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Abstract. Understanding the structural organization of ingredient relationships within cuisines can reveal fundamental pat-
terns in culinary traditions and ingredient co-occurrence. In this paper, we constructed Ingredient Networks (InN) from two
recipe ingredient datasets encompassing recipes from ten worldwide cuisines. We then performed an empirical investigation
of these multi-cuisine Ingredient Networks to examine their structural characteristics. Our analysis demonstrates that the net-
works exhibit scale-free behavior, with their degree distributions following a power-law characterized by exponents ranging
from y = 1.96 to y = 2.38. This further aligns with statistical validation, where R-squared values range from 0.9965 to
0.9991, and p-values are extremely low (10_25 to 10_30), reinforcing the robustness of the power-law fit. Additionally, the
networks display ultra-small-world properties, as evidenced by their short network diameter of approximately 4. These struc-
tural measurements highlight striking similarities between ingredient networks and widely studied social networks, suggesting
underlying patterns reflective of social-like dynamics. Furthermore, the communities formed within these ingredient networks
show a strong correlation with the categorical grouping of recipes, providing insights into the evolution of culinary traditions
and ingredient compatibility.
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1. Introduction

A social network can be represented as a graph consisting of individuals or entities, their intercon-
nections, and the modes of communication between them [35, 70]. Social network analysis (SNA) is a
method used to examine and study the different aspects and characteristics of such networks [56, 88].
While SNA was developed with networks formed by human society, it has now been utilized in many
different kinds of networks. SNA principles may equally relevant to understanding the structure and dy-
namics of ingredient networks, where ingredients and their relationships form the basis of the network.

Unlike random networks, which exhibit a homogeneous distribution of degrees, real-world networks
such as ingredient networks often follow a scale-free structure. Scale-free networks are characterized
by a power-law degree distribution, where a few highly connected nodes (hubs) coexist with many
sparsely connected nodes [10]. This structure arises from growth and preferential attachment, where
highly connected nodes are more likely to attract new connections. In the context of ingredient networks,
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Fig. 1. Random Network vs Scale Free Network

this implies that certain ingredients (hubs) play a central role in connecting diverse components, while
others remain peripheral.

Understanding the scale-free nature of ingredient networks is crucial for analyzing their structure and
evolution. For example, the ingredients of the central region may represent foundational or widely used
components, while the sparsely connected ingredients could indicate niche or specialized elements. In
addition, the formation of communities within such networks can reveal patterns of ingredient usage
and compatibility, offering insight into culinary practices and recipe design. Figure 1 illustrates the dis-
tinction between random and scale-free networks, highlighting the presence of hub nodes in the latter.
In ingredient networks, these hubs are critical for maintaining connectivity and facilitating interactions
between less connected ingredients. By leveraging SNA techniques, this study aims to uncover the un-
derlying structure of ingredient networks, identify key ingredients, and explore their roles in shaping
culinary systems.

In this study, we draw a conceptual parallel between ingredient networks and social networks by
demonstrating that ingredient networks exhibit structural and organizational properties commonly ob-
served in social systems. While traditional social networks model relationships between individuals
or entities, ingredient networks capture the co-occurrence and collaborative relationships between in-
gredients in recipes. These relationships give rise to patterns such as scale-free degree distributions,
community structures, and centrality hierarchies, which are hallmarks of social networks. The emer-
gence of these patterns suggests that ingredient networks, like social networks, are governed by prin-
ciples of preferential attachment, collaboration, and modular organization. By applying social network
metrics—such as centrality measures, diameter, and community detection—we not only quantify these
properties but also provide a novel perspective on the organizational dynamics of culinary systems. This
analogy strengthens the case for interpreting ingredient interactions as a form of ’social’ behavior, where
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ingredients ’collaborate’ in recipes to create complex flavor profiles, much like individuals collaborate
in social systems to achieve collective outcomes.

This paper analyzes the Indian Dataset of Recipes and Ingredients (INDoRI), encompassing a to-
tal of 5187 recipes and Yummly dataset comprises of multi-cuisine details spanning more than 12
global cuisine.. Further, the dataset includes a graph-based representation of ingredient relationships,
namely, ingredient network (InN). InN is formed by capturing ingredient relationships based on their
co-occurrence within recipes. Ingredient Network (InN) is essentially a graph G(V, E, w) of ingredients
[71], constructed by joining ingredients that appear together in different recipes. The vertices V repre-
sent the ingredients, edges E contain the connection between vertices, and the weight w represents the
strength of the association. The association is stronger if ingredients appear multiple times in different
recipes. For example, the ingredients ‘onion’ and ‘tomato’ have a strong association as they seem nu-
merous times in many recipes (refer Fig. 3). The dataset and its characteristics were earlier published
in [50]. Extended research involves studying the dataset property and comparison with other cuisine
through detailed empirical analysis. This work is mostly emphasized in this paper.

Any study on a novel network starts with empirical analysis to know whether the network is generated
randomly or through preferential attachment. In the same sense, it is interesting to know the character-
istics of InN. The heterogeneous degree distribution in ingredient networks becomes evident as certain
ingredients are essential in numerous recipes while others are only present in a few dishes. This obser-
vation highlights the varying degrees of ingredient usage, emphasizing each ingredient’s diverse role
within the network. However, are these differences in degree significant enough to call this network
a social network? Does the degree of this network a power law distribution?. In this paper, we have
addressed these questions through an extensive empirical analysis.

The organization of the remainder of this paper is as follows: Section 2 provides an overview of the
related work on SNA and InN’s. Section 3 explains the methodology, datasets, and metrics involved.
Section 4 displays the SNA experimental results. Section 5 offers an in-depth discussion, while Section
6 explores the applications. Finally, Section 7 wraps up with conclusions and suggests future research
avenues.

2. Related Work

The theory of complex networks characterizes social networks by a scale-free property [11]. This
property allows it to pose specific properties different from the random network. Although the study of
social network analysis started with the human relational network [63], researchers have investigated
and explored various other networks and found that many are structurally similar to social networks
[96]. The original attempt of Watts and Strogatz in their work on small-world networks [98] was to
construct a network model with a small average path length as a random graph and a relatively large
clustering coefficient as a regular lattice, which evolved to become a new network model as it stands
today. On the other hand, the discovery of scale-free networks was based on the observation that the
degree distributions of many real networks have a power-law form, albeit power-law distributions. An-
other significant recent discovery is that many large-scale complex networks are scale-free; that is, their
connectivity distributions are in a power-law form independent of the network scale [10, 12]. Unlike an
exponential network, a scale-free network is homogeneous: most nodes have very few link connections,
yet few nodes have many connections.

Social Network Analysis (SNA) has been applied to various networks, with some of the notable ex-
amples being Twitter [20, 61, 107], Facebook [21, 107], human interaction networks [23], Internet [93],
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WWW [3], E-mail [31], software [92], electronic circuits [43], language [19], movie actors [10, 98],
math coauthorship [67], food web [62, 100], metabolism [45] where these networks were analyzed and
proved that they all follow the small world pattern and are scale-free. In contrast, the analysis of the
biomedical research collaboration network [14] shows that the collaboration networks are not scale-free
but have small-world properties. Similarly, the Power Grid network is also not scale-free [73].

Ingredient networks have been widely studied to understand the relationships between food compo-
nents, culinary traditions, and cultural influences. Researchers have investigated ingredient networks
within different contexts, including identification of communities [89], recipe recommendation [71],
and recipe recognition [60]. Like [41] offers a comprehensive review of network science applications in
food studies, which contextualizes our work within the broader field. Similarly, the studies by [1] and
[2] provide insights into flavor networks and food pairing principles, which complement our analysis
of ingredient connectivity and co-occurrence patterns. Building upon this, [89] developed an ingredient
network-based recipe recommendation system, showing that ingredient connectivity can be leveraged
for personalized recipe suggestions. Their approach highlighted the role of network structures in food
preferences, yet it primarily focused on algorithmic recommendations rather than structural properties
of multi-cuisine networks. More recently, [83] utilized semantic knowledge graphs to model ingredient
relationships, enabling dietary reasoning and nutrition-based food suggestions. Their work integrated
ontology-based analysis, whereas our study focuses on empirical network structures in real-world recipe
datasets. Additionally, [22] explored ingredient networks from a health perspective, applying natural
language processing (NLP) and content analysis to assess the nutritional quality of recipes shared on-
line. While their study focused on dietary health, our research examines ingredient networks from a
structural and cultural perspective, revealing insights into how culinary traditions shape ingredient co-
occurrence patterns. These prior works establish the significance of ingredient network analysis, and our
study extends this research by providing a multi-cuisine comparative analysis with a focus on Indian and
international culinary structures.

By integrating these references, our study is positioned as an extension and refinement of previous re-
search, moving beyond flavor-based networks to a more structural and community-based understanding
of ingredient networks across global cuisines. Unlike previous works that primarily focus on ingredient
similarity and pairing principles, our study introduces a deeper network-based analysis incorporating
metrics such as eigen centrality, clustering coefficients, and modularity to capture the hierarchical struc-
ture of culinary ingredient usage. Additionally, by analyzing ten global cuisines, we provide a compara-
tive perspective that broadens the scope of existing research, offering novel insights into the social-like
structures and small-world properties of ingredient networks.

Thus, while the existing literature lays a strong foundation for food network analysis, our work con-
tributes by introducing a more comprehensive, structural, and empirical analysis of ingredient networks
across multiple cuisines, offering new perspectives on how culinary traditions evolve through network-
based interactions. However, none of these studies investigate whether InN shows randomness or scale-
free characteristics.

3. Methodology

The overall pipeline is structured into several key stages: initially introducing the dataset, followed by
cleaning it and constructing an Ingredient Network (InN). Subsequently, the focus shifts to analyzing
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Table 1
Comparison of INDoRI with other datasets
Dataset Name #of Recipes  Ingredients Category Type Cooking Instructions  Time to Prepare  Regional Information ~ Image Link  Recipe Link g::;silzzrld)l:i
Recipe Ingredients Dataset [106] 12000+ Yes Yes No No No Yes No No No
IndianFoodDataset [44] 6000 Yes No Yes Yes Yes Yes No Yes No
IndianFood101 [74] 255 Yes No Yes No Yes Yes No No No
INDoRI [50] 5187 Yes Yes Yes Yes Yes Yes Yes Yes Yes

various cuisines through social network metrics. Additionally, the investigation explores the communi-
ties within the InN, comparing these findings across different community detection algorithms. These
steps are elaborated in the subsequent Sections.

3.1. INDoRI

Creating a comprehensive dataset of Indian cuisines possesses unique challenges. One of them is to
compiling recipes that span diverse cultural landscape of India. Due to the same reason one may not
find all the recipes from one single web portal. As there is no common data format available, each
portal present data differently and the data are unstructured. Hence the second challenge is to extract
meaningful information from it. We consider multiple recipe websites to address the first challenge. All
the unstructured data therein are crawled using Python script.

The distinctive feature of INDoRI compared to other food datasets is its collection of 5,187 recipes
spanning 18 unique Indian cuisines. Furthermore, it includes additional details such as cuisine, cate-
gory, preparation time, and cooking instructions. The recipes are organized into 8 specific categories.
Excluding the 925 uncategorized recipes, the remainder are also divided among 18 distinct cuisines.
Table 1 provides a comparison of INDoRI with existing Indian food-related datasets. Fig. 2 highlights
the primary characteristics of INDoRI.

Detailed information about the INDoRI dataset, the cleaning process and ingredient stop words can
be found in [50].

3.2. Dataset for Empirical Analysis

We utilized two datasets to create, analyze, and understand ingredient networks. The first dataset,
INDoRYI, is a comprehensive compilation of Indian recipes and their corresponding ingredients. In addi-
tion to the INDoRI dataset, we incorporated the recipe ingredient dataset sourced from Yummly [106].
The primary rationale for using the Yummly dataset was to enable a comparative analysis of ingredi-
ent properties across diverse global cuisines. While INDoRI provides a rich and unique representation
of Indian cuisine, the inclusion of Yummly’s dataset allows us to contextualize our findings within a
broader global framework. This comparative approach is essential for understanding how ingredient us-
age patterns in Indian cuisine differ from or align with those in other cuisines. The Yummly dataset
contains ingredient information from over 14 global cuisines, and we deliberately selected and filtered 9
cuisines based on their popularity and the quantity of available records. Combined with the Indian cui-
sine data from INDoRI, our study focuses on analyzing ingredient networks from a total of ten cuisines.
Importantly, the INDoRI dataset remains central to our analysis, as it provides a detailed and culturally
specific representation of Indian cuisine, which is not available in the Yummly dataset. By performing
combined and separate analyses, we ensure that the unique characteristics and contributions of INDoRI
are highlighted, while also leveraging the Yummly dataset to provide a global perspective.
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Fig. 2. Key Characteristics of INDoRI

Table 2
Cuisine Wise Statistics
Cuisine Total Number
of Recipes
Indian 5187
Chinese 2673
Japanese 1423
SouthernUS | 4320
French 2646
Italian 7838
Spanish 989
Mexican 6438
British 4320
Thai 1539

Ingredients contained extraneous details beyond ingredient names, requiring the removal of specific
words like “cup,” “chopped,” and “boiled,” categorized as Ingredient Stop Words (ISW). This filtering
process, based on [50], refines ingredient names for a cleaner dataset. For example, the phrase “half cup
of sugar” is reduced to "sugar” through a sequence of actions. Initially, ISW are eliminated, leading to
the removal of the words ‘half” and ‘cup’. The word ‘of” is also discarded as an NLP stop word, thereby
facilitating a more precise Ingredient Network (InN).The detailed process is provided in the referenced

source [50].
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3.3. Ingredient Network (InN) Construction

We developed an ingredient network, represented as a graph G(V, E, w), where V is a set of ingredients,
E is the connections between ingredients and w : V X V — R of an edge signifies the number of
association between ingredients in different recipes. Here each node corresponds to an ingredient and an
edge is formed between two nodes if the corresponding ingredients appear together in the same recipe.
The more they appear together in diverse recipes, the stronger the association. A visual representation
of this network for Indian cuisine is illustrated in Fig. 3, where the thickness of an edge correlates to the
strength of the association. Notably, the strongest link is between salt and oil, which co-occur in 1523
recipes, highlighted by one of the thickest edges in the graph.

Fig. 3. Ingredient Network (InN) Representation.

3.4. Social Metrics Evaluation

In order to examine the dynamics and behaviour of InN, we utilised a range of social network measure-
ments, which we classified into macro and micro metrics. Macro metrics, such as distance, diameter, and
density, provide valuable information about the overall structure and connectivity of the network. On the
other hand, micro metrics, such as node degree, clustering coefficient, closeness centrality, and eigen-
centrality, offer a detailed perspective by assessing the behaviour and roles of individual components
in the network. Specifically, closeness centrality helps identify ingredients that are closely connected
to others, suggesting their potential as central or bridging components in the network. Eigencentrality,
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on the other hand, highlights ingredients that are connected to other highly connected ingredients, in-
dicating their influence and importance in the network. These metrics collectively provide insights into
the functional roles and relative significance of individual ingredients, enabling a deeper understanding
of their usage patterns and interactions within the network. The results obtained from these metrics are
explained in the Results Section, demonstrating how each statistic adds to a thorough comprehension of
the InN features.

3.5. Community Structure Identification

Scale-free networks exhibits community structure. In the course of studying and analyzing InN, we
also tried to identify communities within InN. We employed diverse community detection algorithms
to partition the InN into multiple communities. Specifically, we implemented weighted versions of the
Leiden [90], Louvain [15], and Weighted Association Based Community Detection (WABCD) [50] al-
gorithms. It was observed that InN too exhibits community structure like other scale-free networks.
Notably, the weighted Louvain and Leiden algorithms organized communities based on a weighted mod-
ularity score, while the WABCD method grouped ingredients by the strength of their connections. We
used standard implementations of the Leiden, Louvain, and WABCD algorithms for weighted commu-
nity detection, ensuring edge weights represented ingredient co-occurrence frequencies. The resolution
parameter was set to 1.0 for both Leiden and Louvain to maintain consistent community granularity.
WABCD followed weight-based adjustments as per [45]. These algorithms were chosen for their ef-
fectiveness: Leiden optimizes modularity for well-separated communities, Louvain provides fast hi-
erarchical clustering, and WABCD is tailored for weighted networks, making it ideal for ingredient
co-occurrence analysis.

The details of these community structures and their implications are further discussed in the Results
and Analysis Section.

4. Results and Analysis

This section provides an in-depth analysis of the outcomes of different macroscopic and microscopic
measurements of social networks, along with the observed trends within communities. The subsequent
Discussion Section further explores and elaborates on the implications of these metrics. For our network
analysis, we employed standard Python libraries, including NetworkX, to compute key network met-
rics such as degree distribution, shortest path distance, network diameter, density, clustering coefficient,
closeness centrality, and eigenvector centrality. All calculations were performed using default settings.
For instance, centrality measures were computed using the built-in functions of NetworkX and igraph,
ensuring consistency and accuracy.

4.1. Degree Distribution of InN

The degree distribution of the Ingredient Network (InN) for 10 different cuisines adheres closely to a
power law, as demonstrated by our analysis. We modeled this behavior using a power law distribution,
detailed in Equation 1, and visually represented the fit with a red line in Fig. 4. Notably, the parameter
v varies among the cuisines, ranging from 1.96 in Italian Cuisine to 2.38 in Indian Cuisine, highlighting
the distinct ingredient combinations characteristic of each cuisine. From the linear regression analysis
performed on the log-transformed data across 10 global cuisine ingredient networks, we observed a
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Fig. 4. Degree Distribution Comparison of 10 Cuisine’s Ingredient Network along with fitted power law.
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consistent range of values for the slope, intercept, R-squared, and p-values. Specifically, the slope ranged
from -2.45 to -2.68, with an intercept between 0.18 and 0.22. The R-squared values remained high,
ranging from 0.9965 to 0.9991, indicating an excellent fit between the log-transformed degree sequence
and degree distribution. Furthermore, the p-values were extremely low (ranging from 10~2° to 10739),
providing strong statistical evidence that the slope of the regression line is significantly different from
zero. These results consistently support the hypothesis that ingredient networks across diverse cuisines
exhibit power-law behavior, reinforcing the robustness of our findings.

Pk~ k77 (D
4.2. Distance

In graph theory, the distance between two vertices is defined as the number of edges in the shortest
path connecting them, often referred to as the hop distance. This concept is mathematically expressed
as:

d(V;,V;) = min hopdistance(V;, V;) @

where d(V;, V;) represents the minimum number of hops between vertex V; and vertex V;. The dis-
tance between ingredients in the Ingredient Network (InN) reflects the degree of interconnection and
cohesiveness within a cuisine. A shorter maximum distance, such as in Thai cuisine (2 steps), suggests
a tightly integrated ingredient network, where most ingredients frequently co-occur, forming a highly
cohesive flavor structure. In contrast, a larger maximum distance, as observed in Indian cuisine (4 steps),
indicates a more diverse and modular network, where distinct ingredient groups exist, often used in spe-
cialized combinations within different regional or traditional dishes. The fact that most cuisines exhibit
a maximum distance of 3 reinforces the small-world nature of culinary networks, where even seemingly
unrelated ingredients can be connected through a few intermediate ingredients. This structure enables
both traditional recipe formation and culinary innovations, as the short paths between ingredients facili-
tate cross-category ingredient substitutions and fusion cuisine development.

Our analysis of different cuisines revealed varying maximum distances, underscoring the ultra-small
world nature of these networks. For example, the maximum distance in the InN of Indian cuisine is 4,
indicating a wider variety of ingredient pairings, whereas in Thai cuisine the maximum distance is only
2, suggesting a tighter integration of ingredients. Other cuisines typically exhibited a maximum distance
of 3, further demonstrating the close-knit structure of these culinary networks.

4.3. Diameter

The diameter of a graph is determined by its maximum eccentricity, which is calculated as follows.

E(V;) = max (d(V;,V})) 3)
Viev\V;
D(G) = max(E(V;)) S
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In these equations, E(V;) represents the eccentricity of vertex V;, defined as the greatest distance from
V; to any other vertex V. The graph’s diameter, D(G), is then the largest eccentricity among all vertices
in the graph. This metric reflects the farthest distance between any two nodes in the network. Notably,
in the Ingredient Network (InN) for each cuisine InN analyzed, the diameter consistently measures 4.
The diameter of the Ingredient Network (InN) provides insights into the reachability and connectivity of
ingredients within a cuisine. The observation that the diameter remains consistently 4 across all cuisines
suggests that ingredient networks are highly interconnected, meaning that even the most distantly re-
lated ingredients can be linked through a small number of intermediate connections. This reflects the
efficient structure of culinary traditions, where core ingredients act as bridges, connecting diverse ingre-
dient groups. For example, in Italian cuisine, ingredients like olive oil and garlic serve as key connectors
across various dishes, while in Japanese cuisine, ingredients such as soy sauce and dashi link otherwise
distinct flavor profiles. The small diameter highlights the flexibility of culinary systems, allowing ingre-
dients to be combined in innovative ways while maintaining a cohesive flavor network. This structural
characteristic underscores the adaptability of cuisines, where a limited number of widely used bridging
ingredients facilitate the fusion and evolution of culinary traditions.

4.4. Density

Density in a network measures the proportion of actual edges to the maximum possible edges between
nodes, reflecting the network’s connectivity. The denser a network, the more interconnected it is, with
a high number of edges relative to the number of nodes. The density of the Ingredient Network (InN)
varies across different cuisines, with node counts ranging from 784 in British cuisine to 1926 in Italian
cuisine, and edge counts from 14479 to 62528, respectively. Density is calculated as follows:

Actual number of Edges
Maximum possible edges

Density = (5

where the maximum possible edges for a graph with n nodes is (;) The density of the Ingredient Net-
work (InN) provides important insights into the interconnectivity of ingredients within different cuisines.
A higher density suggests that a cuisine has a highly integrated ingredient network, where many ingre-
dients frequently co-occur in diverse recipes, enabling greater flexibility in ingredient combinations. For
instance, Thai cuisine, with the highest observed density (0.067), features a tightly interconnected in-
gredient network, reflecting the frequent pairing of core ingredients like fish sauce, lemongrass, chili,
and coconut milk across various dishes. In contrast, Indian cuisine, which has a lower density (0.0296),
exhibits a more modular structure, where ingredients like spices form distinct clusters, often used in
specialized combinations rather than universally across all dishes. The observed variation in density
across cuisines suggests that some culinary traditions rely on highly versatile, broadly connected in-
gredient sets, while others emphasize distinctive, clustered ingredient groupings, reinforcing the unique
structural and cultural organization of different cuisines.

4.5. Cluster Coefficient

The clustering coefficient is an essential metric in social network analysis as it indicates the degree to
which nodes tend to cluster together, reflecting community formation and shared interests, as highlighted
by Katzir et al. [49]. Applied to the Ingredient Network (InN), this coefficient can identify groups of
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ingredients that are commonly used together in specific types of recipes. The formula for calculating the
clustering coefficient for a node i, which has n; neighbors, is:

28,’

Ci - I”l,'(l’l,' — ].)

(6)

Here, C; represents the clustering coefficient for node i, where e; is the number of actual connections
between the node’s n; neighbors.

The clustering coefficient in the Ingredient Network (InN) provides key insights into the structural or-
ganization of culinary ingredient relationships. A high clustering coefficient suggests that certain groups
of ingredients are frequently used together, forming tightly-knit culinary clusters that define the flavor
profiles of specific cuisines. For example, the high clustering coefficient observed in Mexican cuisine
(0.8399) reflects the strong interconnectedness of ingredients like chilies, tomatoes, cilantro, and lime,
which commonly co-occur across a variety of traditional dishes. Similarly, the French cuisine network
(0.7986) indicates well-established ingredient pairings, such as butter, garlic, wine, and thyme, which
frequently appear together in classical French cooking. The variation in clustering coefficients across
cuisines suggests that some culinary traditions rely on highly modular ingredient networks, where groups
of ingredients form cohesive communities that characterize distinct regional flavors. This highlights how
different cuisines develop unique ingredient interaction patterns, reinforcing their cultural identity and
traditional cooking methods.
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Fig. 5. Closeness Centrality Distribution for the Ingredient Network.
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4.6. Closeness Centrality

Closeness Centrality (CC) is a critical measure for understanding the proximity of vertices in a graph,
which in the context of the Ingredient Network (InN), helps identify how readily accessible ingredients
are to each other and reveals the flexibility in ingredient usage across recipes. CC is calculated using the
formula:

cv) =Y ﬂ%w (7

veG

A histogram illustrating the CC values for all ingredients is presented in Fig. 5, highlighting the range
of closeness centrality, which typically spans from 0.4 to 0.6 for every cuisine in the InN. This range
indicates the degree of closeness and connectivity among ingredients within the various cuisines.

1601

140 4

1201

Frequency of Ingredients

0.00 0.02 0.04 0.06 0.08 0.10 0.12
Eigen Centrality

Fig. 6. Eigen Centrality Distribution for the Ingredient Network.

The Closeness Centrality (CC) of ingredients in the Ingredient Network (InN) provides valuable in-
sights into the accessibility and functional versatility of ingredients within a cuisine. Ingredients with
higher CC values tend to be widely used and easily combinable, allowing for greater flexibility in recipe
formulation. These ingredients often serve as bridging elements, enabling diverse ingredient combi-
nations and fostering innovation in cooking. For example, ingredients such as onion, salt, butter, and
lemon frequently appear in multiple recipes across different cuisines, demonstrating high accessibility
and broad culinary adaptability. Conversely, ingredients with lower CC values may be more specialized
or region-specific, primarily appearing in select dishes or niche culinary traditions. The observed CC
range (0.4 to 0.6) across cuisines suggests that most ingredients maintain a moderate level of accessi-
bility, ensuring a balance between core staple ingredients and specialized components that contribute
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to a cuisine’s unique identity. This further underscores the structural efficiency of ingredient networks,
where highly central ingredients enhance the cohesion and adaptability of a culinary tradition.

4.7. Eigen Centrality

Eigen centrality (EC) is a key metric for determining the importance of nodes within a network, as it
quantifies the influence of a node based on its connections to other highly significant nodes, as outlined
by South et al. [87]. In the context of the Ingredient Network (InN), EC has been applied to assess
the significance of each ingredient. It has been found that the EC values for most ingredients in every
cuisine generally fall between 0.01 and 0.08. However, as depicted in Fig. 6, there are a few ingredients
that stand out with notably higher EC values, underscoring their pivotal roles within their respective
culinary networks.

In the context of culinary patterns, the EC of ingredients offers valuable insights into their functional
roles within different cuisines. Ingredients with higher EC values tend to be those that frequently co-
occur with other influential ingredients, often serving as essential flavor bases, binding agents, or key
enhancers in traditional dishes. For example, in many global cuisines, garlic, onion, and olive oil exhibit
high EC values, highlighting their widespread importance across multiple dishes and their strong con-
nections to other significant ingredients. Conversely, ingredients with lower EC values may represent
niche or region-specific components that are less interconnected but still contribute to the distinctiveness
of a cuisine. The observed EC distribution across cuisines suggests that staple ingredients with high culi-
nary adaptability and cross-linking properties tend to emerge as central nodes in ingredient networks,
reinforcing their fundamental role in shaping flavor complexity and regional food identities.

4.8. Community Structure

The Ingredient Network (InN) was analyzed using the Weighted Leiden (W-Leiden), Louvain (W-
Louvain), and WABCD algorithms [50], to identify distinct culinary communities within various
cuisines. The results from the W-Leiden algorithm revealed that the number of communities ranged
from 3 in Italian cuisine to 8 in Japanese cuisine. In contrast, the W-Louvain algorithm detected between
4 communities in several cuisines such as Chinese, Japanese, Italian, and Thai, and up to 9 in British
cuisine, with Southern US cuisine standing out with 17 communities. The WABCD algorithm showed a
variation from 6 communities in Chinese cuisine to 9 in Southern US cuisine. These findings underscore
the tendency of the InN to form community structures similar to other social networks.

Fig. 7 presents the community detection results within the Indian cuisine InN, illustrating the seg-
mentation achieved by the WABCD, W-Leiden, and W-Louvain algorithms, which identified 7, 5, and 4
distinct communities, respectively. The figure clearly shows that the first community identified by each
algorithm is characterized by tightly interconnected nodes, indicating strong cohesion. However, the
density of nodes and the connectivity within communities tend to decrease in subsequent groups iden-
tified by each algorithm, reflecting a varying degree of association among different ingredient groups.
These patterns suggest underlying structures in the data that mirror complex relationships within the
culinary domain.

To uncover the inherent characteristics of each partition we have created multiple sub-graphs based
on the category of recipes and compare them with the communities obtained from all three algorithms.
The results were shown in Table 3. One may observed that with both weighted Leiden and Louvain
algorithm, the second community exhibit connection with recipe category Desert whereas the rest tend
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Fig. 7. Results from Different Community Detection Algorithms a) WABCD detects 7 communities b) W-Leiden detects 5
communities ¢) W-Louvian detects 4

to have more association with Lunch/Dinner category. Conversely, the WABCD identifies four prominent
recipe categories: Bread, Lunch/Dinner, Drink, and Deserts.

5. Discussion

Results of the empirical study reveal that InN shows properties which resemble scale-free networks.
For example, Fig. 4 demonstrates that InN follows a power-law degree distribution with exponents rang-
ing from y = 1.96 to y = 2.38. These values of y ensure the ultra-small property [26], i.e., the average
diameter of the network is minimal, indicating efficient connectivity. In the context of food networks,
this range of y reflects a scale-free structure, where a few ingredients (hubs) are central to many recipes,
while most ingredients have limited connections. This heterogeneity is consistent with other real-world
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Table 3
Comparison of community detection algorithms
Weighted Leiden Weighted Louvain WABCD

C1 | Lunch/Dinner Recipes | Lunch/Dinner Recipes Bread Recipes

C2 Desert Recipes Desert Recipes Bread Recipes

C3 | Lunch/Dinner Recipes | Lunch/Dinner Recipes | Lunch/Dinner Recipes
C4 | Lunch/Dinner Recipes | Lunch/Dinner Recipes Drink Recipes

CS | Lunch/Dinner Recipes - Lunch/Dinner Recipes
Cé - - Dessert Recipes
C7 - - Lunch/Dinner Recipes

networks, such as social networks (y = 2 — 3), biological networks (y = 2 — 2.5) and technological net-
works (y = 2.1 — 2.4). The slightly lower gamma values in food networks may highlight the unique role
of staple ingredients (e.g., salt, onions, or rice) that are ubiquitous across recipes, shaping the culinary
structure of cuisines. On the contrary, a random network usually has y > 3 [9].

For reader’s reference, the degree of separation comparison between real networks and InN for In-
dian cuisine is shown in Table 4. The table shows the average and maximum distances of the 5 real
undirected networks and InN. The maximum distance in a network represents the longest shortest path
between any two nodes, reflecting the degree of connectivity and integration within the network. In the
context of ingredient networks (InN), the maximum distance varies across cuisines due to differences
in culinary traditions, ingredient usage patterns, and recipe structures. Cuisines with smaller maximum
distances (e.g., Italian or French) often rely on a core set of staple ingredients (e.g., olive oil, tomatoes,
or butter) that are widely used across recipes, creating a highly interconnected network. This results in
shorter paths between ingredients, as most ingredients are linked through these central hubs. Cuisines
with larger maximum distances (e.g., Indian or Thai) may exhibit greater diversity in ingredient usage,
with distinct regional or cultural variations in recipes. This can lead to less overlap between ingredient
clusters, resulting in longer paths between certain ingredients. For instance, the use of specialized spices
or herbs in specific dishes may create "bridges" that increase the maximum distance. The columns N,
L, k, d and d_max represent the number of nodes, links, average degree, average distance and maximum
distance, respectively. Degrees of separation specify how many hops one must reach from any randomly
chosen node to another. For InN, the maximum distance is 4, indicating that every node can be reached
from any node through a maximum hop of 4. The average degree of separation is 3.12. This corresponds
to the phenomenon of six degrees of separation [30, 59, 91], which says one node can be reachable
through a maximum of 6 hops [66]. Although theoretically, this represents the diameter as 6, practically,
the average distance stays at 6 or less. The actual diameter sometimes shows higher values because of
outliers. For all pairs of Facebook users worldwide and within the United States, the average distance
separation is only 3.90 [8]. However, there are networks like Power Grid where the average distance be-
tween nodes exceeds 10 degree of separation. Most real-world social networks adhere to the six degrees
of separation principle. Such a network does not show power law distribution.

The nodes of InN adhere to an 80:20 ratio, meaning that 80 per cent of the nodes have a low degree
and 20 per cent have a higher degree. For InN, most nodes (597) have degrees ranging from 0-100, and
a smaller number of nodes (156) have degrees ranging from 200 - 500.

Table 4 also shows the degree fluctuations in real networks, indicating the average degree (k) and the
second moment (k2) for 5 undirected real networks and InN. Except for the power grid, every network
is scale-free as the estimated degree component y offers a statistically significant fit. The confidence of
the fit to the degree distribution is indicated by the star next to the given values.
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Table 4
Comparison of Real World Undirected Networks with Indian InN as to Degree separation and Fluctuations [66].
Network N L d d_max (k) (k2) v
Internet 192,244 | 609,066 6.98 26 6.34 240.10 3.42%
Power Grid 4,941 6,594 18.99 | 46 2.67 10.30 Exp.
Science Collaboration | 23,133 93,437 5.35 15 8.08 178.20 3.35%
Actor Network 702,388 | 29,397,908 | 3.91 14 83.71 | 47,353.70 | 2.12%*
Protein Interactions 2,018 2,930 5.61 14 2.90 32.30 2.89%-
InN (Indian Cuisine) | 1433 30,464 312 | 4 1.17 14.69 2.38*

The Ingredient Networks (InN) for ten global cuisines shown in Table 5 exhibit distinct structural
properties, reflecting the unique culinary traditions, cooking methods, and ingredient co-occurrence pat-
terns in each cuisine. The table provides insights into key network metrics such as network size (N),
edge count (L), power-law exponent (y), maximum degree (d,..), diameter, density, clustering coef-
ficient, centrality measures, and community structures. Below is a detailed analysis comparing these
cuisines based on their network properties and their implications in culinary practices.

First, the network size and connectivity vary significantly across cuisines. Italian cuisine has the largest
ingredient network with 1,926 nodes and 62,528 edges, indicating high ingredient diversity and frequent
co-occurrence in recipes. Similarly, Indian, Chinese, and Mexican cuisines also have large ingredient
networks, reflecting their rich culinary traditions. In contrast, British cuisine has the smallest network
(784 nodes, 14,479 edges), suggesting a more limited ingredient repertoire and simpler recipe structures.
The power-law exponent (y) ranges from 1.96 to 2.38, with Indian cuisine exhibiting the highest value
(2.38), suggesting a strong hierarchical structure dominated by a few essential ingredients.

Second, the small-world properties of these networks demonstrate their ingredient connectivity and
accessibility. The maximum shortest path length (d,,,) is lowest for Thai cuisine (2) and highest for
Indian cuisine (4), indicating that Thai cuisine has a tightly connected core set of ingredients, while
Indian cuisine exhibits a broader range of ingredient pairings. Despite variations in d,,,,, the network
diameter remains consistently at 4 across all cuisines, reinforcing the small-world nature of ingredient
relationships. The density of the networks is highest for Thai (0.07) and Spanish (0.05) cuisines, indicat-
ing strong ingredient co-occurrence, while cuisines like Indian, French, and Southern US (0.03) exhibit
more modular structures with diverse ingredient groupings.

Third, clustering coefficients reveal the tendency of ingredients to form cohesive communities. The
highest clustering is observed in Mexican (0.84) and Chinese (0.83) cuisines, reflecting their strong
reliance on foundational ingredient combinations (e.g., chilies, corn, beans in Mexican; soy sauce, garlic,
ginger in Chinese). In contrast, French cuisine has the lowest clustering coefficient (0.79), suggesting
a more diverse range of ingredient combinations without strongly interconnected clusters. The number
of communities detected varies widely, with Southern US cuisine displaying the highest number of
communities (17 in W-Leiden), reflecting the influence of multiple regional culinary traditions.

Fourth, centrality measures highlight the influence and accessibility of key ingredients in each cuisine.
Closeness centrality (0.40 - 0.60) remains relatively consistent across cuisines, indicating that ingredients
are well-connected in most recipes. However, eigen centrality varies more significantly; for example,
Japanese cuisine has the highest eigen centrality (0.01 - 0.08), suggesting a balanced network where
multiple ingredients share influence, whereas Indian and Mexican cuisines have lower values (0.01 -
0.04), indicating dominance by a few key ingredients like spices, chilies, or staple grains.
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Finally, these network properties provide valuable insights into cooking and culinary practices across
different cultures. Highly clustered cuisines like Mexican, Thai, and Chinese rely on strong ingredient
groups that frequently appear together, reflecting their use of staple sauces, spice bases, and well-defined
flavor profiles. In contrast, less clustered cuisines like French, Indian, and British suggest a more seg-
mented approach, where ingredients are used in distinct recipe contexts. The large, diverse ingredient
networks in Italian, Indian, and Chinese cuisines reflect their culinary complexity and regional varia-
tions, while tightly connected networks like Thai and British indicate a more compact set of frequently
used ingredients.

Table 5

Social Metrics Summary of 10 Cuisine’s Ingredient Network
Cuisine Wise d_max . Cluster Closeness Eigen Communities
Ingredient N L v Diam. Dens. Coefficient Centrality Centrality W- W-
Network Louvian Leiden WABCD
Indian 1433 30464 2.38 4 4 0.03 0.81 0.40 - 0.60 0.01 - 0.04 4 5 7
Chinese 1748 62062 2.12 3 4 0.04 0.83 0.40 - 0.60 0.01 - 0.06 6 4 6
Japanese 959 21552 2.06 3 4 0.05 0.81 0.40 - 0.60 0.01-0.08 8 4 7
SouthernUS 1606 42802 2.04 3 4 0.03 0.81 0.40 - 0.60 0.01 - 0.06 7 17 9
French 1432 35028 1.98 3 4 0.03 0.79 0.40 - 0.60 0.01 - 0.06 7 6 7
Italian 1926 62528 1.96 3 4 0.03 0.81 0.40 - 0.55 0.01 - 0.04 3 4 8
Spanish 836 16864 2.10 3 4 0.05 0.81 0.40-0.55 0.01 - 0.06 6 5 7
Mexican 1756 58972 2.09 3 4 0.04 0.84 0.40 - 0.55 0.01 - 0.04 4 5 8
British 784 14479 1.99 3 4 0.05 0.80 0.40-0.55 0.01-0.07 5 9 7
Thai 889 26531 2.15 2 4 0.07 0.83 0.45 - 0.55 0.01 - 0.06 4 4 7

Similarly The Fig. 8 presents a scatter plot comparing the standard deviation of node degrees with
the mean degree (<k>) for different real-world networks, including Ingredient Network (InN), Power
Grid, Protein Interactions, Internet, and Science Collaboration networks. Each point represents a specific
network, and its position on the x-axis corresponds to <k> (the average number of connections per node),
while the y-axis represents the standard deviation of the degree distribution.

Low <k> and Low Standard Deviation for InN, Power Grid, and Protein Interactions: The Ingredient
Network (InN), Power Grid, and Protein Interactions networks have a low mean degree (<k> =~ 3)
and low standard deviation (=1.5-1.8). This indicates that most nodes (ingredients, power stations, or
proteins) have a similar number of connections, with fewer extreme hubs. In the culinary context of InN,
this suggests that most ingredients in the network have a balanced number of connections with other
ingredients, reflecting the structured nature of recipes.

Higher <k> and Standard Deviation for Internet and Science Collaboration Networks: The Internet and
Science Collaboration networks have much higher <k> (between 6 and 8) and greater standard deviation
(above 2.5). This means these networks have many highly connected hub nodes, which are significantly
more connected than the average node. The Internet follows a scale-free structure where a few nodes
(high-traffic websites) dominate connectivity. The Science Collaboration network shows that some re-
searchers have an exceptionally high number of collaborations, creating a hub-like structure. The low
standard deviation in InN suggests that most ingredients are relatively similar in terms of their usage fre-
quency across recipes. Unlike the Internet, where some nodes (websites) dominate, there are no extreme
hubs in InN, meaning that recipes are not overly dependent on a few highly connected ingredients. The
low <k> value ( 3) means each ingredient connects to a small number of other ingredients on average,
highlighting distinct ingredient groupings common in culinary traditions. This aligns with the idea that
cuisines have staple ingredient sets that frequently appear together rather than an arbitrary combination
of all available ingredients. Since the InN does not have an extremely high variance in connectivity, it
suggests that most ingredients can be substituted with similar alternatives, maintaining the network’s
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Fig. 8. An illustration of the comparison of standard deviation in Real World Networks with Ingredient Network of Indian
cuisine

structure. This is particularly important in culinary practices where ingredients can be swapped based
on regional availability, dietary restrictions, or personal preferences.

The structural differences observed in these global ingredient networks align with their respective culi-
nary traditions, historical influences, and regional variations. Cuisines with high clustering and density
reflect cohesive ingredient usage, while those with diverse community structures exhibit more varied
and modular culinary patterns. These insights not only help in understanding the fundamental structure
of cuisines but also offer potential applications in food science, recipe recommendation systems, and
gastronomy research.

6. Applications

Understanding whether ingredient networks exhibit social properties is significant for both food com-
puting and network science. By analyzing their structure and comparing them with real-world social
systems, we gain valuable insight into how ingredients interact and cluster based on culinary traditions,
regional preferences, and flavor compatibility. The small-world and scale-free properties of ingredient
networks further reinforce their social nature, with profound implications beyond theoretical signifi-
cance.

6.1. Based on Small-world Property

However, the small-world property, characterized by high clustering and short average path lengths,
indicates that ingredient networks are highly interconnected and efficiently organized. This can be used
in recipe recommendation systems, where understanding the proximity and relationships of ingredients
enhances the accuracy and diversity of recommendations. Ingredients within the same community or
cluster are likely to share similar flavor profiles, facilitating better substitutions of ingredients and sug-
gestions of complementary pairing.
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6.2. Based on Scale-free Network

Similarly, the scale-free nature of ingredient networks, with some highly connected hub ingredients,
highlights the critical role of these hubs in culinary systems. These staple ingredients serve as foun-
dational elements in many recipes, making them essential to predict culinary trends. Furthermore, the
robustness of scale-free networks to random failures suggests that culinary systems can adapt to the re-
moval of less central ingredients, informing strategies for ingredient substitution and dietary adaptation.
Using these network properties, our work advances the field of food computing, offering a foundation
for developing innovative applications such as flavor pairing prediction, trend analysis, and personal-
ized recipe generation, new recipe generation. Furthermore, demonstrating social behavior in ingredient
networks extends social network analysis techniques to food systems, opening new avenues for interdis-
ciplinary research in computational gastronomy.

7. Conclusion and Future Work

In this paper, we conducted an empirical study to demonstrate that a food ingredient network (InN)
exhibits structural properties similar to social networks, such as scale-free behavior, community struc-
ture, and centrality hierarchies. Through a thorough examination of ten diverse cuisines, we showed that
InNs consistently follow a power-law distribution and display social network-like patterns, as evidenced
by the computation of relevant metrics. These findings suggest that ingredient interactions in culinary
systems are governed by principles similar to those observed in social networks, such as preferential
attachment and modular organization.

While our study primarily focuses on the structural analysis of InNs, the observed properties provide
a strong foundation for future research into culinary trends and user interactions. For example, the scale-
free nature of InNs implies that certain ingredients act as hubs, playing a critical role in the composition
of the recipe, which could inform the prediction of the popularity of the ingredients or the evolution
of culinary practices. Similarly, the community structure of InNs highlights ingredient groupings that
reflect cultural or flavor-based affinities, offering insight into how users might interact with or perceive
different cuisines. However, these would require additional empirical studies, such as analyzing temporal
data on recipe creation or user preferences, to validate their feasibility.

Our work establishes a robust framework for understanding the organizational dynamics of ingredient
networks and opens new avenues to explore their applications in culinary science and user behavior
analysis. Future research could build on these findings to develop predictive models or investigate the
cultural and psychological factors driving ingredient co-occurrence in recipes.
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