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Predictive maintenance solution for industrial
systems - an unsupervised approach based on
log periodic power laws
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Abstract. A new unsupervised predictive maintenance analysis method based on the renormalization group approach used to
discover critical behavior in complex systems has been proposed. The algorithm analyzes univariate time series and detects
critical points based on a newly proposed theorem that identifies critical points using a Log Periodic Power Law function fit.
Application of a new algorithm for predictive maintenance analysis of industrial data collected from reciprocating compressor
systems is presented. Based on the knowledge of the dynamics of the analyzed compressor system, the proposed algorithm
predicts valve and piston rod seal failures well in advance.
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1. Introduction

Detecting the symptoms of a failure and predicting when it will occur, in multivariate or univariate
time series collected via the Internet of Things (IoT), is central to the concept of predictive maintenance
(PM), which is now used in almost every area of industry. PM allows a company to better prepare for
a potential failure by redesigning the production process in advance or creating a workaround when
shutdown is not possible. Thus minimizing the costs and the effort of standard maintenance operations
through predictive engineering.

Predicting failures, provided by PM, can be very profitable for a company, under the condition that
PM minimizes the number of false warnings (false positives) and maximizes the number of correctly
predicted events (true positives).

Let us define failure as the termination of the ability of a part of an industrial device to perform the
required function with the required efficiency. Another aspect of a failure that needs to be specified is
how it can manifest itself. A failure can develop gradually or appear as a sudden event. In this work we
consider only those failures that develop over time.

Creating a properly working PM process faces two main problems:

(1) related to the determination of time when a failure occurred in the considered technological process
or IoT data,
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1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

(2) the development or the application of the best algorithm (based on physical description, machine
learning, or statistical methods) to the data being analyzed.

Proper identification of the failure in IoT data (data labeling process) is a very difficult task and usually
requires very specialized knowledge. For various reasons (economic, technological), not every failure
requires corrective action. This is because the required efficiency that defines a failure in the monitored
unit may depend on the degree of reliance of the process on the considered failure. Sometimes, a minor
failure is not a sufficient reason to stop a monitored machinery or a production process. The determi-
nation of so-called good IoT data, i.e., the data when the monitored device behaves normally, is also a
data labeling process that requires expertise. In this work, every action that defines the state of the data
is considered a data labeling process.

Attempts to build a solution based on supervised Machine Learning (ML) models will encounter the
following problems:

(1) the complexity of the data labeling process,
(2) the model degradation: due to the evolution of IoT data, it is necessary to update the supervised

model because the current one starts to behave incorrectly. Such an update forces the creation of
new training data necessary for a new supervised model (new data labeling process),

(3) the complex process of monitoring the predictions of the currently working model. This is a difficult
task, especially when dealing with a small number of predicted failures [1].

In published works on failure prediction using supervised solutions [2], the authors omit the need for a
continuous data labeling process, as well as the need to monitor the degradation of the running model.
Thus, an important economic part of PM projects based on supervised models is passed over in silence.
In review articles [2], methods based on Neural Network architecture are placed in the category of
unsupervised methods. Hoever, these methods also require labeled training data. In this article, the term
“unsupervised method” is understood only as a solution that does not require any knowledge of labeled
data and any information about the state of the input data as good/healthy or anomalous.

The complex and expensive cycle of building and implementing a supervised method for a predictive
maintenance process, sketched above, strongly suggests that unsupervised approaches are a better tool
for building PM processes. An unsupervised solution removes the necessity of:

(1) a complex data labeling process running at all times as a part of a supervised model,
(2) monitoring of the deterioration of the model quality and thus re-creating models by training them

on updated training data.

This paper describes an unsupervised failure prediction method [3] used to monitor reciprocating
compressor systems based on a concept called Log-Periodic Power Law (LPPL) proposed in [4] and [5].
The LPPL mechanism is used to predict disasters in financial data [6], earthquakes [7], avalanches and
similar phenomena [8].

However, due to the different nature of the data analyzed, the LPPL method cannot be applied in
the same way as for bubble (or anti-bubble) detection in economic time series. Due to the different
definitions of PM failure in industrial applications, modifications need to be made to the LPPL method.
In a case of data describing the financial market, the variable that directly characterizes changes in the
system under analysis is examined. Such a variable is, for example, the index of the analyzed financial
market or the prices of shares.

In the case of a machine (e.g. compressor or other systems containing a number of subsystems), the
analysis uses indirect data collected by sensors. It is not possible to measure the direct changes causing
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the failure (e.g. material degradation, cracks etc.) but it is possible to measure changes resulting from
the influence of deteriorating machine components on the measured values.

In the description of the application of the presented method, such indirect data are, for instance,
changes in the opening angle of suction or discharge valves inside the compression chamber as a func-
tion of the volume in the cylinder chamber expressed by the angle of rotation of the crankshaft. In other
words, degradative (unmonitored) changes affect measured variable changes in a less visible (more dis-
torted) ways than in case of a direct measurement of variables.

The principle of operation of the proposed method is based on the detection of such behavior of the
analyzed data, which is in accordance with the logarithmic periodic power law. Finding such a functional
behavior in the data is equivalent to determining the corresponding point of change of the trend in the
time series. The diagnosed trend is a signature of future failure. In turn, the identified point of change
of the trend defines the beginning of the countdown to the predicted failure. Let us call the trend change
point the initial breakdown (IB). The concept of detecting an IB point for use in predicting failure is
similar to the concept of detecting a trend change point in a time series. Therefore, it is not necessary
to predict the time of failure in the future. All that is needed is to determine whether a given point in
the time series is or is not an IB starting point. If it is known that the current point in the analyzed time
series is an IB point, then based on the knowledge of the dynamics of the monitored device, it is possible
to determine the time window in the future (in units of the device’s operating time) in which the failure
will occur.
It should be emphasized that the determination of the IB point is not equivalent to the detection of
anomalies. Anomalies in the behavior of the unit should be expected only in the time window of the
expected failure. The concept of a time window in the future during which a failure is predicted is due
to the fact that it is not possible to predict the exact time of failure of the monitored device using the
presented method. This is mainly due to unpredictable events, such as: changes in the load of the device,
periods when the device is off or independent maintenance activities.

The organization of the paper is as follows. Chapter 2 briefly describes the current status of unsuper-
vised predictive maintenance in the industry. Chapter 3 answers the question of why the logarithmic-
periodic oscillation detection method is suitable for detecting sudden failures in an industrial system.
Chapter 4 describes a numerical method for determining failure time points from the data. The part 5
introduces the data used for the analysis presented and the following chapter 6 shows the results obtained
using the new method and compares these results with those obtained using online statistical method.
Finally, the part 7 discusses the results, advantages and disadvantages of the proposed method.

2. Related works

Given the introduced definition of “unsupervised method”, as a methodology that does not require
knowledge of the state of the input data, the list of existing methods for failure prediction is very limited.
Following the work of [9] (which also includes references to other research works, as well as studies of
specific solutions involving a broader understanding of the "unsupervised method"), the spectrum of
available solutions can be generally divided into 2 categories.

(1) Solutions involving the use of prediction techniques to predict points in the future and then compare
them with actual data to detect anomalies, as shown in [10]. Depending on predictive solutions
used, this category of methods requires a large amount of data. In this case, a separate problem is
the accuracy of the prediction part. Where the prediction part is a supervised method. Hence the
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requirement to control it, which makes the whole solution complicated if one wants to use it in
practical applications.

(2) Solutions based on measurements of distance or similarity used to evaluate the degree of data
anomaly. In this case, methods using clustering algorithms [11] or determining similarity between
time series or data are used. This approach sometimes leads to problems when encountering new
data that did not exist in the past. It happens that it makes it impossible to use them for real-time
data analysis.

The solution proposed in this paper is an attempt to solve the issues identified in both of the above
categories: the problem of demand for large amounts of data and the problem of data changes that do
not occured in the past.

The essence of the proposed method is to determine the initial breakdown (IB) points in the time series
of input data. Thus, it is natural to compare the proposed model with online methods that determine
trend change points in time series in fully unspervised mode. Latest advances in statistical online trend
change point detection can be found in studies [12, 13]. The difference between the statistical methods
of determining the trend change points and the IB points determined by the proposed method is that in
the proposed solution we are based on the search for a specific functional behavior (pattern) in the data.
As will be shown later, this pattern is characteristic for physical processes leading to a degradation of
device parts. A comparison of the results of the two methods, based on the same input data (statistical
[13, 14] and the proposed model), will be presented and discussed in the section 6.

3. The occurrence of log-periodic oscillations as a prelude to failure.

The purpose of the PM method is to provide predictions for future failures of the system described as
a set of various components cooperating together. This section illustrates why the LPPL-based algorithm
is applicable to failure prediction and describes the basics of the LPPL-based method.

The generalized relation describing the hazard rate h (t) (or hazard function) of a certain physical
quantity at time t prior to material destruction by degeneration [15] is of the form

ḣ (t) = Gh (t)δ (1)

where the ḣ (t) denotes the derivative of the function h (t) in time t. The δ and G are the parameters of
model. The G is a positive constant parameter. In the following, it is assumed that h (t) corresponds to
changes in the variable that is tracked and from which the failure is attempted to be predicted. The hazard
function, based on conditional probability theory, measures the probability that the relevant variable will
show signs of a critical behaviour, given that the critical behaviour has not occurred prior to time t.

The equation (1) has 3 classes of solutions depending on the value of δ. For δ = 1 the exponential
function is obtained

h (t) = h (t0) eG(t−t0) (2)

where t0 is a value of the initial time.
For δ < 1:

h (t) = [(1− δ) (t − t0) G]
1

1−δ (3)
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and for δ > 1:

h (t) = [(δ− 1) (tc − t) G]
1

1−δ (4)

with tc as a constant corresponding to time in a future. As can be seen, the solutions found for δ = 1 (2)
and for δ < 1 (3) do not converge for times t > 0. Therefore, the time of critical behaviour cannot be
determined. The most interesting case is δ > 1 (4), where the solution has a converging point at a finite
time tc in future. In our analysis, the time tc will denote a critical time point and can be determined by a

choice of G =
(

1
tc

) 1
1−δ . Then tc = 1

(δ−1)h(t0)δ−1 .

Let us assume that the degradation of a working part, can be treated as a discontinuous stochastic
process associated with a given monitored variable. To simplify the analysis, the second assumption is
to treat the degradation changes of physical quantity p (t) over time t as a non-homogeneous Poisson
process in which the changes occur according to the hazard rate function h (t). The dynamics of such a
process can be described by the equation

dp (t) = −p (t) h (t) dt (5)

the solution of which can be written as

log

[
p (t)
p (t0)

]
= −

∫ t

t0
h (u) du = P (t) . (6)

In our case, P (t) has an approximate form

P (t) ≈ h0
η+ 1

(tc − t)η+1 (7)

where η = 1
1−δ and the P (t) is shifted by the integration constant h0

η+1 (tc − t0)
η+1. The result obtained

(7) coincides with work [16] (compare with equation (3) in the reference [16])
Solution (7) is invariant under continuous scale invariance (CSI), which manifests itself through the

scaling property of the solution P (t) if the argument of the function P (t) is scaled to (tc − t). Rescaling
by some factor ν the argument tc− t→ (tc − t)×ν changes the solution P (t) to the form P (t)×µ where
µ = ν−1−η [17]. The CSI feature, around the critical points t = tc, is common to systems demonstrating
a continuous phase transition (second order phase transition).

The basic assumption of the LPPL method is that, the described process is near the critical point of
the second-order phase transition. With this assumption, the final equation is obtained, the use of which
for fitting is known in literature as the LPPL method [18], [19].

Let W (t) = log (p (t)) and p (t) corresponds to the variable by which our industrial system is analyzed
as a function of time t. Let tc be the time of event that defines our phase transition in physical framework
(critical time point). Then the argument x and the real function F (x) are defined as

x = tc − t with t < tc and F (x) = W (tc)−W (t) (8)

As a starting point for our derivation, the CSI is assumed to exist around critical points.
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This allows us to use the renormalization group approach, which permits us to write a certain real
function F (x) around a critical point x ≈ 0 through the rescaled argument x expressed by a scaling
function φ (x) in the form

F (x) =
1

µ
F [φ (x)] (9)

where µ is a constant and its argument x is invariant under arbitrary linear transformation of the x:

φ (x) = νx and x > 0 (10)

with ν as a constant.
The solution of equation (9) is the function

F (x) = Cxα (11)

where C and α are constants to be determined.
The condition of scaling invariance (9) with the general form of the solution postulated by eq. (11)

can be rewritten as

Cxα = C
να

µ
xα (12)

which, after taking into account the identity,

1 = ei2πn with n ∈ N, (13)

leads to the equation

ei2πn =
να

µ
(14)

what allows to calculate the α exponent in a most general form as

α =
log (µ)

log (ν)
+ i

2π

log (ν)
n. (15)

Therefore, the solution of equation (9) can be expressed, according to [20], as

F (x) =
C
µ

(νx)
log(µ)
log(ν)

+i 2π
log(ν)

n
=

C
µ

(νx)
log(µ)
log(ν) Π

(
log (x)

log (ν)

)
(16)

where Π (·) is a periodic function with period 1, i.e. Π (y) = Π (y + 1) . The index n should be treated
as one of the parameters characterizing the described physical system. Since n and other parameters
appearing in the function (16) are unknown, it is necessary to reformulate the function (16) in such a
way that it can be used to fit existing data and thus determine whether a given point tc is a critical point.
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An additional necessary condition that must be satisfied by function (16), or more precisely by its real
part, is the trend that is determined by the power law (n = 0), which is the leading order term and the
oscillations associated with n 6= 0 will contribute as next-to-leading order corrections.

The periodic function Π (·) can be expressed by means of the Fourier series with respect to the variable
y with period T

Π (y) = exp
[
i2πn

( y
T

)]
=

+∞∑
k=−∞

ckei2πk( y
T ) (17)

with

ck =
1

T

∫ T
2

− T
2

{
exp

[
i
2π

T
yn
]}

e−i 2πP kydy =
1

π

sin [π (k − n)]

k − n
for n, k ∈ N. (18)

However, non-zero coefficients ck of the Fourier expansion (17) are obtained only for non-integer dif-
ferences (k − n), which contradicts our claim for the existence of non-zero expressions associated with
n ∈ N. The problem of zero coefficients of the fourier expansion of (17) can be solved by rewriting the
identity (13) to the form

1 = ei2πn → 1 = ei 2πq (nq) (19)

where, the variable q denotes a parameter associated with the physical degradation mechanism of the
described system.

In that formulation, α (15) can be rewritten as

α =
log (µ)

log (ν)
+ i

2π
log(ν)

q

n
q

(20)

what allows us to rewrite the equation (16) to the form

F (x) =
C
µ

(νx)

log(µ)
log(ν)

+i 2π
log(ν)

q

n
q

(21)

In this case, the expansion of F (x) into Fourier series gives us the following result.

F (x) =
C
µ

(νx)
log(µ)
log(ν) e

i 2π
log(ν)

q

n
q log(x)

=
C
µ

(νx)
log(µ)
log(ν)

∑
k∈N

cke
i 2π
log(ν)

q

log(x)k

(22)

where

ck =
1

T

∫ T/2

−T/2
ei 2πT

(
n
q−k

)
ydy =

1

π

sin
[
π
(

k − n
q

)]
k − n

q
(23)
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with a redefined variable y = log(x)
log(ν)

q

.

Given the denominator
(

k − n
q

)
in the coefficients of ck (23), the main dominant terms of the

series (22) are defined by the index k from the set {−1 + [n/q] , [n/q] , 1 + [n/q]} where [n/q] is
the integer part of division n/q. To simplify the notation, let us redefine the index values from
{−1 + [n/q], [n/q], 1 + [n/q]} to {−1, 0,+1}.
This allows us to approximate the final form of the function F (x) (22) by the first 3 largest components
of the Fourier series (c0 and c−1 or c+1)

F (x) ≈ C
µ

(νx)
log(µ)
log(ν)

[
c0 + c±1 cos

(
2π

log(ν)
q

log (x)

)
± ic±1 sin

(
2π

log(ν)
q

log (x)

)]
(24)

where the notation c±1 was used to denote ambiguity as to which coefficient is the second dominant
one for k = −1 or k = +1. Since only the real part of the expression is of interest (our measurements
are real values), using the previous definition of the variable F (x) (8) and generalizing our unknown
parameters (µ, ν, C, q, n, k and W (tc)) by adding constant A and phase Φ to the formula (24) to their
new representations (A, B, m, C, ω, Φ) one obtains the final formula which is referred to as a first-order
model and used in LPPL literature [18, 19]

W (t) ≈ A + |tc − t|m [B + C cos (ω log |tc − t|+ Φ)] . (25)

For the purpose of numerical fitting the LPPL function to the data, a transformed version of the formula
(25) is used, in the form of

W (t) ≈ A + |tc − t|m [B + C1 cos (ω log |tc − t|) + C2 sin (ω log |tc − t|)] (26)

where C1 = C cos (Φ) and C2 = −C sin (Φ). Both equations (25, 26) can be used to find critical time
points in the time series of input data.

4. Fitting method of the LPPL model to the data

Due to the number of parameters (A,B,m,C1,C2,ω) necessary to be determined during the fitting pro-
cedure of the LPPL function (26) and the presence of many local extremes, the procedure of obtaining
the best fit is difficult and computationally expensive.

Instead of trying to determine the critical time tc in the future, as is determined in the case of predic-
tions of crashes in financial time series [16, 19, 21], it is assumed that the critical time point is "now".
With this assumption, the calculations involved in fitting the function (26) to the data are performed for
a range of time windows of different lengths from the past to "now". This corresponds to the hypothesis
that the time point tc (time point of the phase transition) is "now" and corresponds to the last point in the
input time series tinp. Therefore, it is necessary to add to the set of parameters, an additional parameter
specifying the length of the subset of time series points tinp preceding the time point tc for which the best
fit of the function W (t) (26) was found. The length of this subset is denoted as lmax.
In particular, our redefined set of arguments x = tc − t in the matching procedure is the set of points
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〈1, xlmax〉 in time units characteristic to the tinp series. The definition of the argument set x = tc − t in the
matching procedure is replaced by the set of points 〈1, xlmax〉, where 1 corresponds to the present time
and lmax corresponds to the time of lmax from the past. The index lmax is the one of the parameters of the
matching function (26).

As parameter fitting, the method described in the work of [21] is used, appropriately modified for our
purposes, i.e., by excluding the parameter corresponding to the tc and adding the parameter lmax to the
fitting procedure.

The constraints imposed on the fitting parameters (lmax,A,B,m,C1,C2,ω) are as follows:

(1) lmax: the number of past data used for the best fit. For a small number of data there may be too
many good fits (with very small fitting error), which may correspond to random correlations of the
data with the form of the fitted function (26).

(2) A > 0: since in our case there are always positive values. It is determined by the character of the
input data.

(3) 0 < m < 1: to ensure that the fitting value for the critical time tc was greater than zero (m > 0) and
changed faster than exponentially for times close to the critical time tc (m < 1).

(4) 2 < ω < 8: this condition avoids too fast log-period oscillations (otherwise they would fit the
random component of the input data) and too slow log-period oscillations (otherwise they would
contribute to the power law behaviour ≈ A + B |tc − t|m)

(5) B, C1,C2: these parameters are fitted without additional constraints.

Depending on the type of input data to be analyzed, the limits of variation of the parameters to be fitted
require careful adjustment.

Having determined all parameters of the fitting LPPL function, in the next step, it is necessary to
determine trends based on the identified local maxima and minima of the shape of the fitted function:
Tmax for local maxima and Tmin for local minima. The procedure of finding trends is carried out separately
for maxima and minima in the following way:

(1) all local extrema (N) are found,
(2) from this set, the N-1 extreme values closest to the current time point (i.e., the point for which an

attempt is made to determine whether phase transition has occurred or not) are selected,
(3) To this set of points a straight line is fitted by linear regression. The slope of the line determines

the trend for a given category of extremes (maxima or minima).

Then, using the calculated trends of the extreme values of the best LPPL fit, it is determined whether
a given point (defined as a pair: {datetime, value}) corresponds to a phase transition or not. For this
purpose, a theorem describing the critical time point was formulated. Its proof will be the aim of the
next publication.

Theorem 1. Assume that the function f (x) corresponds to the best found fit of the LPPL function (26)
to the analyzed input time series ts = {(tn − tlmax , yn−lmax) , ..., (tn − tn−1, yn−1)} where lmax > 0 is one of
the fit parameters of the function f (x) (26) specifying the length of the sequence preceding the actual
values (tn − tn−1, yn−1) defined by the index n. The function f (x), have Nmax > 2 local maxima and
Nmin > 2 local minima. Let Tmax denote the slope of the linear fit determined by the last Nmax values of
the local maxima and Tmin denote the slope of the linear fit determined by the last Nmin values of local
minima.

If both trends Tmax and Tmin determined for the function f (x) have the same behavior (both increasing
or decreasing) for the last point (tn − tn−1, yn−1) of the series ts, then the point (tn, yn) is the critical point
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for the series ts. The trend of the series ts will change to the opposite for next points (tn+k, yn+k) (where
k > 0) with respect to the trend for points preceding tn.

In the presented method, any point that satisfies the Theorem (1) is treated as a point initiating a future
failure - the initial breakdown (IB) point.

The formalism described above can be summarized as follows: the appearance of a failure due to
deterioration of components in a complex system is preceded by the appearance of a phase transition
of the 2nd kind, defined by point IB (critical time point). From this time point, the process of failure
development begins. This period (after the time defined by the IB point) can be monitored by detecting
anomalies. Anomalies (as a result of reduced process efficiency) occur when the effects of the failure
become large enough and begin to affect the behavior of the monitored device.

Determining the time of failure requires knowledge of the dynamics of the monitored system and will
be discussed in section 6.

5. Data description

Monitoring data from a reciprocating compressor, describing the PV diagram of one of the compres-
sion chambers, was used to demonstrate the operation of the method. Based on these, the values of the
angle of opening of the suction valve (OSV) expressed by the angle of rotation of the crankshaft were
determined. The data is available at [22].

This value, for a given cycle described by the PV diagram, is very sensitive to changes in the amount
of gas in the chamber, for example, due to its leakage through a broken valve or piston rod seal system.
OSV changes are directly dictated by the thermodynamics of the compression process in the compressor
chamber. Monitoring the changes in OSV provides a base for compressor diagnostics and allows to de-
termine compressor efficiency, valve operation, or the condition of the piston seals or piston rod sealing
elements [23].

The data has been averaged to daily values and covers a period of time between 2019-08-23 and
2022-01-19.

In order to compare the results of failure prediction, data identifying the dates of repair interventions
with their respective reasons for failure and the dates of observation of anomalous compressor behavior
without interruption of operation were used.

6. Prediction of failures: methodology and results

To test the effectiveness of our algorithm, a backtest of the detection method was conducted on the
OSV data, calculating initial breakdown (IB) points. The range of the variable length of the time se-
ries lmax was assumed to be 30 < lmax < 101 in time units of days. Given the minimum number of
observations (101 days) needed to perform calculations of the IB points, the backtest is started for time
t = tstart + 101 (in daily units). Then, moving forward in time to the future, the best-fit LPPL function
(26) is calculated for each subsequent time t by determining the goodness of fit of the LPPL function
using the mean squared error (mse).

Intuitively, one can expect that the accuracy of determining the critical points using Theorem (1) will
strongly depend on the error of fitting the LPPL curve (26) to the data. The smaller the fitting error,
the greater the confidence that a given point of the input time series is indeed an IB point according to
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Theorem (1). In addition, it is expected that in the vicinity of the true IB breakpoint (before and after it),
the method should find some good fits of the LPPL function with a small error, but this is not a necessary
criterion for the existence of an IB point for days as time units.

Figure (1) shows 2 examples of the fit function (26) to data along with calculated criteria for trends
determined from maxima and minima of the fitting function satisfying the criteria of Theorem (1).

(a) positive trends

(b) negative trends

Fig. 1. Examples of LPPL function (26) fits for cases with positive trends (a) and with negative trends (b) for selected current
times (dates in proleptic Gregorian ordinal units). Fit parameters calculated for both trend categories: (a) positive trend: current
date: tc = 2020 − 08 − 28, length of the time series: lmax = 79, mean squared error: mse = 2.6 · 10−5; (b) negative trend:
current date: tc = 2020− 09− 23, length of the time series: lmax = 55, mean squared error: mse = 5.7 · 10−5.

Figure (2) shows the application of this procedure to the diagnosis of the critical points with additional
information about the dates of failure repairs (see the description of Figure (2)).
Figure (2) confirms our initial hypothesis very well. It shows:

(1) groups of points with similar fitting errors at least 14 days before the time of failure identification
(repair is usually performed with additional delay due to the compressor operating conditions),

(2) dependence of the matching error on the criticality of the failure: the signaling of the grouping of
critical points for the beginning of 2020-12-14 is characterized by a large error (mse = 24.9·10−5),
much larger than for the group of points for which the failure has been confirmed (mse <= 5.7 ·
10−5).

Taking these conclusions into account and comparing the recorded failures and behaviors suggesting
problems in compressor operation, classified by experts as insignificant, with the predictions made by



12 B. Łobodziński /
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Fig. 2. Calculated IB points for the analyzed input time series (marked in figure by a solid line with measurement points).
The vertical lines of different colors indicate the diagnosed by the algorithm IB points. For each group of the IB points, the
mean value of the matching error (mse) of the LPPL function (26) is annotated. The black vertical lines indicate the dates
of compressor repairs, which typically took place a few to several weeks after the algorithm detected the fault (IB points).
The correlation with the diagnosed breakpoints is clearly visible, except for the prediction determined with the largest error
(mse=0.000249) for 2020-12-14.

the model, it is possible to determine the threshold values of the fitting error (mse) and the corresponding
categories of predictions:

Definition 1. Classification of calculated initial breakdown points:

(1) Critical event: (mse < 6 · 10−5) severe failure expected, checking of the compressor required and
preparation for repair,

(2) Monitoring event: (6 · 10−5 <= mse < 10 · 10−5) distinct possibility of issues, monitoring of
compressor behavior required.

(3) Irrelevant event: (10 · 10−5 <= mse) no significant issues predicted, compressor behaviour can
be monitored though.

As shown, sometimes the algorithm detects a larger number of IB points located very close to each
other. Such cases were simplified by choosing a single representation (the first IB point of the group) for
each group of signals. This was done by assuming that the signal belongs to a group if its distance from
the preceding signal is smaller than or equal to 3 days.

6.1. Determining the time window of predicted failures

By comparing the failure times predicted by the algorithm with their actual occurrence, a criterion for
predicting the time window in which the failure will occur can be also determined. One of the parameters
for fitting the LPPL function (26) to the data is the length of the chosen sequence of data preceding the
analyzed time point lmax. For the data analyzed, the time window for the occurrence of a predicted failure
was defined as:

Definition 2. The predicted time period of a failure occurrence is defined as an interval
〈
n + lmax

2 , n + 90
〉
,

where n and lmax are the indices of the actual time point xn and the parameter defining the length of the
input time series tinp used to find the best fit of the LPPL function (26) to a given value of tinp (xn, yn),
respectively.
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Definition (2) is based on a knowledge of the dynamics of the device for which the algorithm param-
eters have been defined. For other devices, all parameters should be selected based on the dynamics of
their behavior. Duration of the time window with predicted failure is assumed to be valid for a certain
period of time and is up to 90 days.

In a case of compressors, due to the different criticality of failures, some of them may be accepted for
a longer period of time (even several months in the case of valve failures) while waiting for a convenient
moment for repair.

Considering:

• the classification of alerts specified in Definition (1),
• the selection of the representative of the groups of warnings (by selection of the initial signal for

the common group of calculated IB points),
• Definition (2) specifying the expected time window in which the failure will occur,

the raw results shown in Figure (2) can be redrawn to a new form, as shown in Figure (3). The correlation
between the predicted failure times and the actual repair times, or the time periods when experts detected
abnormal compressor behavior is very good for the Critical event and Monitoring event categories.
Predictions in the Irrelevant event category were not confirmed by any repair and diagnosis records.

6.2. Root cause of predicted failures

In the analysis presented here, the input data monitors the change in the opening angle of the suc-
tion valves in the compression chamber expressed by the angle of rotation of the crankshaft. The trend
identified from the determination of the IB points can be used to guess the type of future failure in the
compression chamber [23]. By predicting the trend for times after the IB point, it is possible to try to
determine approximately which part will fail - the valve or the piston rod sealing rings. Thus, when the
predicted trend of the suction valve opening angle is decreasing, it is likely that the suction valve or
piston rod seal rings are failing. If the trend suggests an increase in angle, this behavior indicates a leak
in the discharge valve.

Thus, based on Theorem (1) and a physical interpretation of the behavior of the time series, the al-
gorithm is able to predict not only the time window of failure, but also the group of parts that may fail.
This provides an opportunity to verify the prediction not only on the basis of event times, but also on the
basis of identifying the parts that can fail.

To better illustrate the additional information regarding the location of the future failure, Figure (4)
shows the same data as Figure (3) with additional information about the parts that actually failed, the
parts in which experts have observed problems and prognosis of failures predicted by the algorithm.
Details are given in the description of Figure (4).

For the entire time period analyzed, 2 cases deviating from this diagnosis are visible

(1) in the category Monitoring event, for date 2021 − 07 − 15, there is a disagreement between
the predicted failure type suction valve or sealing - leakage and the diagnosed one indiation of
discharge valve leakage.

(2) the perturbation identified by experts, started on 2021 − 11 − 30 and identified as indiation of
discharge valve leakage was not predicted by the algorithm at all.
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Fig. 3. Redrawn prediction of failures by the algorithm in comparison with reparation times and problems detected by experts.
Figure shows representations of groups of discovered IB points (colored and continuous single vertical lines) and predicted
failure time periods corresponding to them according to Definition (2) (corresponding colored areas bounded by vertical dashed
lines). The categorization of the criticality of the forecasted problems (Definition (1)) is represented by the splitting into 3
separate figures, each for a separate criticality category. The Monitoring event class remains without any marked vertical lines.
The algorithm found no prediction for this category. The reparation (maintenance) dates are indicated in figures by black vertical
lines. Time periods of abnormal compressor behavior requiring monitoring and not qualified for repair by experts are indicated
by the gray colour without additional delimiting lines. The intersection of the areas determined by the algorithm as a period of
failure occurrence with periods of abnormal behavior of the compressor can be seen for periods starting from 2021-07-15 in
the Critical event category. The raw data of the input time series tinp are indicated by the solid blue line with the measurement
points (o).

6.3. Comparison with statistical method

The described method generates IB points before the appearance of anomalies associated with a fu-
ture failure (section 4). This is why the LPPL-based solution has an advantage over solutions based on
anomaly detection as a signature of a forthcoming failure.

It cannot be excluded that the IB points detected by the described method, may be the same as the
statistically defined change points in the input trend of the time series. For comparison of the results
determined by the discussed solution with the trend change points determined statistically, the online
changepoint detection method from the work of [13] was used. This solution is available in the form of
the Python library [14] (changepoint_online).

I ran a model based on detection of two states of the analyzed data: one focusing on the detection of a
decreasing trend, and the other focusing on the changes in the increasing trend. This way, it is possible
to track when the analyzed variable increases and when it decreases. This corresponds to the ability to
detect the type of future failure, as described in subsection 6.2.

In each iteration of the historical test, two changepoint detectors are run, one focusing on decreas-
ing changes (left detector) and the other on increasing changes (right detector). In the source of the
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Fig. 4. The same graphs as in Figure (3) with added annotations describing the failures predicted by the algorithm - colored texts
(different from gray and black), reasons for compressor reparations - black text and diagnosed abnormal compressor behavior
requiring monitoring - gray text. For better visualization, areas of the diagnosed abnormal behaviour of the compressor that
require monitoring are displayed in the "Monitored Event" category.

changepoint_online [14], this corresponds to the terminology: left and right detectors, respectively. The
two detectors work independently of each other. When either model exceeds a threshold value, it is
reinitialized.

A comparison of the results of the two methods at the level of determining IB points and trend change
points is shown in Figure 5.

As shown in Figure 5, the set of IB points determined by the LPPL method (14 alerts) is much smaller
than the set of trend change points found by he online statistical method (changepoint_online) (44 left
and 33 right detections) . This is consistent with intuition because not every trend change point is a sig-
nature of change due to device degradation. The selection of all trend change points will create a lot of
false signals. Therefore, it is necessary to correctly identify the threshold value to be used for selection
of the best trend change points, which may suggest future failure. The choice of the threshold value
should demonstrate the relation between changes in the behavior of the analyzed variable with degrada-
tion processes in the monitored device. Such a correlation requires a separate analysis and knowledge
of the labeled data. The applied statistical method is unable to predict future failures based solely on
determining trend change points in a fully unsupervised manner.

7. Discussion

The comparison of information coming from the failure predictions and comparing it with the knowl-
edge from maintenance logs and expert detection of periods of anomalous compressor operation, includ-
ing the prediction classification, is provided in Table 1.
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Fig. 5. Comparison of the results of the presented method (LPPL method - top figure) with the statistical method (change-
point_online - middle and bottom figures) at the level of determining IB points and trend change points. The analyzed time
series tinp is shown by the solid blue line with the measurement points (o). The black vertical lines indicate the compressor
repair dates. Time periods when abnormal compressor behavior requiring monitoring was not qualified for repair by experts are
indicated by the gray colour without additional delimiting lines.
Top figure: for the LPPL method, the vertical lines in different colors indicate the IB points diagnosed by the algorithm for the
LPPL method (as in Figure 2).
Middle and bottom figure: the found points of upward (middle figure) and downward trend change (bottom figure). Calculations
of trend change points are shown for the threshold value of the 75th percentile.

Major challenges in the field of industrial application of failure prediction, especially in the unsuper-
vised version, is the number of issues corresponding to proper identification of failures and behaviors of
monitored devices. These difficulties mainly stem from:

• the large variety in the types of failures,
• the small number of failures compared to the amount of data,
• the large variety of behaviors leading to the same type of failure,
• the difference in operating conditions, which can cause ambiguity in labeling accurate data.

The problems are very difficult to solve if the methods used to predict failures are based on the analysis
of numerical values of input data (by calculating similarities, correlations, logic trees, building naural
networks, etc.). Normalization and/or standardization procedures only introduce a common scale to the
analyzed data.

The proposed method introduces a new type of procedure, which is based on the search for common
functional behavior (26). From the point of view of the numerical values of the analyzed data, the course
of the fitted function can be very different for different events - different patterns of the function for
different values of fitted parameters. Even when new data appears with values that did not exist in the
past, it is possible to determine the initial breakdown (IB) for a potential event, as the model fits functions
to the data.
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The IB points determined by this method, upon which the time window of failure occurrence is pre-
dicted in the next step, are the trend change points in the data.

To calculate the key performance indicators (KPIs) of the presented algorithm, the generally known
indicators can be used: Precision = T P/ (T P + FP) and Recall = T P/ (T P + FN), where T P - de-
fines True Positive events, i.e. correctly predicted failures or abnormal behavior in the operation of the
compressor, FP - False Positives, i.e. events predicted by the algorithm that turned out to be false and
FN - False Negatives, i.e. failures and instabilities of the compressor that were not predicted.

In the analysis of results (section 6), the limits of acceptance of errors of fitting the LPPL function (26)
determining the criticality of the predicted events (Definition 1) were defined on the basis of the results.
Therefore, in order to calculate the Precision and Racall indicators, all results are taken into account
without distinguishing them due to the defined criticality.

Comparing the predicted failure periods, taking into account the dates and predicted types of failures
with the dates and descriptions of Maintenance logs or recorded faults (Figures 3 and 4 and the table
1), the calculated values of T P, FP and FN are as follows: T P = 4, FP = 2, FN = 1 . Hence
Precision = 0.67, Recall = 0.8. Given that, this result takes into account the dating of the predicted
failure period along with the prediction of the cause of failure, such an outcome is considered very good.

In summary, the list of advantages and disadvantages of the presented method is a consequence of
a paradigm change in data behavior classification, from the one based on numerical values to the one
based on functional similarity.
Advantages of the method:

• The proposed model can be applied to very short time series (in our case, the minimum length of
the series is only 101 points).

• There are no problems with data that appears for the first time. In the proposed solution, the part
that qualifies certain data as IB is based solely on functional behavior. This universality is due to
the renormalization group approach.

• The simplicity of the final production solution. The most difficult part of the algorithm is fitting the
function to the data. Since the method does not contain components based on supervised methods,
there is no need to monitor their quality.

Disadvantages of the method:

• The method is applicable to data that describe a physical process that degrades/changes due to
perturbations introduced by interacting elements. This is because the method searches for behavior
characteristic of phenomena in which phase transitions can be observed. Hence, not all data are
appropriate for the described method.

• Matching the function to the data is based on the proper determination of boundaries of the pa-
rameters to be matched (26). This requires individual adjustment of the ranges of change of these
parameters and the unit of time in the data to the device being monitored.

8. Conclusions

This paper presents the application of a methodology for describing critical behavior in complex
systems based on the renormalization group approach in unsupervised predictive maintenance. The pro-
posed algorithm analyzes the behavior of a complex system based on a time series representing the phys-
ical behavior of the system. To demonstrate the effectiveness of the algorithm for industrial applications,
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1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

predictive results are presented for time series describing the thermodynamics of the gas compression
process in a monitored reciprocating compressor in one of the compression chambers.

It was shown that failures in the analyzed industrial system can be treated as critical behavior in
complex systems. Then the symptoms of future failure appear in the form of Log Periodic Power Law
structures for phase transitions in the analyzed time series. Based on the most generalized scheme for
describing the behavior of an analyzed system in the vicinity of phase transitions of the 2nd kind based
on the Log Periodic Power Law, a new way of predicting failures in compressor systems is proposed.

The presented algorithm is based on 3 steps. In the first step, the algorithm determines the IB points
in the analyzed time series by means of fitting the LPPL function (equation (26)) using the proposed
Theorem (1). The second step of the proposed method is based on the knowledge of the dynamics of the
monitored system, and specifies the time window in which the predicted failure may occur. In the last
step, a criticality classification of the predicted failure is carried out, based on the goodness of fit of the
LPPL curve to the data (critical event, monitoring event, insignificant event).

Taking into account the specificity of problem detection in industrial systems (the demand to reduce
the number of false alarms and to minimize the number of unpredicted events), it has been demonstrated
that it is possible to experimentally determine such an error threshold of fitting the LPPL function to the
data that all serious failures can be predicted if the fitting error is smaller than the threshold. In addition,
it is also possible to define such thresholds for the LPPL curve-fit error to the data, for which the area of
occurrence of less critical failures, that do not require rapid intervention, can be defined.

The method can also be applied to predictive IoT analysis of other industrial systems.
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