

PPO and about 20% more stable than base PPO. These 

findings demonstrate the merit of synergistically 

combining the Lyapunov-guided filters and neural 

barrier certificates with PPO's trust-region updates, 

resulting in a more robust and less unstable training 

process suitable for real-world applications. Fig. 8 

illustrates the performance analysis of convergence 

speed. 

 

 

              Fig. 8.  Convergence speed  

The convergence speed plot shows the performance 

advantage of the NBLC-PPO algorithm in achieving 

the best policy performance in fewer training steps. 

NBLC-PPO has a steep trajectory towards 

convergence, with a virtually 1.0 normalized speed of 

convergence at the timestep of 100,000. The result is 

that the agent converges to a good, stable policy much 

faster compared to baseline methods. Lyapunov-PPO, 

although superior to vanilla PPO, also displays faster 

convergence, levelling off at around 0.9 in the same 

horizon. Vanilla PPO, on the other hand, learns 

considerably more slowly, and its rate also levels off 

at 0.75, which indicates longer learning times and 

higher susceptibility to instability or risk-taking 

behavior. 

The trends observed indicate that NBLC-PPO obtains 

around a 33% speedup in convergence relative to 

vanilla PPO, and about 11% relative to Lyapunov-

PPO. The learning speedup renders the proposed 

method highly beneficial in real-time or constrained 

applications, where in-time deployment of the policy 

is essential. The combination of the barrier and 

Lyapunov constraints serves to counterbalance 

exploration responsibly as well as economically, 

restricting the requirement for extensive trial-and-

error learning. Fig.9 demonstrates the results of the 

reward-to-constraint ratio. 

 

 



 

    Fig. 9. Reward-to-constraint ratio over timesteps 

The reward-constraint ratio analysis provides an actual 

measure of how well each method sacrifices task 

accomplishment versus safety compliance. NBLC-

PPO is far above the baselines during training, with a 

peak ratio of more than 500, a reflection of the degree 

of return yielded for each constraint violation 

encountered. This reflects how effectively the 

suggested method can achieve high task efficiency 

without sacrificing safety. Lyapunov-PPO has a 

relatively modest trade-off in efficiency, with its ratio 

jumping by about 300, while the baseline PPO has a 

relatively lower ratio, almost falling below 200. The 

contrasts reflect the drawbacks of baseline techniques 

in addressing the inherent conflict between reward 

maximization and constraint satisfaction. 

Here's the crux that NBLC-PPO achieves about 66% 

better than Lyapunov-PPO, and over 2.5× greater 

performance than vanilla PPO, on this trade-off 

measure. This puts NBLC-PPO in the category of a 

principled and reasonable method of safe 

reinforcement learning, where optimizing high 

rewards should not, at any cost, mean violating safety-

critical constraints. 

The 6 performance analysis graphs demonstrate the 

method's effectiveness for safe reinforcement learning 

in nonlinear, constrained environments. 

 

 

4.5 Ablation study 

The study performed an ablation study to remove each 

of the neural barrier module, Lyapunov filter, and PPO 

core individually and compare the individual 

contributions. By removing each of them individually, 

we analyzed their effect on safety, stability, and policy 

performance. Fig.10 depicts an ablation study 

performed on reward analysis. 

 

          Fig. 10. Ablation study: reward analysis 

The outcome of the ablation study concerning reward 

analysis indicates the functional contribution of all 

parts of the NBLC-PPO architecture. The full model, 

consisting of the neural barrier, Lyapunov filter, and 

trust region clipping, accomplishes a total reward of 

approximately 23.5, which indicates the synergy of all 

components in driving learning and safety together. 

Removing the Lyapunov filter reduces performance to 

~22.5, which means high reward can still be attained, 

but without enforcing dynamic stability, safe 

consistency is sacrificed. Removing the neural barrier 

function brings it down to ~22.0, and this is evidence 

that the barrier contributes to forming safe policies 

since it directly incorporates state constraints. The 

most severe degradation arises when trust region 

clipping is not present, with reward dropping to ~20.5, 

which identifies the pivotal position of the clipping 

mechanism in PPO in guaranteeing training stability 

under safety-driven constraint reformulation. Fig. 11 

provides a graphical representation of ablation study 

concerning constraint violation. 

 



 

Fig. 11. Ablation study: constraint violation 

over timesteps 

Analysis of ablation of constraint violation also 

supports the significance of each part of the NBLC-

PPO configuration towards ensuring safety by 

training. The complete NBLC-PPO configuration 

obtains the lowest and most constant violation levels, 

with values of 0.04-0.06. Such a result exemplifies the 

effectiveness of the combination of neural barrier 

operations and Lyapunov-based filtering in imposing 

per-step satisfaction of constraints. If the barrier is 

disabled, the violation rate jumps appreciably to 

~0.10–0.15, once more affirming the central role of the 

barrier in actively steering the policy away from 

dangerous areas. Disabling the Lyapunov filter also 

induces significant violations—though marginally 

smaller than for the no-barrier scenario—indicating 

the filter contributes to dynamic stability and 

constraint erosion enforcement in addition to the 

barrier's geometrical guidance. 

Further, turning off trust region clipping results in 

oscillating spikes of violation ranging from 0.08 to 

0.13, which reflects unstable learning behavior and 

degraded safety generalization. The instability 

showcases the role of clipping in PPO as a stabilizer, 

particularly in policy updates under nonlinear, safety-

driven dynamics. 

 

 

 

 

5. Conclusion  

This paper introduces Neural‑Barrier 

Lyapunov‑Constrained Proximal Policy Optimization 

(NBLC‑PPO), a composite reinforcement learning 

method that combines neural barrier certificates, 

Lyapunov stability filtering, and trust-region policy 

update to solve the long-standing problem of safe and 

stable policy learning in constrained nonlinear 

environments. The proposed approach achieves 

substantial improvements on cumulative reward, 

constraint violation, safety rate, training stability, 

convergence speed, and reward-to-constraint ratio 

over vanilla PPO and Lyapunov-based baselines. 

Ablation experiments also confirm the effectiveness of 

each module, with barrier and Lyapunov pieces 

playing complementary safety enforcement and trust 

region clipping providing strong constraint shaping for 

stable convergence. 

NBLC-PPO also possesses some shortcomings in 

addition to its strengths. Neural certificate (barrier and 

Lyapunov function) learning can degrade in high-

dimensional or partially observable environments 

where boundary safety is non-stationary or complex. 

Besides, the computational cost involved in the joint 

optimization of all loss terms can discourage 

scalability to real-time or large-scale deployment. 

Directions for future work can include extensions to 

partially observable Markov decision processes 

(POMDPs), combination with model-based estimators 

of safety for efficient use of samples, and adaptive 

weighting methods for loss terms to set safety-

performance trade-offs adaptively. Finally, theoretical 

guarantees in approximate neural certificate learning 

are an open problem that must be investigated. In 

summary, NBLC-PPO provides an exciting and 

scalable basis for safe reinforcement learning in real-

world complex and constrained environments. 
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