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Abstract.
This research presents a deep learning approach for predicting durian prices using Bidirectional Long Short-Term Memory

(BiLSTM) networks with seasonal analysis. The study addresses two critical challenges in agricultural price forecasting which
include handling missing values in seasonal time series data and capturing complex temporal dependencies. The proposed
methodology employs Prophet model for missing value imputation incorporating multiple seasonal components and Fourier
terms to maintain temporal integrity. A BiLSTM architecture is implemented with a 25-day sliding window optimized to capture
market cycles and seasonal patterns. Therefore, the model is evaluated using 10-fold cross-validation on durian price data from
Thailand’s primary trading hub during 2023-2024 harvest seasons. The findings demonstrate strong predictive performance
with R-squared values of 0.9254 ± 0.0439 on validation data and Mean Squared Error of 65.3470 ± 33.1819. The model
successfully captures key market phases including initial stability, early decline, mid-season plateau and peak season dynamics.
The integration of seasonal features with bidirectional processing enables accurate prediction of price movements providing
valuable insights for stakeholders across the durian supply chain.
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1. Introduction

In developing countries, agricultural commodities serve as fundamental drivers of economic growth
and development. These countries play an increasingly vital role in global food security contributing
significantly to the world’s agricultural production and trade. The agricultural sector provides essen-
tial food resources and generates substantial employment opportunities and foreign exchange earnings
through exports [10]. As global food demand grows rapidly, developing countries with rich farmland
are becoming more important in the world’s food supply chain [18]. This growing role requires better
farming management and accurate price forecasting to support steady economic growth [17].

A tropical fruit known as Durian in Southeast Asia has become a major economic crop that drives
Thailand’s agricultural exports [2, 20]. The fruit’s unique characteristics and growing global demand
have led to significant market volatility making price prediction increasingly important for stakeholders
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across the supply chain. In recent years, Thailand has established itself as the world’s largest durian
exporter with both production and export values reaching record breaking levels [8, 13]. However, the
seasonal growing patterns and external market factors make it difficult to maintain consistent prices
throughout the year.

Missing values in time series data present significant challenges for data analysis and forecasting
[4, 15] particularly in agricultural datasets [11, 14, 25]. These gaps can occur due to various reasons
such as data collection failures, sensor malfunctions, holidays and market closures. The presence of
missing values can disrupt the temporal continuity of the data making it difficult to identify trends, pat-
terns and seasonal variations. The impact of missing values becomes more complex when dealing with
seasonal time series data [23, 24]. Gaps in the data can break the seasonal patterns making it challenging
to understand and model the underlying seasonal components. Traditional handling methods such as
deletion of incomplete records are often unsuitable for time series analysis as they can remove valuable
temporal information and disrupt the sequential nature of the data [3, 21]. Moreover, the relationship
between missing values and seasonal patterns needs careful consideration.

Therefore, data imputation techniques for time series data with seasonal patterns have evolved signif-
icantly ranging from traditional mathematical approaches to advanced machine learning methods. Vari-
ous strategies have been tested to deal with missing values while maintaining the time based patterns and
seasonal features of the data. Linear interpolation assumes a straight line between known points while
polynomial interpolation fits a polynomial curve through the data points [5]. Spline interpolation offers
more flexibility by fitting piecewise polynomial functions making it particularly suitable for capturing
seasonal fluctuations [22].

Moreover, sophisticated approaches leverage statistical and machine learning techniques. Moving av-
erage methods and exponential smoothing can effectively handle missing values while accounting for
trends and seasonality [9]. The Prophet model has gained popularity for its ability to handle missing
values in time series data while automatically detecting seasonal patterns and trend changes. Its decom-
position approach, separating trend, seasonality and holiday effects [1, 12] that makes it particularly
effective for agricultural price data with regular seasonal variations.

Advanced machine learning methods offer powerful alternatives for missing value imputation. A gra-
dient boosting framework (XGBoost) can handle missing values through its built in mechanisms while
capturing complex non-linear relationships in the data [16]. Random Forest imputation leverages mul-
tiple decision trees to predict missing values considering various features including seasonal indicators.
Hybrid approaches combining multiple techniques have shown promising results [19]. For example,
combining traditional interpolation methods with machine learning models can leverage the strengths of
both approaches. These hybrid solutions often provide better results than single methods especially for
complex seasonal patterns.

In addition, the traditional methods of price forecasting such as statistical analysis and time series
models often struggle to capture the complex patterns and seasonality inherent in agricultural commod-
ity prices. This limitation has driven the need for more sophisticated prediction approaches that can
handle non-linear relationships and temporal dependencies. Deep learning techniques, particularly Long
Short-Term Memory (LSTM) networks have shown promising results in time series forecasting across
various domains [6]. The bidirectional variant of LSTM offers enhanced capability by processing data in
both forward and backward directions [7] potentially improving the model’s ability to capture seasonal
patterns and long-term dependencies in price movements.

This research presents a new approach to durian price prediction by implementing a Bidirectional
LSTM model with seasonal analysis. The study focuses on historical price data from the Thai durian
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market during 2023-2024 incorporating seasonal factors and market trends. The proposed model utilizes
K-fold cross-validation to ensure robust performance evaluation and reliability of predictions. By ana-
lyzing both historical patterns and seasonal variations, this approach aims to provide more accurate price
forecasts that can benefit farmers and other stakeholders in the durian industry.

2. Methodology

2.1. Data Preparation

The data preparation process focused on durian price data collected from the Chanthaburi market,
Thailand’s primary durian trading hub. The initial dataset spans a two year period from 2024 to 2025
with daily price records during the peak harvest seasons (April-June). The original data has gaps because
markets are closed and data collection is incomplete which required an advanced method to fill in the
missing information. Table 1 presents the characteristics of the initial dataset.

Table 1
Initial Dataset Characteristics

Season Total Days Missing Values Percentage (%)
Apr-Jun 2023 91 61 67.03
Apr-Jun 2024 91 59 64.84

The initial analysis of price dataset spanning from April to June in both 2023 and 2024 revealed sig-
nificant data issues. The dataset demonstrates a high proportion of missing values with approximately
67.03% missing data in the 2023 period (61 out of 91 days) and 64.84% in the 2024 period (59 out of
91 days). These substantial gaps in the data are primarily attributed to inconsistent data collection pro-
cedures and technical limitations in the data gathering process. To address these data quality concerns,
the proposed solution implements an interpolation strategy using Prophet model which is a robust time
series forecasting tool. Prophet is particularly well-suited for this task due to its ability to handle missing
values in time series data while accounting for multiple seasonality patterns and trends [1].

In addition, the preprocessed data is subjected to feature engineering procedures for model implemen-
tation. This included temporal feature creation with day and month indicators followed by normalization
using Min-Max scaler. Table 2 shows the structure of the final processed dataset used for model training.

Table 2
Processed Dataset Structure

Feature Description
Date Daily timestamps
Price Prophet imputed prices
Days Cumulative day index
Month Seasonal month indicator

The processed dataset comprises four key features essential for the time series analysis. The date
column contains daily timestamps that track temporal progression while price represents the daily price
values that have been cleaned and imputed using the Prophet algorithm to handle missing data. The
days feature serves as a continuous counter of days from the start of the dataset enabling trend analysis.
Additionally, the month feature is included to capture seasonal patterns that occur on a monthly basis
allowing the model to identify and learn recurring price fluctuations throughout the year.



4 N. Thongnim and N.N. Panngam / Running head title

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

2.2. Data Preprocessing

2.2.1. Missing Value Treatment with Prophet Model
The missing value imputation process employed Prophet model incorporating multiple seasonal com-

ponents and Fourier terms to capture the complex patterns in durian price data. The implementation
consisted of several key steps designed to maintain the temporal integrity and seasonal characteristics of
the price series. This additive regression model can be expressed as

y(t) = g(t) + s(t) + h(t) + ϵt (1)

where g(t) is the trend component, s(t) is the seasonal component with Fourier series, h(t) represents
holiday effects and ϵt is the error term. For seasonal components with Fourier series as

s(t) =
N∑

n=1

(
an cos

(
2πnt

P

)
+ bn sin

(
2πnt

P

))
(2)

where N is the number of Fourier terms, P is the period and an, bn are the Fourier coefficients. The
imputation process began with data segregation where existing price points are used for model training
and missing values are identified for imputation. The Prophet model is trained on non missing values
learning the underlying patterns and seasonality in the price data. The model then generated predictions
for the missing time points maintaining consistency with the observed seasonal patterns and trends.
The effectiveness of this approach is validated through visual inspection of the imputed values against
existing patterns and through statistical validation of the predictions’ alignment with historical price
ranges.

Fig. 1. Comparison of Original and Imputed Values

Fig. 1 shows that the final dataset combining original and imputed values provided a complete time
series that preserved the essential characteristics of durian price movements while maintaining temporal
continuity. This approach ensured that subsequent analyses and modeling efforts would have a robust
foundation of continuous data points, essential for accurate time series prediction.

The imputation results demonstrate strong adherence to market dynamics with the maximum price
constraint of 260 THB serving as a critical boundary condition. This threshold is carefully implemented
to maintain economic plausibility while preserving the seasonal patterns identified by the Prophet model.
The imputed values (shown in red) seamlessly integrate with the existing data points (shown in blue)
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following the natural price progression observed in the durian market. Notably, the model captures both
gradual price transitions and seasonal fluctuations reflecting the typical market behavior during the April-
June harvest period. The continuity between original and imputed values suggests that the Prophet model
effectively learned the underlying price patterns providing a reliable dataset for subsequent LSTM mod-
eling.

2.2.2. Dataset Structure and Feature Engineering
Following missing value imputation, temporal features are engineered to capture both linear time

progression and seasonal patterns as

X = {Dayst,Montht, Pricet} (3)

where Dayst represents the cumulative days from the start, Montht indicates the seasonal month (4-6)
and Pricet is the durian price at time t.

Table 3
Processed Dataset Structure

Feature Description
Date Daily timestamps
Price Prophet-imputed prices
Days Cumulative day index
Month Seasonal month indicator

Table 3 shows the processed dataset that contains both original and normalized features structured
for time series analysis. The temporal elements include daily timestamps and a cumulative day index to
track time progression while seasonal patterns are captured through monthly indicators. The price data
which has been preprocessed using Prophet for imputation of missing values serves as the main variable
of interest.

For temporal feature engineering, the following transformations are applied as

Datet = timestamp of day t

Pricet = Prophet predicted price at time t

Dayst = t − tmin

Montht =


4 for April
5 for May
6 for June

where t represents each time point in the series, tmin is the first day in the dataset and Montht represents
the seasonal indicator for the durian harvest period from April to June.
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2.2.3. Data Normalization Process
The Min-Max scaler transformation is applied to normalize all features to [0,1] as

xnormalized =
x − xmin

xmax − xmin
(4)

where x represents the original value of the feature (Days, Month and Price), xmin is the minimum value
in the dataset for that feature and xmax is the maximum value.

Table 4
Feature Scaling Parameters and Rationale

Feature Original Range Scaled Range Purpose
Days [0, 91] [0, 1] Linear time progression
Month [4, 6] [0, 1] Seasonal pattern recognition
Price [minp, maxp] [0, 1] Value normalization

Table 4 presents the scaling parameters applied to each feature in the dataset. The Days feature rep-
resents temporal progression within the April-June harvest period. This feature is normalized from its
original range [0, 91] to [0, 1] to facilitate the model’s learning of linear temporal patterns. The month
feature spans from April (4) to June (6) and is normalized to [0,1] to facilitate the recognition of sea-
sonal patterns. In this normalized scale, April corresponds to 0 and June to 1, creating a standardized
representation of the harvest season progression. The Price feature represents durian prices ranging from
minimum (minp) to maximum (maxp) values in Thai Baht. The values are normalized to [0,1] to main-
tain numerical stability during model training and ensure compatibility with other temporal features.
Therefore, this comprehensive scaling approach ensures that all features contribute proportionally to the
model’s learning process while maintaining their relative patterns and relationships.

Given the linear progression of days from April to June as

f (t) =
t − tmin

tmax − tmin
(5)

where f (t) is the normalized time value, t is the current day, tmin = 0 (April 1) and tmax = 91 (June 30).
This produces a linear progression from 0 to 1.

f (t) =
t − 0

91− 0
=

t
91

(6)

where t ∈ [0, 91].

2.3. LSTM Model Implementation

For the LSTM model, sequences are created using a sliding window approach with a 25-day time step.
The model employs a 25-day sliding window which is carefully selected based on multiple domain-
specific considerations. This window size holds particular significance in durian price prediction as it
aligns with natural market cycles including lunar month trading patterns in Thai agricultural markets.
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The chosen length enables effective capture of price momentum and trend reversals that typically man-
ifest over 3-4 weeks during the harvest season. Additionally, this duration allows the model to track
seasonal progression effectively capturing price variations across early, peak and late season supply
dynamics. The sliding window sequence can be formally expressed as

Xi = {[Dayst−24:t,Montht−24:t]}, yi = Pricet+1 (7)

where Xi represents the input sequence and yi is the target price for prediction. From a technical perspec-
tive, the implementation utilizes a sliding window mechanism that advances one day at a time through
the dataset. In the April to June period spanning approximately 91 days, the 25-day window generates
N = T − w + 1 sequences where T = 91 is the total number of days and w = 25 is the window size
resulting in 66 training sequences per season. These overlapping sequences preserve the temporal conti-
nuity of price movements ensuring that the model captures both short-term fluctuations and longer-term
trends in the durian market. This approach creates a balance between capturing detailed price patterns
and maintaining an adequate sample size for robust model training while satisfying.

{Xi, yi}N
i=1, (8)

where N = 91 − 25 + 1 = 67. This approach ensures that the model learns both short-term price
fluctuations and medium-term seasonal patterns while maintaining the temporal dependencies crucial
for accurate price prediction in the volatile durian market.

2.4. Model Architecture

The proposed model architecture implements a deep Bidirectional LSTM network designed specif-
ically for durian price prediction. The architecture consists of multiple layers optimized for capturing
both forward and backward temporal dependencies in the price data as

The detailed layer structure is as follows

(1) First Bidirectional LSTM Layer

• 150 units with sequence return
• Processes 25 time steps of temporal features
• Bidirectional processing captures future and past dependencies
• Followed by 30% dropout for regularization

(2) Second Bidirectional LSTM Layer

• 150 units without sequence return
• Further refines temporal patterns
• Followed by 30% dropout

(3) Dense Layer

• 50 units with ReLU activation
• Transforms LSTM outputs into refined features
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(4) Output Layer

• Single unit for price prediction
• Linear activation for regression task

The model is compiled with the following configurations

• Optimizer: Adam with initial learning rate of 0.001
• Loss Function: Mean Squared Error (MSE)
• Callbacks

* Early Stopping with patience=10
* ReduceLROnPlateau with factor=0.5, patience=5

Training parameters include

• Epochs = 100
• Batch Size = 15
• K-Fold Splits = 10

The selection of this architecture is driven by several key capabilities essential for accurate durian price
prediction. The bidirectional processing enables the model to capture temporal dependencies in both
forward and backward directions for understanding price movement patterns. The model’s deep struc-
ture combined with seasonal feature inputs effectively handles the inherent seasonality in durian price
data. To ensure robust performance, dropout layers are strategically placed to prevent overfitting while
the adaptive learning rate mechanism to ensures optimal convergence during training. Furthermore, the
implementation of k-fold cross-validation maintains model generalization by validating performance
across different data subsets making the model reliable for various market conditions throughout the
durian season.

2.5. Evaluation Metrics

The performance of the Bidirectional LSTM model is evaluated using multiple metrics to ensure
comprehensive assessment of its predictive capabilities. Three primary metrics are employed as

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (9)

where MSE (Mean Squared Error) measures the average squared difference between predicted prices
(ŷi) and actual prices (yi) providing a measure of prediction accuracy that penalizes larger errors more
heavily.

RMSE =

√√√√1

n

n∑
i=1

(yi − ŷi)2 (10)

The Root Mean Square Error (RMSE) provides an intuitive measure of prediction error in the same
unit as durian prices (Thai Baht) making it directly interpretable for stakeholders.
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R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(11)

The R-squared (R2) indicates the proportion of price variance explained by the model where values
closer to 1 indicate better fit. To ensure robust evaluation, these metrics are calculated across all 10 folds
of the cross-validation. The use of both training and validation metrics helps identify potential overfitting
and underfitting while the cross-validation approach ensures the model’s performance consistency across
different data subsets. The combination of these metrics provides a comprehensive view of the model’s
ability to capture and predict durian price patterns.

3. Results

3.1. Training Process

The training process is conducted using 10-fold cross-validation over 100 epochs with early stopping
criteria. Fig. 2 shows the learning progression for a representative fold showing the convergence of
training and validation losses.

(a) Fold 1 (b) Fold 2 (c) Fold 3 (d) Fold 4 (e) Fold 5

(f) Fold 6 (g) Fold 7 (h) Fold 8 (i) Fold 9 (j) Fold 10

Fig. 2. Training and Validation Loss Curves for Each Fold in 10-Fold Cross-Validation

The model typically converged within 40-60 epochs, as demonstrated by the early stopping mech-
anism. The learning rate adaptation is triggered approximately 2-3 times during training, effectively
managing the optimization process. Fig. 3 shows the model’s prediction performance on both training
and validation sets.

Table 5
Summary of Model Performance Metrics Across 10-Fold Cross-Validation

Metric Training Validation
R-squared (R2) 0.9153 ± 0.0243 0.9254 ± 0.0439
MSE 89.8651 ± 26.9683 65.3470 ± 33.1819
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(a) Fold 1 (b) Fold 2

(c) Fold 3 (d) Fold 4

(e) Fold 5 (f) Fold 6

(g) Fold 7 (h) Fold 8

(i) Fold 9 (j) Fold 10

Fig. 3. Comparison of Actual vs Predicted Prices for All Folds. Each subfigure shows Training (left) and Validation (right)
results.
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Fig. 4. Distribution of Performance Metrics Across K-Fold Validation

The cross-validation results demonstrate consistent performance across folds as shown in Fig. 4. The
model demonstrated robust performance across both training and validation sets as shown in Table 5. The
high R-squared values (training: 0.9153 ± 0.0243, validation: 0.9254 ± 0.0439) indicate that the model
explains approximately 92% of the variance in durian prices suggesting excellent predictive capability.
The close alignment between training and validation R-squared values with only a 1.01% difference
in their means. This indicates that the model generalizes well to unseen data without overfitting. The
Mean Squared Error (MSE) values show better performance on the validation set (65.3470 ± 33.1819)
compared to the training set (89.8651 ± 26.9683) though with higher variability as indicated by the larger
standard deviation. This pattern suggests that while the model maintains consistent predictive accuracy
across different data subsets, its performance can vary depending on the specific characteristics of the
validation data. The relatively small standard deviations in R-squared values across folds further confirm
the model’s stability and reliability for durian price prediction.

The training process revealed several important insights about the model’s performance and charac-
teristics. The consistent convergence across all folds demonstrated the model’s stable learning behavior
while the small gap between training and validation metrics confirmed that the dropout layers effec-
tively prevented overfitting. Furthermore, the bidirectional architecture proved successful in capturing
price patterns in both temporal directions enhancing the model’s ability to understand complex price
movements. The significant contribution of seasonal features to prediction accuracy highlighted the im-
portance of incorporating temporal patterns in durian price forecasting, particularly given the highly
seasonal nature of durian production and market dynamics.

Table 6
Training Process Summary

Metric Mean Standard Deviation
Convergence Epoch 35.0 ±0.0
Final Learning Rate 1.3e-04 0.0e+00
Training Time (min) 0.0 ±0.0

The training process demonstrated consistent performance across all folds. The model consistently
converged at epoch 35 indicating stable learning behavior. The final learning rate settled at 1.3 × 10−4

suggesting appropriate adaptation of the learning process. However, the training time measurement re-
quires recalibration as it shows zero values due to timing resolution issues in the measurement imple-
mentation.
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3.2. Evaluation Metrics

Table 7
Detailed Performance Metrics for Each Fold

Fold
Training Validation

R² MSE RMSE R² MSE RMSE
1 0.9130 93.9716 9.6939 0.8891 93.2995 9.6592
2 0.9086 93.5255 9.6709 0.9678 38.8361 6.2319
3 0.8545 155.9636 12.4885 0.9016 91.5806 9.5698
4 0.9485 53.6709 7.3260 0.8664 142.1813 11.9240
5 0.9259 77.6471 8.8118 0.9623 42.5006 6.5192
6 0.9415 62.3041 7.8933 0.9622 35.9177 5.9931
7 0.9120 94.9813 9.7458 0.9102 75.1719 8.6702
8 0.9080 103.6660 10.1817 0.8536 51.7899 7.1965
9 0.9291 69.2784 8.3234 0.9737 47.8027 6.9139

10 0.9115 93.6422 9.6769 0.9668 34.3903 5.8643
Mean 0.9153 89.8651 9.3812 0.9254 65.3471 7.8542
Std ±0.0251 ±27.1634 ±1.4047 ±0.0442 ±34.2825 ±1.9748

The model’s performance metrics across all folds demonstrate strong predictive capability and con-
sistency. The R-squared values show high accuracy in both training (0.9153 ± 0.0251) and validation
(0.9254 ± 0.0442) sets indicating that the model explains approximately 92% of the variance in durian
prices. The Mean Squared Error (MSE) and its square root (RMSE) values reveal better performance in
the validation set (65.3471 ± 34.2825 of MSE, 7.8542 ± 1.9748 of RMSE) compared to the training
set (89.8651 ± 27.1634 of MSE, 9.3812 ± 1.4047 of RMSE) suggesting good generalization without
overfitting.

3.3. Future Price Prediction

The price predictions for the durian harvest season (April-June) of 2025 are generated using the trained
BiLSTM model. The model predicts significant price fluctuations following seasonal patterns observed
in the historical data.

Table 8
Selected Price Predictions for Key Periods in 2025

Period Date Range Predicted Price Range (THB)
Early Season April 26-30 156.19 - 156.29
Price Decline May 5-10 152.34 - 149.85
Mid-Season Stability May 27-June 1 170.37 - 170.45
Peak Season June 25-30 263.14 - 266.40

The predicted price trajectory shows distinctive patterns throughout the harvest season in Table 8. The
period begins with a phase of initial stability in late April where prices maintain a steady level around
156 THB. Moving into early May, the market experiences a gradual decline with prices decreasing to
their lowest point at 149.85 THB. As the season progresses to late May, prices enter a mid-season plateau
phase, stabilizing around 170 THB. The most significant price movement occurs during the peak season
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Fig. 5. Predicted Durian Price Trends for April-June 2025

in late June where prices surge dramatically from 155 THB in early June to reach their highest point at
approximately 266 THB.

Fig.5 shows that these predictions suggest a significant upward trend in durian prices throughout the
2025 season with the most substantial increases occurring in late June. However, these forecasts should
be interpreted with consideration of external factors such as weather conditions, market dynamics and
potential economic changes that could influence actual price movements.

4. Discussions

The results from this study offer several significant insights into both the technical implementation
and practical implications of using Bidirectional LSTM for durian price prediction. The model’s per-
formance, demonstrated by high R-squared values (0.9153 ± 0.0243 for training, 0.9254 ± 0.0439 for
validation) which indicates robust predictive capabilities. The close alignment between training and val-
idation metrics with only a 1.01% difference, suggests effective generalization without overfitting. This
performance stability is particularly noteworthy given the complex nature of agricultural price data.
The marginally better performance on the validation set indicates that the model successfully captures
underlying price patterns rather than merely memorizing training data.

The model demonstrates particular strength in capturing seasonal patterns and market dynamics. The
predicted price trajectory shows four distinct phases such as initial stability, early decline, mid-season
plateau and peak season surge that align with known market behaviors in the Thai durian industry. This
capability is enhanced by the bidirectional architecture which enables the model to learn both forward
and backward temporal dependencies. The accurate prediction of these market phases provides valuable
insights for stakeholders across the durian supply chain. The model’s ability to identify price stability
periods and transition points is particularly relevant for market participants making strategic decisions.

The practical implications of these findings extend across various stakeholder groups in the durian
industry. Farmers can utilize the predictions to optimize harvest timing and marketing decisions, poten-
tially maximizing their returns by aligning harvest periods with predicted price peaks. Traders benefit
from improved understanding of expected price stability periods and transition points enabling more
effective inventory management and contract negotiations. Market regulators can leverage these predic-
tions for more informed market intervention planning and formulation.

However, several limitations of the current study should be acknowledged. The model’s reliance on
historical data from 2023 to 2024 may limit its ability to capture long-term market evolution patterns.
Additionally, while the model shows strong performance in predicting price movements, it does not
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explicitly account for external factors such as weather conditions and global market dynamics that could
significantly impact prices. The 25-day prediction window though effective for current patterns might
require adjustment for capturing longer-term market trends.

Future research directions could address these limitations by incorporating additional features such as
weather data and international market indicators extending the temporal scope of the training data and
developing ensemble approaches that combine multiple prediction methods. Such enhancements could
further improve the model’s robustness and practical utility in real world applications. The integration
of external factors and broader market indicators could provide a more comprehensive framework for
understanding and predicting durian price movements.

5. Conclusions

This research presents a novel approach to durian price prediction by implementing a Bidirectional
LSTM model enhanced with seasonal analysis. The study makes several significant contributions to both
the methodological and practical aspects of agricultural price forecasting. The primary achievements can
be summarized in three key areas.

First, the proposed Bidirectional LSTM architecture demonstrates exceptional predictive accuracy
achieving R-squared values of 0.9254 ± 0.0439 on validation data. This high performance validates
the effectiveness of combining bidirectional processing with seasonal feature engineering for capturing
complex price patterns. The model’s ability to maintain consistent performance across multiple cross-
validation folds indicates its robustness and reliability.

Second, the study successfully addresses the critical challenge of missing data in agricultural price
series through an innovative application of the Prophet model. The implemented imputation strategy,
with a maximum price constraint of 260 THB, preserves essential market dynamics while maintaining
economic plausibility. This approach provides a practical solution for handling data gaps common in
agricultural market data.

Third, the developed model offers practical value for various stakeholders in the durian industry. The
accurate prediction of seasonal price patterns including the identification of key market phases from
April to June. It provides actionable insights for farmers, traders and market regulators. The model’s
ability to forecast price movements with high precision can significantly improve decision-making in
harvest timing, inventory management and market planning.

The successful implementation of this model demonstrates the potential of deep learning approaches
in agricultural price forecasting. Future research could extend this work by incorporating additional
external factors and exploring longer prediction horizons. This study contributes to the growing body
of research on agricultural price prediction and provides a robust framework for similar applications in
other agricultural commodities.
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