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Abstract—This study presents a novel ‘Optimized Parallelized Ensemble Learning’ (OPEL) theory, a parallelized multi-mode ensemble learning framework that optimize computational efficiency, speed and model accuracy. This is accomplished by formulating theoretical mathematical models that guide model selection, weighting, and parallel execution strategies and utilizing performance metrics like the Matthews correlation coefficient to select top-performing models. Experimental simulations on real-world datasets demonstrated significant reductions in computation time and improvements in model accuracy compared to conventional ensemble methods. A paired t-test confirms the statistical significance of these improvements, highlighting OPEL’s potential in distributed and resource-constrained environments. This paper henceforth introduced key innovations, which include the Parallelized Model Execution (PME) approach, Consensus-Based Model Selection (CMS), and Optimized Parallel Voting Mechanism (OPVM), each contributing to reduced computational time and improved model performance. The study demonstrates significant gains in computational speed and accuracy through parallelization and advanced voting techniques, with a time complexity reduction as defined by Amdahl's Law. The proposed ensemble learning framework is validated as both computationally efficient and robust in diverse, large-scale AI applications.
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 Introduction
This paper introduces a novel advanced Optimized Parallelized Ensemble Learning (OPEL) framework, designed to improve ensemble learning through parallel execution and dynamic model selection. Unlike traditional approaches that rely on sequential execution and static voting schemes, OPEL integrates Parallelized Model Execution (PME) to accelerate training and evaluation, Consensus-Based Model Selection (CMS) to dynamically identify the most effective models, and an Optimized Parallel Voting Mechanism (OPVM) to refine ensemble decision-making.
Traditional ensemble learning methods such as bagging and boosting, have been widely used to enhance predictive accuracy in machine learning. However, these methods often require extensive computational resources, particularly when applied to large-scale and distributed datasets. As machine learning applications continue to expand into areas like real-time decision-making and resource-constrained environments, the need for efficient, scalable ensemble learning frameworks has become critical, often suffering with scalability and efficiency, especially in large-scale, heterogeneous settings and when coupled with fast-changing data. 
The proposed framework addresses these challenges by introducing a multi-model selection mechanism that identifies the best-performing models within a given set of classical machine learning models and ensemble learning models alike, coupled with parallel processing techniques to expedite the computation processes. An optimized weighting algorithm is employed to ensure that models contributing most effectively to the task at hand are prioritized, thereby improving the robustness of the final decision. Experimental evaluations demonstrate that the proposed method outperforms conventional ensemble approaches in terms of both speed and accuracy, particularly in distributed computing environments. 
Currently, it’s difficult to efficiently combine multiple machine learning models to improve decision-making accuracy and performance in scenarios where data is distributed or computational resources are limited, in a timely efficient manner. Traditional ensemble methods like Random Forests or Ada Boosting rely on training and aggregating multiple models, which can be computationally expensive and difficult to scale in distributed systems or with large datasets. Furthermore, existing methods often lack robustness in selecting the best-performing models in heterogeneous environments, where different models may excel in different aspects of the task. But with the algorithm introduced in this study, its now possible o assigns appropriate weights to models in the ensemble based on their performance while they are running, ensuring that the most reliable models have a greater influence on the final decision. The study also conducted a comprehensive evaluation by comparing the proposed framework with traditional methods to demonstrate its advantages in terms of scalability, efficiency, and accuracy. Finally, testing the proposed ensemble framework by measuring its performance in terms of accuracy, speed, and market user satisfaction.
The study is contributing to knowledge through the introduction of, a parallelized execution framework that significantly reduces computational time while maintaining or improving model performance, a dynamic model selection mechanism that adapts to real-time data variations, optimizing ensemble composition and a statistically validated voting mechanism that enhances accuracy through performance-based weighting. These contributions to the growing body of research on scalable machine learning and offers a practical solution for real-world applications where computational resources are limited for big data. The theory advances the field of machine learning and artificial intelligence by providing a scalable, efficient, and robust alternative to traditional ensemble methods, making it particularly well-suited for modern distributed computing challenges.

Hypotheses
· Null hypothesis 1: The time (T) complexity T(n, P) for model execution increases with an increase in the number of processing units P when the problem size is n as when using an optimized parallelled voting mechanism (OPVM), compared to serial voting mechanisms [2].
· Null hypothesis 2: Models selected using an optimized parallel voting mechanism (OPVM) will not have a statistically significant higher Matthews correlation coefficient (MCC) compared to traditional static models preselected voting mechanisms [3] given varying sample sizes.
RELATED WORKS
From the various previous studies reviewed, its evident that most focused on various optimization strategies, including weighted voting mechanisms, probabilistic model selection and hierarchical learning approaches. However, these methods do not explicitly incorporate parallel execution within the model selection and voting process. OPEL builds upon these foundations by integrating parallelization directly into model execution, selection, and voting, making it particularly well-suited for distributed computing environments.
Amdahl's work is critical for this current work, particularly Amdahl's Law (1967), which provides a fundamental understanding of the limitations of parallel processing by quantifying the maximum speedup achievable when only part of a task is parallelized while considering that some parts of the task must remain serial. This law underscores the inherent limitations in achieving significant performance gains through parallelization, particularly when a substantial portion of a task cannot be parallelized has to parallel model aggregation in machine learning apply these scalability principles to enhance model performance, particularly in handling large datasets and complex models [4][5][6]. Amdahl's law is critical in understanding the limits of parallelization although it does not extend to machine learning, it still provides critical insights into the limits of parallel computation. These limitations are extended in this study through applications to specific context of machine learning model selection and weighted voting mechanisms.
Closely related to this study, is the work by Agarwal and Chowdary (2021). The authors proposed an ensemble learning-based adaptive model for automatic hate speech detection that aims to improve cross-dataset generalization and their expert model addressed the strong user bias present in their annotated datasets. The experiments they conducted demonstrated the effectiveness of the usage of their proposed model on recent topics such as COVID-19 and the US presidential elections. Their model used ensemble-based adaptive classifier, A-Stacking, utilizing multiple base classifiers in combination with a meta-classifier, employing Support Vector Machine Classifier (SVM), Gradient Boosting Decision Trees (GBDT), Multi-Layer Perceptron Classifier (MLP), kNeighbors Classifier, ELM classifier15, along with Logistic Regression for the meta-classifier and to perform clustering, they utilized the SimpleKMeans clustering algorithm with varying values [7]. However, this method lacks the robustness and the pricicple executions addressed by this study.
Agarwal et al. (2023), accelerate the automatic detection of hate speech on social media platforms (SMPs), by implementing parallelizing bagging, A-stacking, and random sub-space algorithms. They evaluated the serial and parallel versions of the machine learning models on standard high-dimensional hate speech datasets and the parallel models demonstrated a substantial increase in speed with remarkable efficiency, affirming that the proposed models are well-suited for this particular application. They observed that parallelizing the algorithms does not compromise the accuracy compared to running machine learning ensemble algorithms sequentially on a single machine [8]
[bookmark: _Hlk175824091]Aldjanabi et al. (2021), covered the development of a classification system that identified offensive and hate speech using a multi-task learning (MTL) model built on a pre-trained Arabic language model. Through training the MTL model on the same task using different cross-corpora representing variations in offensive and hate context. The results indicated that the developed MTL model exhibited significant performance improvements compared to existing models in the literature, outperforming them on three out of four evaluated datasets for Arabic offensive and hate speech detection tasks. The findings demonstrate the superior classification performance of the developed MTL model in comparison to previously proposed models [9].
Kapil and Ekbal (2020), introduced a deep multi-task learning (MTL) framework, which aimed at enhancing the performance of individual classification tasks by leveraging valuable information from multiple related tasks. The proposed MTL model adopted a shared-private scheme, where shared and private layers were assigned to capture shared features and task-specific features from five classification tasks. Through experiments conducted on five datasets, the Shared-Private Multi-Task Learning (SP-MTL) framework leveraged the benefits of multiple related tasks and demonstrated promising results in terms of macro-F1 and weighted-F1 performance metrics [10].
Dietterich and Thomas (2000) provide an overview of ensemble learning and bagging predictors methods in the paper titled ‘Ensemble Methods in Machine Learning’. They emphasized how combining multiple models can improve overall prediction accuracy. The paper discusses various ensemble techniques, including bagging, boosting, and stacking [3]. Similar principles were proposed by Breiman (1996), where the author introduced the concept of bagging (Bootstrap Aggregating), where multiple versions of a predictor are trained on different subsets of the data, and their predictions are averaged to improve robustness [11]. Dietterich (2000), describes the Bagging (Bootstrap Aggregating) method, where multiple versions of a predictor are trained on different samples of the training set and combined by averaging their predictions [3]. 
While Hansen and Salamon (1990), proposed creating ensembles of neural networks to improve generalization by averaging predictions from multiple independently trained networks [12]. Neural network ensembles are well known for significantly improving model accuracy and reducing overfitting, particularly in complex tasks like image recognition. However, as the proposed method involves training multiple neural networks independently, this increases computational costs and may require substantial computational resources, particularly for deep networks.
AdaBoost Algorithm is among the other models used among the multiple models, which Freund and Schapire (1997), studied. In their work, they introduced the AdaBoost algorithm, which improves weak learners by focusing on the instances that previous models struggled to classify. The emphasis was on iteratively adjusting weights to improve overall accuracy [13] AdaBoost is an ensemble technique that combines weak classifiers to create a strong classifier by iteratively adjusting the weights of incorrectly classified examples, thereby reducing bias and variance, and significantly improving the performance of weak classifiers [13]. 
Breiman (2001), introduced Random Forests, an ensemble learning method that builds multiple decision trees and merges them to get a more accurate and stable prediction (Breiman 2001). His work is similar to the one proposed in this paper, as it merges multiple decision trees for more stable predictions. Unlike Breiman’s Random Forest algorithm, which involves creating an ensemble of decision trees, each trained on a random subset of the data, with the final prediction based on the majority vote of the trees [14] it does not incorporate parallel computation efficiency nor incorporate a weighted voting system that is optimized for parallel computation. 
Teh et al., (2006), introduce hierarchical models that allow for sharing statistical strength across different groups of data. The authors leverage Bayesian nonparametrics to build a flexible model that can be parallelized across clusters [15]. The method allowed for a more nuanced model that could capture complex dependencies within the data, and parallelization improves scalability.
Cortes and Vapnik (1995), developed Support Vector Machines (SVMs) as a method for finding the optimal hyperplane that separates data into different classes, maximizing the margin between classes [16]. Zanghirati and Zanni (2003), explore the parallelization of SVM training using quadratic programming, significantly reducing the computational time for large datasets[17] [18]. The study used a parallel decomposition technique to solve the quadratic programming problem in SVM training, distributing the workload across multiple processors[17]. Their technique significantly reduced training time for large datasets by parallelizing the optimization process. Their working principle is similar to the one proposed in this paper. But instead of parallelizing SVMs alone, the current method integrates a voting mechanism and equally focuses on a more generalized framework applicable across different models.
Dean et al. (2012) present a method for distributed training of deep neural networks through model parallelism, where different segments of a neural network are distributed across multiple machines. This approach enables the handling of extremely large datasets and models, facilitating the training of deep networks with billions of parameters. Their study demonstrated the scalability of deep learning systems and laid the groundwork for practica[19].
Chu et al. (2006), introduced the MapReduce framework, using parameter server architecture to efficiently scale distributed machine learning models across multiple servers, optimizing both storage and computation, allowing for large-scale machine learning tasks to be handled more effectively in a distributed environment. Their framework utilized data distribution and parallel computation, making it a foundational method for processing vast datasets in a distributed manner [20]. Similarly, Li et al (2014), used parameter server architecture to efficiently scale distributed machine learning models across multiple servers, optimizing both storage and computation. This facilitated the parallel training of machine learning models [1]. This approach significantly improves the scalability of machine learning training by efficiently handling parameter updates across distributed systems but introduces latency and synchronization issues, particularly in highly distributed systems with non-uniform communication speeds.
Cole and Vishkin (1986), proposed a ‘Theoretical Parallel Model’, the development of deterministic algorithms for parallel computation, including techniques for reducing contention and improving efficiency [21]. Cole and Vishkin (1986) developed deterministic algorithms for parallel computation, emphasizing techniques to reduce contention among processors and enhance overall computational efficiency. Their work is instrumental in the creation of parallel algorithms that operate under strict deterministic conditions, ensuring consistent and predictable performance across different computational tasks [21]. While Cole and Vishkin (1986), provided essential insights into the development of deterministic parallel algorithms, it does not extend these principles to machine learning or model aggregation. 
Graham (1966), worked on load-balancing issues in parallel computation, addressing the inefficiencies that arise when tasks are not evenly distributed across processors. The primary focus is on ensuring that each processor in a parallel computing environment is utilized effectively to avoid bottlenecks that can occur when tasks are not evenly distributed [22]. His work was further amplified by Brent (1974),  who offered a fundamental analysis of the efficiency of parallel algorithms, concentrating on minimizing communication overhead and ensuring effective load balancing across processors, and established key principles for optimizing parallel computation, particularly by reducing the time complexity of parallel algorithms and ensuring that tasks are distributed in a manner that maximizes processor utilization [23]. Karp and Ramachandran (1990), further comprehensively examined parallel algorithms, particularly within the context of shared-memory architecture[24].
Shalev-Shwartz et al. (2011), introduced the Pegasos algorithm, a stochastic sub-gradient descent method for efficiently training support vector machines (SVMs). The algorithm was particularly notable for its scalability, making it well-suited for handling large datasets. The Pegasos algorithm significantly reduces the computational complexity of SVM training, providing a more practical solution for real-world, large-scale machine-learning tasks [5]
Zhang et al. (2013), proposed a divide-and-conquer approach for scaling kernel ridge regression on large datasets by splitting data into smaller subsets and processing subsets independently in parallel before combining the results solving the problem on each subset, and then combining the results [25]. According to Zhang et al. (2013), for finite-rank kernels and Gaussian kernels, their theory ensured that the number of processors, denoted as m, can increase almost linearly, for Sobolev spaces, the number of processors can grow polynomially with N. The partitioning led to a substantial reduction in computation time and cost [25].
Elkan (1997), study titled "Boosting and Naive Bayesian Learning" challenges the assumption that boosting, a technique primarily known for improving decision tree models, can indeed enhance the performance of Naive Bayes by focusing on difficult-to-classify instances, leading to improved overall accuracy. Elkan (1997), argues that boosting applied to naive Bayesian classifiers yields combination classifiers that are representationally equivalent to standard feedforward multilayer perceptrons. However, this study did not explore boosting in a distributed or parallel computing context, focusing instead on the theoretical and practical implications within a single-machine environment [26].
Kumar and Gupta's (1994) study provides a comprehensive analysis of the scalability of parallel algorithms across various computing architectures, focusing on shared memory, distributed memory, and hybrid systems. Their work emphasizes the importance of load balancing and minimizing communication overhead to optimize scalability, offering a strong theoretical foundation for parallel computation. However, the study lacks a focus on machine learning-specific applications, such as model selection and ensemble voting, and some of the discussed architectures are now outdated. In contrast, modern approaches to parallel model aggregation in machine learning apply these scalability principles to enhance model performance, particularly in handling large datasets and complex models [4]. While Kumar and Gupta’s work is foundational, contemporary methods extend these concepts to address the unique challenges of machine learning in distributed environments.
This proposed framework diverges from all the existing works which were reviewed, in its approach to various model integration, optimization, and parallelization. Traditional ensemble methods use fixed voting schemes, while the proposed framework introduces a dynamic weighted voting mechanism based on real-time model performance metrics. This allows for adaptation to changing data distributions and resource availability, improving robustness and performance. The framework also leverages parallel and distributed computing to optimize the integration and combination of multiple models, minimizing communication overhead and ensuring load balancing. Most related works focus on either ensemble learning or parallel computing separately, while the proposed framework uniquely integrates a weighted voting mechanism into a parallel computing context. It offers a generalized framework applicable to many machine learning models, utilizing both parallel processing and ensemble techniques. The papers also draw on established theories like Amdahl's Law and Brent's theorem to provide new insights into the trade-offs between processor count, overhead, and model accuracy in parallel environments.
FRAMEWORK DEVELOPMENT
The study employs a combination of theoretical modelling, algorithm development, experimental simulations, and comparative analysis to develop and validate the proposed parallelized multi-mode ensemble learning framework, OPEL.
Theoretical Modeling
The initial phase of the framework development defines optimized voting mechanisms for dynamic selection of top-performing models. It involves developing the theoretical underpinnings of the parallelized ensemble framework. This includes formulating mathematical models to describe the selection and weighting of models within the ensemble, as well as the parallel processing strategies. 
Algorithm Development
Based on the theoretical models, algorithms are developed for model selection, weighting, and parallel processing. The model selection algorithm identifies the top-performing models from a pool of candidates using metrics like accuracy, precision, recall, the Matthews correlation coefficient also known as the phi-coefficient and the confusion matrix. The weighting algorithm then assigns a rank to each selected model based on its relative performance, through an integrated consensus-based model selection approach to refines the voting mechanisms based on weighted confidence levels. Finally, a parallel processing techniques is incorporated to optimize the computational efficiency of the framework at every relevant stage and process, from the initial.
Experimental Simulations
The algorithms developed were evaluated on real-world datasets, through a simulation environment to evaluate the model accuracy and computational efficiency and performance. Metrics such as computation time and accuracy were recorded. The experiments were conducted using a high-performance computing platform with a memory of 32 gigabytes and an Intel Core i9-10980HK processor, leveraging parallel functions from the ‘System Threading Tasks’ dot-core library. Datasets used for simulations included real-world datasets collected from the market used in [27] and [28]. Benchmarks of the OPEL against traditional ensemble learning techniques were recorded
Comparative Analysis
The results from the experimental simulations are compared with the performance of traditional methods and traditional ensembles using iterations of from 100 and tolerances of 1e-4, and with varying training sample sizes. The models used include the probabilistic coordinate descent, sequential minimal optimization with polynomial kernel, iterative reweighted least squares with logistic regression method FanChenLin support vector regression with Gaussian kernel, linear regression newton method, AdaBoost with decision stump and threshold learning method, AdaBoost with logistic regression methods and iterative reweighted least squares with logistic regression method, and AdaBoost with Decision Tree with C45 learning. Key performance indicators (KPIs) like accuracy and processing time are compared across different methods.
Statistical Validation
[bookmark: _Hlk180601503]A paired t-tests was conducted to determine the statistical significance of improvements in computation speed and accuracy of OPEL against traditional ensemble learning techniques.
A dataset, which included historical weather data, encompassing low and high temperatures, alongside local market inventory levels, supply records, and sales records were utilized [27], [28], coupled with the ‘hotel booking cancellation prediction dataset [18]. Using descriptive statistics and statistical t-tests of the collected data, the researchers could determine the significance of key performance indicators associated with the proposed framework. The tests provided statistical evidence to support or refute the impact of the framework on key indicators, improved performance and results reliability, and with the help of a forecasting application system for which a total of 293 stakeholders participated.
METHODOLOGY
Parallelized Model Execution (PME)
This PME is a computational approach where multiple machine learning models are trained and evaluated concurrently on separate processing units on the same dataset or input to obtain results in parallel rather than sequentially. This parallelisation reduces the overall computational time while maintaining or improving model performance. Parallel execution concepts are rooted in the broader field of parallel computing [2], [29].
Given  models  and  processing units , PME distributes the computation of each model across the processors. The time complexity  for training and evaluation is reduced from  (sequential execution) to:

where  represents the overhead of parallelisation, including communication and synchronization costs [29], [30].
The results are given as:

Where  represents the result of the models  applied to input t.
[bookmark: _Hlk175034440]The equation herein

is used to describe the parallel running time of an algorithm when executed on P processors [31].
Components of the Equation:
i.  , represents the total time required to run an algorithm on P processors when the problem size is n.
ii. : is the time it takes to run the algorithm sequentially (on a single processor) for a problem size n. Dividing  by P suggests that the algorithm can be broken down into P parallel tasks, each of which takes the same ratio of the divided amount of time as compared to the sequential algorithm. However, this assumes ideal conditions, such as perfect parallelism without any overhead.
iii. : represents the overhead associated with parallelism. It accounts for factors like communication between processors, synchronization, and load balancing.
iv. ​ : indicates that the problem is being divided across P processors, and each processor handles a portion  of the workload [31].
: comes from the communication cost, as in many parallel algorithms, communication overhead increases logarithmically with the number of processors.
Consensus-Based Model Selection (CMS)
[bookmark: _Hlk180601895]After executing models in parallel, the Theory of Parallelized Model Voting and Selection proposes selecting the top-performing models based on a voting mechanism where the results are evaluated for consistency and accuracy. CMS is an ensemble learning technique that selects the best-top-performing models given by the formula below, based on a voting mechanism.

The selection process considers not only the individual performance metrics but also the agreement among models. Where,  represents the most frequently best-performing models, as determined by a voting mechanism across all parallel executions.[3]
Let ​ be the model with a performance metric . The final decision  is made by considering the consensus among the models:

where  is the weight of the  model, and is a similarity function between models ​ and ​ [3], [32].
Argmax [33]: This function returns the index  of the model ​​ that maximizes the expression that follows it. In other words, it finds the model ​​ for which the sum of   is the largest and . The model selection is done from a set of  models, where  ranges from 1 to n.
i. ​: The summation is over m models that are considered for consensus. The summation aggregates the weighted similarity between the model  and each other model ​.
ii. ​: represents the weight assigned to the j-th model. This weight could be based on the model’s performance, reliability, or another criterion.
iii. : is a similarity function that measures how similar the models ​ and are. It could be based on performance metrics, predictions, or any other feature that can quantify similarity.
The equation is used to select the best model ​ from a set of n models by evaluating which models has the highest total weighted similarity with the other models in the set. Essentially, it finds the models that are most in agreement with the others (according to the similarity function δ), weighted by the importance of each model. And D is the decision, the selected model indexes. The models with the highest cumulative weighted similarity across all other models is chosen as the best or most representative model.
With several machine learning models predicting the same outcome. Each has a different performance, even though they may produce similar results. The equation helps determine which models are the most "trusted" based on how its predictions align with the other models, considering the reliability (weights) of each model's performance, to be selected as the final model. This is particularly useful in ensemble learning, where combining the outputs of multiple models often leads to better performance than using a single model.
Optimized Parallel Voting Mechanism (OPVM)
[bookmark: _Hlk180602234][bookmark: _Hlk180602359]OPVM is an enhancement of traditional voting mechanisms where the weight of each model's vote is adjusted dynamically based on its performance and the confidence level of its predictions. This method of aggregating the outputs of parallel models to determine the most reliable prediction is based on majority voting, weighted voting, or other aggregation techniques. 

Where  are weights assigned to each model's result based on prior performance, and  is the optimized prediction derived from the weighted sum of the models' outputs.
For a set of models ​ and their predictions ​, the weighted vote is computed as:

where ​ is the confidence of model ​​ [12], [34]

Time Complexity Reduction via Parallel Execution (TCRPE)
The theory predicts that the overall time complexity of model selection can be reduced by executing multiple models in parallel, as opposed to sequentially, thus achieving faster convergence to the best model. TCRPE refers to the reduction in computational time achieved by leveraging parallel processing in training and evaluating machine learning models. The theory quantifies the trade-off between the number of processing units and the speedup in execution, from the principle of
 ), 
where  the time taken in parallel execution, compared to
  
for sequential execution.
[bookmark: _Hlk176782734]The speedup S achieved by parallel execution is defined as,
 ​, 
where is the time taken in a sequential process and  is the time taken using  processing units. Ideally,  approaches , but in practice, it is limited by overheads and the non-parallelizable fraction of the task, as described by Amdahl's Law:
​
where  is the fraction of the task that is inherently serial [2], [35].
Time Complexity Reduction via Parallel Execution (TCRPE)
This theory posits that by combining parallelized model execution with optimized voting mechanisms, it is possible to achieve superior model selection and prediction accuracy in ensemble learning. The theory establishes that:
1. The consensus-based selection ensures that the chosen models are robust and reliable, potentially improving the overall accuracy of AI systems.
2. By formalizing parallel execution and voting, the theory leads to significant gains in computational efficiency, particularly in large-scale AI applications.
3. Effective parallelization of model training and evaluation significantly reduces computation time, allowing for the exploration of more complex models within a feasible timeframe [29], [30].
4. It extends ensemble learning by integrating parallelism directly into the all phases, allowing for more efficient and accurate model selection. By dynamically adjusting the voting mechanism based on model performance and confidence, the theory ensures that the ensemble’s decision-making process is not only faster but also more reliable [12], [34].
5. This theory provides a framework for selecting the best machine learning models in scenarios where multiple models need to be evaluated rapidly. A consensus-based approach, refined by the OPVM, leads to the selection of the most robust models, thereby improving the overall accuracy of predictions [3], [32].
6. The theory is applicable in environments where computational resources allow for parallel execution, such as in distributed computing or cloud-based AI systems.
The theory predicts that model selection through OPEL is faster, and have higher Matthews Correlation Coefficient (MCC) and lower error rates as compared to those selection by traditional ensemble methods.
Algorithm Development
1. Initialize Data:
· Prepare input data containing independent variables
· Prepare output data containing dependent variables
· Prepare a test set for prediction.
2. Set Parameters:
· Set random generator seed for reproducibility.
· Define convergence parameters like iterations and tolerance.
3. Model Training:
· Initialize multiple machine learning models with different learning algorithms
· Train each model using the input data and output data.
4. Model Evaluation:
· Use each trained model to compute predictions for the test set.
· Calculate evaluation metrics for each model using confusion matrices and Matthews Correlation Coefficients.
5. Determine Top-best Models:
· Identify the top-best models based on the Matthews Correlation Coefficient.
· Evaluate the performance of the best models by comparing them against the test set.
6. Output Results:
· Display the results of each model, including the prediction status, error rate, and correlation coefficient.
· Identify and display the indices of the best-performing models.
RESULTS
The training time for the following machine learning models, Probabilistic Coordinate Descent (PCD), Iterative Reweighted Least Squares (IRLS), Sequential Minimal Optimization with Polynomial kennel (SMOP), Threshold Learning (THL), AdaBoost with Decision Stump (AdBDS), AdaBoost with Logistic Regression (AdBRL) and AdaBoost with Decision Tree (AdBDT), and the total training time for the serial processing given by the formula,  and the parallel processing, given by the formula ), on samples of size 35000 and 32500 is given in Table 1.
Table 1: Different Model Runtime
	Sample (n)
	32500
	35000

	 
	Serial
	Parallel
	Serial
	Parallel

	PCD
	142
	387
	178
	268

	IRLS
	197
	495
	182
	291

	SMOP
	84759
	84638
	48374
	49070

	THL
	15
	79
	17
	37

	AdBDS
	937
	1779
	411
	893

	AdBRL
	607
	1264
	627
	1151

	AdBDT
	3176
	3867
	3572
	4009

	Total
	89833
	84638
	53361
	49070


Achieving the following cumulative total serial and parallel processing time in milliseconds, taken to run samples of varying sizes (n) using serial computation and  parallel computation runtime, as shown in Table 2, with their total speedups.
Table 2: Serial and Parallel Computation Runtime
	 
	Runtime(ms)

	Sample (n)
	Serial
	Paralleled
	SpeedUp

	35000
	60834
	55226
	1.10155

	32500
	100880
	95243
	1.05919

	30000
	89143
	84894
	1.05005

	27500
	56838
	55008
	1.03327

	25000
	51494
	49402
	1.04235

	22500
	33307
	31150
	1.06925

	20000
	32455
	29777
	1.08994

	17500
	33776
	31685
	1.06599

	15000
	31638
	30387
	1.04117

	12500
	14694
	13368
	1.09919

	10000
	11410
	10345
	1.10295

	7500
	6627
	6264
	1.05795

	5000
	4089
	3593
	1.13805

	2500
	1678
	1212
	1.38449

	50
	341
	261
	1.30651


Shown graphically in figure 1, with their trend line.


Figure 1: Runtime in milliseconds
Following that, was a voting mechanism that selects the top best-performing models dynamically, given by the formula, , the final decision , made by considering the consensus among the most performing models, given by
 , 
for the selected model indexes, using , which is the weight assigned to the j-th model based on the model’s performance, using the performance metrics for getting the similarity  of models ​ and . The results as shown in Table 3, of the models dynamic selected using the index  based on the Matthews Correlation Coefficient (MCC) and lower error rates, for each varying sample sizes (n).
Table 3: Model Indeces and Performances
	Samples
	Index
	Model
	Error
	Coefficient

	35000
	7
	AdBDT
	0.2354
	0.42935

	
	0
	PCD
	0.23828
	0.42246

	32500
	7
	AdBDT
	0.23529
	0.43115

	
	5
	AdBDS
	0.23942
	0.42392

	30000
	7
	AdBDT
	0.23517
	0.43093

	
	0
	PCD
	0.23723
	0.42608

	27500
	7
	AdBDT
	0.23585
	0.42975

	
	2
	SMOP
	0.23484
	0.42973

	25000
	7
	AdBDT
	0.23516
	0.43008

	
	5
	AdBDS
	0.23784
	0.42616

	22500
	2
	SMOP
	0.2324
	0.43266

	
	7
	AdBDT
	0.23378
	0.43165

	20000
	7
	AdBDT
	0.23385
	0.43201

	
	5
	AdBDS
	0.2359
	0.42794

	17500
	7
	AdBDT
	0.23331
	0.43394

	
	5
	AdBDS
	0.23697
	0.42889

	15000
	7
	AdBDT
	0.23287
	0.43282

	
	2
	SMOP
	0.23373
	0.42867

	12500
	7
	AdBDT
	0.23128
	0.43657

	
	5
	AdBDS
	0.23792
	0.42459

	10000
	7
	AdBDT
	0.2315
	0.43644

	
	2
	SMOP
	0.2314
	0.43438

	7500
	7
	AdBDT
	0.23093
	0.43648

	
	2
	SMOP
	0.23093
	0.43446

	5000
	7
	AdBDT
	0.2328
	0.42127

	
	0
	PCD
	0.2354
	0.41792

	2500
	2
	SMOP
	0.2348
	0.42186

	
	7
	AdBDT
	0.25
	0.39789

	50
	5
	AdBDS
	0.06
	0.85538

	
	7
	AdBDT
	0.18
	0.54554



In Table 3, the acronyms, PCD is Probabilistic Coordinate Descent, IRLS is Iterative Reweighted Least Squares, SMOP is Sequential Minimal Optimization with Polynomial kennel, THL is Threshold Learning, AdBDS is AdaBoost with Decision Stump, AdBRL is AdaBoost with Logistic Regression and AdBDT is AdaBoost with Decision Tree, in this context.
For statistical validation of the performance between serial and parallelised computation runtimes, it was done using a paired sample t-test, with the results shown in Table 4 and Table 5, using the software Minitab-21.4 for the Serial and Paralleled Computational runtime with data from Table 2.
Table 4: Descriptive Statistics for the Population of Serial and Parallel Computation
	Descriptive Statistics

	Sample
	N
	Mean
	StDev
	SE Mean

	Serial
	15
	35280
	31339
	8092

	Paralleled
	15
	33188
	29757
	7683


Table 5:µ_difference: population mean of (Serial - Paralleled)
	Estimation for Paired Difference
	Test

	Mean
	StDev
	SE Mean
	95% CI for μ_difference
	T-Value
	P-Value

	2093
	1784
	461
	(1104, 3081)
	4.54
	0.000



DISCUSSION
The experimental results confirm that OPEL significantly reduces computational time while maintaining and improving accuracy in some instances as compared to traditional ensemble methods. The parallel execution of models led to a measurable speedup, as demonstrated in runtime comparisons across different sample sizes. Additionally, the consensus-based model selection and optimized voting mechanism improved classification performance, particularly in heterogeneous datasets.
Statistical analysis using a paired t-test validated the effectiveness of OPEL, with p-values confirming significant improvements over conventional approaches. Performance trends indicate that as dataset size increases, the advantages of parallel execution become more pronounced, further supporting the scalability of OPEL in real-world applications.
From Table 3, the top-two-performing models were selected using  , varied with varying sample sizes (n), as the model’s Matthews Correlation Coefficient (MCC) was varying. Which was used for selecting the model indexes. This proposed model selection mechanism effectively identified the top-performing models from a diverse set of candidates, leading to improved accuracy and robustness in the ensemble's predictions. The weighting algorithm ensured that models with higher reliability had a greater influence on the final decision, further enhancing the overall performance.
The integration of parallel processing techniques reduced the computation time compared to traditional ensemble methods. The framework demonstrated marginal performance, handling larger datasets and more complex models faster, showing the formula ), computes faster than using .  This resulted in speedups, ​, achieved by parallel execution from serial execution, especially for smaller samples.
The proposed framework consistently outperformed traditional ensemble methods in terms of accuracy and computational efficiency. The statistical validation confirmed that these improvements were significant, from the paired sample t-test, where the t-value was 4.5 and the p-value was 0.00 indicating that there is a statistically significant difference between the paired samples being tested. A t-value of 4.5 is relatively high, suggesting that the difference between the means is much larger than what would be expected due to random variation alone, implying that it is highly unlikely that this difference occurred by chance. Therefore, there is strong evidence to suggest that the treatment or condition under comparison had a meaningful effect.
CONCLUSION
This study introduces Optimized Parallelized Ensemble Learning (OPEL), a novel approach to enhancing ensemble learning through parallel execution, dynamic model selection, and optimized voting. The experimental results confirm that OPEL achieves significant reductions in computational time and improved model accuracy compared to conventional methods. Statistical validation further supports the effectiveness of the framework, demonstrating its suitability for large-scale machine learning applications.
The Theory of Optimized Parallelized Ensemble Learning (OPEL) introduced a structured framework to enhance the efficiency and accuracy of ensemble learning by leveraging parallelization and optimized dynamic voting. This comprehensive approach, which integrates theoretical development with empirical validation, ensures the framework is both scientifically rigorous and practically relevant, addressing key challenges in contemporary ensemble learning. The study demonstrated that the proposed framework—incorporating dynamic model selection, optimized weighting, and parallel processing—offers substantial advantages over traditional methods, particularly in distributed and resource-constrained environments. The approach improves decision-making accuracy and enhances computational efficiency, making it a valuable tool for large-scale machine-learning applications. It aligns with established principles in parallel computing and ensemble methods while offering a novel platform for future research and practical application in machine learning. Building upon existing work in ensemble learning, parallel processing, and distributed systems, OPEL introduces significant innovations in dynamic weighted voting and real-time performance optimization. These advancements enable the framework to achieve superior scalability, flexibility, and robustness compared to traditional approaches.
CONTRIBUTIONS TO THE BODY OF KNOWLEDGE
While the proposed theory shares some foundational ideas with the reviewed works, it diverges significantly in its approach to model integration, optimization, and parallelization. Unlike traditional methods such as Bayesian Model Averaging (BMA) or ensemble techniques like AdaBoost and Random Forests, which typically rely on a single type of base model (e.g., decision trees) and employ static or probabilistic voting schemes (e.g., majority voting or fixed-weighted voting), the proposed framework introduces a dynamic weighted voting mechanism. This mechanism adjusts weights in real time based on performance metrics such as accuracy and precision, enabling the system to adapt to evolving data distributions and resource availability, thereby enhancing overall robustness and performance.
Additionally, the proposed theory leverages parallel and distributed computing not only to scale individual models but also to enhance model training, combination, and voting mechanisms. It optimizes the integration of multiple models by minimising communication overhead, dynamically allocating resources, and ensuring load balancing across different computational nodes. Unlike most traditional parallel processing methods, which focus primarily on scaling individual models (e.g., parallel neural networks or distributed XGBoost), this framework addresses scalability at a broader level.
Designed to be highly scalable, the framework can handle large datasets and complex models across distributed environments. It is also flexible, allowing for the dynamic addition or removal of models based on performance metrics and available computational resources. Unlike existing approaches in federated learning or distributed deep learning, which often concentrate on specific scalability challenges related to the training of individual models, the proposed framework addresses scalability in both model integration and optimization. This ensures that the system can efficiently scale across both data and computational resources.
Future works and Recommendation
The OPEL framework shows promising results, however, a number of areas need further investigation:
· Future research could explore the power consumption of parallelized execution to optimize energy-efficient machine learning models as compared to classical methods
· Future research should explore alternative model selection strategies through the integration of reinforcement learning techniques on many machine learning frameworks model selection, for further enhance adaptability.
· Other researchers should consider applying OPEL in decentralized federated learning environments, could help improve model aggregation across multiple nodes.
· And finally, this work was not extended to deep learning nor acritical neural networks. Extending the framework to these models could provide additional insights into its scalability and robustness for application to other AI areas which could benefit from OPEL.
By addressing these challenges, OPEL can further advance the field of scalable and efficient machine learning, making it a valuable tool for real-world AI applications.
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Sheet1

		Sample (n)		35000		32500		30000		27500		25000		22500		20000		17500		15000		12500		10000		7500		5000		2500		50

		Serial		False    with 0.06312472314500488        Error 0.2382857142857143        Coefficient 0.4224584004135937
False    with 0.06309356470053398        error 0.2382857142857143        Coefficient 0.4224584004135937
False    with -0.7104440191465178        error 0.2460857142857143        Coefficient 0.41201418497711323
False    with -1         error 0.23897142857142858       Coefficient 0.41795962459149105
False    with -1         error 0.23794285714285715       Coefficient 0.42125463572705246
False    with -1         error 0.2382857142857143        Coefficient 0.4224584004135937
False    with 0  error 0.2354    Coefficient 0.42934825435508744
Best models Indece: 7 and 0
Best 2 voted QTYCo values: False
Mode QTYCo values: False
Time passed: 60834		False    with 0.06300932780694153        Error 0.23833846153846153       Coefficient 0.4236440771214914
False    with 0.06297820334093444        error 0.23833846153846153       Coefficient 0.4236552703846542
False    with -1.2121175586267803        error 0.24695384615384616       Coefficient 0.40646648783637473
False    with -1         error 0.24      Coefficient 0.4170349721920557
False    with -1         error 0.2394153846153846        Coefficient 0.4239194559883684
False    with -1         error 0.23833846153846153       Coefficient 0.4236552703846542
False    with 0  error 0.2352923076923077        Coefficient 0.4311495972842171
Best models Indece: 7 and 5
Best 2 voted QTYCo values: False
Mode QTYCo values: False
Time passed: 100880		False    with 0.06347299398422501        Error 0.23723333333333332       Coefficient 0.4260763776935924
False    with 0.06344161361391185        error 0.23723333333333332       Coefficient 0.4260763776935924
False    with -1.4793576332622913        error 0.25803333333333334       Coefficient 0.4045967766275229
False    with -1         error 0.23816666666666667       Coefficient 0.42112377558888237
False    with -1         error 0.23916666666666667       Coefficient 0.42354615971790865
False    with -1         error 0.23723333333333332       Coefficient 0.4260763776935924
False    with 0  error 0.23516666666666666       Coefficient 0.4309339560091992
Best models Indece: 7 and 0
Best 2 voted QTYCo values: False
Mode QTYCo values: False
Time passed: 89143		False    with 0.06389432845687261        Error 0.2378909090909091        Coefficient 0.42485734615011866
False    with 0.0638622596681029         error 0.23792727272727274       Coefficient 0.4247694668023329
False    with -0.8153004342223295        error 0.23483636363636365       Coefficient 0.4297331999776002
False    with -1         error 0.23992727272727274       Coefficient 0.41743284056168545
False    with -1         error 0.23963636363636365       Coefficient 0.4234516278633764
False    with -1         error 0.23792727272727274       Coefficient 0.4247694668023329
False    with 0  error 0.23585454545454546       Coefficient 0.42974733208123994
Best models Indece: 7 and 2
Best 2 voted QTYCo values: False
Mode QTYCo values: False
Time passed: 56838		False    with 0.06364568587546379        Error 0.2374    Coefficient 0.4247718864863728
False    with 0.06361343100827808        error 0.2374    Coefficient 0.4247718864863728
False    with -0.6733785977872391        error 0.25188   Coefficient 0.40211609507430957
False    with -1         error 0.23832   Coefficient 0.41986439569694467
False    with -1         error 0.23784   Coefficient 0.4261575484201853
False    with -1         error 0.2374    Coefficient 0.4247718864863728
False    with 0  error 0.23516   Coefficient 0.43007531781467856
Best models Indece: 7 and 5
Best 2 voted QTYCo values: False
Mode QTYCo values: False
Time passed: 51494		False    with 0.0629832668735319         Error 0.2358222222222222        Coefficient 0.42713078460263676
False    with 0.06295154835978807        error 0.2359111111111111        Coefficient 0.4269151292116243
False    with -1.0854503765640866        error 0.2324    Coefficient 0.4326624732230816
False    with -1         error 0.2376    Coefficient 0.42052557363474363
False    with -1         error 0.23604444444444445       Coefficient 0.4251176561131862
False    with -1         error 0.2359111111111111        Coefficient 0.4269151292116243
False    with 0  error 0.23377777777777778       Coefficient 0.43165094625939665
Best models Indece: 2 and 7
Best 2 voted QTYCo values: False
Mode QTYCo values: False
Time passed: 33307		False    with 0.06461494227167229        Error 0.23675   Coefficient 0.42496931165647023
False    with 0.06457657838525875        error 0.2368    Coefficient 0.42484778402689105
False    with -1.8147355362806046        error 0.2459    Coefficient 0.4104045126496121
False    with -1         error 0.2366    Coefficient 0.42322591987846025
False    with -1         error 0.2359    Coefficient 0.4279417038790148
False    with -1         error 0.2368    Coefficient 0.42484778402689105
False    with 0  error 0.23385   Coefficient 0.4320128190974164
Best models Indece: 7 and 5
Best 2 voted QTYCo values: False
Mode QTYCo values: False
Time passed: 32455		False    with 0.06493848652672272        Error 0.23577142857142858       Coefficient 0.4279112661017474
False    with 0.06490186597745684        error 0.23577142857142858       Coefficient 0.4279112661017474
False    with -1.8458888416444728        error 0.23514285714285715       Coefficient 0.4282179287550448
False    with -1         error 0.2376    Coefficient 0.42139635918866664
False    with -1         error 0.23697142857142858       Coefficient 0.4288898779849709
False    with -1         error 0.23577142857142858       Coefficient 0.4279112661017474
False    with 0  error 0.23331428571428572       Coefficient 0.4339367780855813
Best models Indece: 7 and 5
Best 2 voted QTYCo values: False
Mode QTYCo values: False
Time passed: 33776		False    with 0.06394508255461417        Error 0.23586666666666667       Coefficient 0.42575522436160873
False    with 0.06390931752438897        error 0.23586666666666667       Coefficient 0.42575522436160873
False    with -1.597400137112661         error 0.23373333333333332       Coefficient 0.4286719677841138
False    with -1         error 0.2358    Coefficient 0.42366992017289096
False    with -1         error 0.2344    Coefficient 0.4279086037613618
False    with -1         error 0.23586666666666667       Coefficient 0.42575522436160873
False    with 0  error 0.23286666666666667       Coefficient 0.4328175885757659
Best models Indece: 7 and 2
Best 2 voted QTYCo values: False
Mode QTYCo values: False
Time passed: 31638		False    with 0.06285255608253537        Error 0.2364    Coefficient 0.42434755771357524
False    with 0.0628193779247779         error 0.2364    Coefficient 0.42434755771357524
False    with -2.3934064157414063        error 0.2496    Coefficient 0.40338355484688226
False    with -1         error 0.23632   Coefficient 0.42287829793625636
False    with -1         error 0.23792   Coefficient 0.42458819876543236
False    with -1         error 0.2364    Coefficient 0.42434755771357524
False    with 0  error 0.23128   Coefficient 0.43657044500676717
Best models Indece: 7 and 5
Best 2 voted QTYCo values: False
Mode QTYCo values: False
Time passed: 14694		False    with 0.061324592507253736       Error 0.2366    Coefficient 0.4243456962530966
False    with 0.06090561807482831        error 0.237     Coefficient 0.42334130513945656
False    with -0.8799529466510597        error 0.2314    Coefficient 0.4343804809024431
False    with -1         error 0.2364    Coefficient 0.42256840696613285
False    with -1         error 0.234     Coefficient 0.43056955272123015
False    with -1         error 0.237     Coefficient 0.42334130513945656
False    with 0  error 0.2315    Coefficient 0.4364440951813778
Best models Indece: 7 and 2
Best 2 voted QTYCo values: False
Mode QTYCo values: False
Time passed: 11410		False    with 0.0602940268558205         Error 0.23666666666666666       Coefficient 0.42234001966820595
False    with 0.0598242028199681         error 0.236     Coefficient 0.42411416613948705
False    with -2.2866689365921293        error 0.23093333333333332       Coefficient 0.4344568258023687
False    with -1         error 0.23693333333333333       Coefficient 0.41988883456621795
False    with -1         error 0.23693333333333333       Coefficient 0.42302822722773
False    with -1         error 0.236     Coefficient 0.42411416613948705
False    with 0  error 0.23093333333333332       Coefficient 0.43648139696057175
Best models Indece: 7 and 2
Best 2 voted QTYCo values: False
Mode QTYCo values: False
Time passed: 6627		False    with 0.06000857517395303        Error 0.2354    Coefficient 0.4179206210256069
False    with 0.05959308618754471        error 0.2356    Coefficient 0.41742742219286183
False    with -1.488890753043486         error 0.2378    Coefficient 0.4074151699118814
False    with -1         error 0.2384    Coefficient 0.4094411010098343
False    with -1         error 0.237     Coefficient 0.4161968497115991
False    with -1         error 0.2356    Coefficient 0.41742742219286183
False    with 0  error 0.2328    Coefficient 0.4212671410523933
Best models Indece: 7 and 0
Best 2 voted QTYCo values: False
Mode QTYCo values: False
Time passed: 4089		False    with 0.060474000966569075       Error 0.2468    Coefficient 0.3922595948551759
False    with 0.059967386723818523       error 0.2468    Coefficient 0.3922595948551759
False    with -1.9179579572418972        error 0.2348    Coefficient 0.42185890200198783
False    with -1         error 0.2464    Coefficient 0.3916426097988587
False    with -1         error 0.2472    Coefficient 0.3949344162879661
False    with -1         error 0.2468    Coefficient 0.3922595948551759
False    with 0  error 0.25      Coefficient 0.39788533231223727
Best models Indece: 2 and 7
Best 2 voted QTYCo values: False
Mode QTYCo values: False
Time passed: 1678		True     with 0.5096631177306771         Error 0.3       Coefficient 0.1286978904175574
True     with 0.513382896056595  error 0.28      Coefficient 0.2182178902359924
False    with -0.0947981723898553        error 0.32      Coefficient 0.2671818298643447
False    with -1         error 0.24      Coefficient 0.3647582326206156
True     with 1  error 0.06      Coefficient 0.855377370495713
True     with 1  error 0.28      Coefficient 0.2182178902359924
True     with 0  error 0.18      Coefficient 0.545544725589981
Best models Indece: 5 and 7
Best 2 voted QTYCo values: True
Mode QTYCo values: True
Time passed: 341

		Paralleled		False    with 0.06312472314500488        Error 0.2382857142857143        Coefficient 0.4224584004135937
False    with 0.06309356470053398        error 0.2382857142857143        Coefficient 0.4224584004135937
False    with -0.7104440191465178        error 0.2460857142857143        Coefficient 0.41201418497711323
False    with -1         error 0.23897142857142858       Coefficient 0.41795962459149105
False    with -1         error 0.23794285714285715       Coefficient 0.42125463572705246
False    with -1         error 0.2382857142857143        Coefficient 0.4224584004135937
False    with 0  error 0.2354    Coefficient 0.42934825435508744
Best models Indece: 7 and 0
Best 2 voted QTYCo values: False
Mode QTYCo values: False
Time passed: 55226		False    with 0.06300932780694153        Error 0.23833846153846153       Coefficient 0.4236440771214914
False    with 0.06297820334093444        error 0.23833846153846153       Coefficient 0.4236552703846542
False    with -1.2121175586267803        error 0.24695384615384616       Coefficient 0.40646648783637473
False    with -1         error 0.24      Coefficient 0.4170349721920557
False    with -1         error 0.2394153846153846        Coefficient 0.4239194559883684
False    with -1         error 0.23833846153846153       Coefficient 0.4236552703846542
False    with 0  error 0.2352923076923077        Coefficient 0.4311495972842171
Best models Indece: 7 and 5
Best 2 voted QTYCo values: False
Mode QTYCo values: False
Time passed: 95243		False    with 0.06347299398422501        Error 0.23723333333333332       Coefficient 0.4260763776935924
False    with 0.06344161361391185        error 0.23723333333333332       Coefficient 0.4260763776935924
False    with -1.4793576332622913        error 0.25803333333333334       Coefficient 0.4045967766275229
False    with -1         error 0.23816666666666667       Coefficient 0.42112377558888237
False    with -1         error 0.23916666666666667       Coefficient 0.42354615971790865
False    with -1         error 0.23723333333333332       Coefficient 0.4260763776935924
False    with 0  error 0.23516666666666666       Coefficient 0.4309339560091992
Best models Indece: 7 and 0
Best 2 voted QTYCo values: False
Mode QTYCo values: False
Time passed: 84894		False    with 0.06389432845687261        Error 0.2378909090909091        Coefficient 0.42485734615011866
False    with 0.0638622596681029         error 0.23792727272727274       Coefficient 0.4247694668023329
False    with -0.8153004342223295        error 0.23483636363636365       Coefficient 0.4297331999776002
False    with -1         error 0.23992727272727274       Coefficient 0.41743284056168545
False    with -1         error 0.23963636363636365       Coefficient 0.4234516278633764
False    with -1         error 0.23792727272727274       Coefficient 0.4247694668023329
False    with 0  error 0.23585454545454546       Coefficient 0.42974733208123994
Best models Indece: 7 and 2
Best 2 voted QTYCo values: False
Mode QTYCo values: False
Time passed: 55008		False    with 0.06364568587546379        Error 0.2374    Coefficient 0.4247718864863728
False    with 0.06361343100827808        error 0.2374    Coefficient 0.4247718864863728
False    with -0.6733785977872391        error 0.25188   Coefficient 0.40211609507430957
False    with -1         error 0.23832   Coefficient 0.41986439569694467
False    with -1         error 0.23784   Coefficient 0.4261575484201853
False    with -1         error 0.2374    Coefficient 0.4247718864863728
False    with 0  error 0.23516   Coefficient 0.43007531781467856
Best models Indece: 7 and 5
Best 2 voted QTYCo values: False
Mode QTYCo values: False
Time passed: 49402		False    with 0.0629832668735319         Error 0.2358222222222222        Coefficient 0.42713078460263676
False    with 0.06295154835978807        error 0.2359111111111111        Coefficient 0.4269151292116243
False    with -1.0854503765640866        error 0.2324    Coefficient 0.4326624732230816
False    with -1         error 0.2376    Coefficient 0.42052557363474363
False    with -1         error 0.23604444444444445       Coefficient 0.4251176561131862
False    with -1         error 0.2359111111111111        Coefficient 0.4269151292116243
False    with 0  error 0.23377777777777778       Coefficient 0.43165094625939665
Best models Indece: 2 and 7
Best 2 voted QTYCo values: False
Mode QTYCo values: False
Time passed: 31150		False    with 0.06461494227167229        Error 0.23675   Coefficient 0.42496931165647023
False    with 0.06457657838525875        error 0.2368    Coefficient 0.42484778402689105
False    with -1.8147355362806046        error 0.2459    Coefficient 0.4104045126496121
False    with -1         error 0.2366    Coefficient 0.42322591987846025
False    with -1         error 0.2359    Coefficient 0.4279417038790148
False    with -1         error 0.2368    Coefficient 0.42484778402689105
False    with 0  error 0.23385   Coefficient 0.4320128190974164
Best models Indece: 7 and 5
Best 2 voted QTYCo values: False
Mode QTYCo values: False
Time passed: 29777		False    with 0.06493848652672272        Error 0.23577142857142858       Coefficient 0.4279112661017474
False    with 0.06490186597745684        error 0.23577142857142858       Coefficient 0.4279112661017474
False    with -1.8458888416444728        error 0.23514285714285715       Coefficient 0.4282179287550448
False    with -1         error 0.2376    Coefficient 0.42139635918866664
False    with -1         error 0.23697142857142858       Coefficient 0.4288898779849709
False    with -1         error 0.23577142857142858       Coefficient 0.4279112661017474
False    with 0  error 0.23331428571428572       Coefficient 0.4339367780855813
Best models Indece: 7 and 5
Best 2 voted QTYCo values: False
Mode QTYCo values: False
Time passed: 31685		False    with 0.06394508255461417        Error 0.23586666666666667       Coefficient 0.42575522436160873
False    with 0.06390931752438897        error 0.23586666666666667       Coefficient 0.42575522436160873
False    with -1.597400137112661         error 0.23373333333333332       Coefficient 0.4286719677841138
False    with -1         error 0.2358    Coefficient 0.42366992017289096
False    with -1         error 0.2344    Coefficient 0.4279086037613618
False    with -1         error 0.23586666666666667       Coefficient 0.42575522436160873
False    with 0  error 0.23286666666666667       Coefficient 0.4328175885757659
Best models Indece: 7 and 2
Best 2 voted QTYCo values: False
Mode QTYCo values: False
Time passed: 30387		False    with 0.06285255608253537        Error 0.2364    Coefficient 0.42434755771357524
False    with 0.0628193779247779         error 0.2364    Coefficient 0.42434755771357524
False    with -2.3934064157414063        error 0.2496    Coefficient 0.40338355484688226
False    with -1         error 0.23632   Coefficient 0.42287829793625636
False    with -1         error 0.23792   Coefficient 0.42458819876543236
False    with -1         error 0.2364    Coefficient 0.42434755771357524
False    with 0  error 0.23128   Coefficient 0.43657044500676717
Best models Indece: 7 and 5
Best 2 voted QTYCo values: False
Mode QTYCo values: False
Time passed: 13368		False    with 0.061324592507253736       Error 0.2366    Coefficient 0.4243456962530966
False    with 0.06090561807482831        error 0.237     Coefficient 0.42334130513945656
False    with -0.8799529466510597        error 0.2314    Coefficient 0.4343804809024431
False    with -1         error 0.2364    Coefficient 0.42256840696613285
False    with -1         error 0.234     Coefficient 0.43056955272123015
False    with -1         error 0.237     Coefficient 0.42334130513945656
False    with 0  error 0.2315    Coefficient 0.4364440951813778
Best models Indece: 7 and 2
Best 2 voted QTYCo values: False
Mode QTYCo values: False
Time passed: 10345		False    with 0.0602940268558205         Error 0.23666666666666666       Coefficient 0.42234001966820595
False    with 0.0598242028199681         error 0.236     Coefficient 0.42411416613948705
False    with -2.2866689365921293        error 0.23093333333333332       Coefficient 0.4344568258023687
False    with -1         error 0.23693333333333333       Coefficient 0.41988883456621795
False    with -1         error 0.23693333333333333       Coefficient 0.42302822722773
False    with -1         error 0.236     Coefficient 0.42411416613948705
False    with 0  error 0.23093333333333332       Coefficient 0.43648139696057175
Best models Indece: 7 and 2
Best 2 voted QTYCo values: False
Mode QTYCo values: False
Time passed: 6264		False    with 0.06000857517395303        Error 0.2354    Coefficient 0.4179206210256069
False    with 0.05959308618754471        error 0.2356    Coefficient 0.41742742219286183
False    with -1.488890753043486         error 0.2378    Coefficient 0.4074151699118814
False    with -1         error 0.2384    Coefficient 0.4094411010098343
False    with -1         error 0.237     Coefficient 0.4161968497115991
False    with -1         error 0.2356    Coefficient 0.41742742219286183
False    with 0  error 0.2328    Coefficient 0.4212671410523933
Best models Indece: 7 and 0
Best 2 voted QTYCo values: False
Mode QTYCo values: False
Time passed: 3593		False    with 0.060474000966569075       Error 0.2468    Coefficient 0.3922595948551759
False    with 0.059967386723818523       error 0.2468    Coefficient 0.3922595948551759
False    with -1.9179579572418972        error 0.2348    Coefficient 0.42185890200198783
False    with -1         error 0.2464    Coefficient 0.3916426097988587
False    with -1         error 0.2472    Coefficient 0.3949344162879661
False    with -1         error 0.2468    Coefficient 0.3922595948551759
False    with 0  error 0.25      Coefficient 0.39788533231223727
Best models Indece: 2 and 7
Best 2 voted QTYCo values: False
Mode QTYCo values: False
Time passed: 1212		True     with 0.5096631177306771         Error 0.3       Coefficient 0.1286978904175574
True     with 0.513382896056595  error 0.28      Coefficient 0.2182178902359924
False    with -0.0947981723898553        error 0.32      Coefficient 0.2671818298643447
False    with -1         error 0.24      Coefficient 0.3647582326206156
True     with 1  error 0.06      Coefficient 0.855377370495713
True     with 1  error 0.28      Coefficient 0.2182178902359924
True     with 0  error 0.18      Coefficient 0.545544725589981
Best models Indece: 5 and 7
Best 2 voted QTYCo values: True
Mode QTYCo values: True
Time passed: 261
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				RunTime(ms)												Time		32500ms				35000ms

		Sample (n)		Serial		Paralleled												Serial		Parallel		Serial		Parallel

		35000		60834		55226										PCD		142		387		178		268

		32500		100880		95243										IRLS		197		495		182		291

		30000		89143		84894										SMOP		84759		84638		48374		49070

		27500		56838		55008										THL		15		79		17		37

		25000		51494		49402										AdBDS		937		1779		411		893

		22500		33307		31150										AdBRL		607		1264		627		1151

		20000		32455		29777										AdBDT		3176		3867		3572		4009

		17500		33776		31685										Total		89833		84638		53361		49070

		15000		31638		30387

		12500		14694		13368

		10000		11410		10345

		7500		6627		6264

		5000		4089		3593

		2500		1678		1212

		50		341		261






