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Abstract. Chronic non-communicable diseases such as cancer, stroke, diabetes mellitus (DM), hypertension (HT), chronic kid-
ney failure (CKF), and cardiovascular disease (CVD) have become major health issues worldwide. Another challenge arises
when predicting these diseases using datasets from general checkup (GCU) examinations. One of the problems is the imbalance
in the number of positive and negative classes in the data. In addition, doctors need additional information from GCU data to
provide preventive therapy to people at risk of developing chronic diseases in the future. This can be achieved by integrating
expert knowledge with machine learning models. This research aims to predict chronic diseases using a single type of GCU
data. Another objective is to modify the synthetic minority oversampling technique (SMOTE) to handle imbalanced data and
implement voting ensemble learning based on expert judgment. The results show that the proposed model improves the predic-
tion performance by 10% to 47% compared to traditional models. This system provides guidance to medical professionals to
perform preventive interventions more accurately and efficiently, helping to improve the quality of life of patients.

Keywords: Chronic disease prediction, GCU dataset, Weighted SMOTE, Tree-based ensemble learning

1. Introduction

Non-communicable diseases such as cancer, stroke, DM, HT, CKF, and CVD have become major
health concerns worldwide [34]. These diseases have a significant impact on the quality of life of in-
dividuals and communities and impose a substantial economic burden on healthcare systems [30]. Ef-
fective management and comprehensive prevention strategies are critically important [1],[21],[35]. This
includes health education [12], managing risk factors [20], [25], [43], and predicting disease likelihood
[2]. These efforts are key to reducing the prevalence and impact of these diseases. In addressing this
challenge, innovations in medical and health technology are highly needed.
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Several studies on chronic disease prediction are continually improving to develop more accurate pre-
diction methods. Almadani in their research, predictions were made using data mining techniques to
identify patients with the highest likelihood of experiencing a stroke [3]. However, the model applied
in the study did not include any modifications or the addition of variables. In their research, Latha ap-
plied an ensemble strategy to improve the accuracy of CVD risk prediction based on existing risk factors
[24]. This strategy achieved a maximum improvement of 7% in the precision of the prediction. How-
ever, the ensemble strategy used only existing machine learning models combined without incorporating
additional variables.

Fitriyani et al. proposed an early prediction model for diabetes mellitus and hypertension based on
individual risk factor data [15]. The study also developed a mobile application to provide a practical
tool. However, the data used was derived from four different secondary datasets to predict these two
diseases. Ren et al. studied the problem of predicting chronic kidney disease in hypertensive patients
using a hybrid model combining Bidirectional Long Short-Term Memory (BiLSTM) and an autoencoder
network [38]. Howlader et al. conducted an identification of significant attributes and a prediction of
diabetes mellitus [19]. The feature identification techniques used included various methods, such as
information gain and analysis of variance (ANOVA). However, these studies did not incorporate expert
judgment in identifying features and risk factors.

Su et al. identified the main issue in their research as the low generalizability of the prediction model,
caused by an imbalanced dataset [42]. The study addressed this by grouping data based on age cate-
gories using a feature compensation technique. However, the adaptation technique did not incorporate
expert judgment in the synthetic data generation process, nor did it include weighted variables in the
SMOTE algorithm. Castellanos et al. addressed issues related to the maximum rule and intersection
rule in datasets for DM, cancer, and CVD [9]. The rules were generated through their classification
model. However, the depth of the rules produced by the algorithm remained fixed (unable to increase or
decrease), and the generated rules were not derived from healthcare experts.

Based on the limitations of previous studies, such as reliance on secondary (public) datasets, the lack
of integration between expert judgment and machine learning models, and the absence of weighted
variables in the SMOTE algorithm, these constraints have led to prediction accuracy that could still
be improved and limited generalization ability, especially on imbalanced datasets. Therefore, this study
proposes a new model for predicting several chronic diseases based on expert judgment. Specifically, the
main contributions of our research are as follows: First, using a single type of primary dataset (general
checkup dataset) to predict multiple chronic diseases. Second, adding weighted variables to the SMOTE
algorithm. Third, enhancing prediction performance using tree-based ensemble learning integrated with
expert judgment. This study also aligns with SDG 3 (Good Health and Well-Being) by promoting better
health outcomes using advanced machine learning techniques and expert knowledge.

This paper is structured as follows: Section 1 discusses the background of the research conducted.
Section 2 reviews related works on chronic disease prediction using machine learning and approaches
to addressing data issues. Section 3 describes the research methodology applied in this study. Section 4
and 5 presents the research findings and discusses the results. Finally, Section 6 concludes the research
findings and highlights potential future works.
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2. Related Works

2.1. Handling Imbalanced Data

Lopez Martinez et al. conducted research on HT prediction using a dataset derived from questionnaires
in the US region. Imbalanced data handling was applied using the SMOTE technique, which successfully
improved the F1-score by 29.6%. The F1-score increased from 47.4% before applying SMOTE to 77%
after its application [26]. However, details such as the number of samples after applying SMOTE were
not provided, and the validity of the questionnaire data used was unclear.

Ramezankhani et al. specifically examined the impact of the SMOTE oversampling technique on the
performance of three classifiers for predicting diabetes mellitus. The study also analyzed the percent-
age of synthetic data generated, applying values ranging from 100% to 700%. The best F1-score was
achieved by generating synthetic data equivalent to 700% of the minority class in the training data. The
F1-score increased from 33.6% before applying SMOTE to 43.6% after its application, indicating that
SMOTE improved performance by 10% [37].

Azad et al. discussed the application of SMOTE, genetic algorithm, and decision tree models for
disease prediction. The study also examined the impact of different training-testing data proportions
on prediction results. The dataset used was obtained from the National Diabetes and Kidney Disease
Institute. The training-testing proportions applied were 60-40, 65-35, 70-30, 75-25, and 80-20. The
best prediction results were achieved with an 80-20 dataset split, yielding an F1-score of 78.38% and
an AUC-ROC of 78.62% [6]. However, the study did not report the size of the dataset after applying
SMOTE.

Sreejith et al. proposed a framework to address class imbalance and feature selection issues. An en-
hanced SMOTE technique using the Orchard algorithm was applied to handle imbalance, while feature
subset selection was used for feature selection. Three public datasets from the UCI repository were uti-
lized, including the Pima Indian Diabetes (PID) dataset. The F1-score achieved on the PID dataset was
89% [41]. However, the dataset balancing process was applied to the entire dataset rather than just the
training data, which is not ideal. As stated by, Ramadhan et al., dataset balancing should be performed
specifically on the training data [32].

Maldonado et al. proposed an enhancement to the SMOTE algorithm by introducing feature weight-
ing, named Feature-Weight SMOTE (FW-SMOTE). This approach replaces the Euclidean distance with
the Induced Minkowski OWA Distance (IMOWAD). Additionally, the method integrates feature selec-
tion techniques, such as direct feature ranking, into the oversampling process [29]. However, feature
ranking is often specific to particular datasets and may not generalize well across diverse domains. An-
other limitation is that FW-SMOTE relies on filter-based methods, such as mutual information and cor-
relation scores, for feature ranking. These methods might miss opportunities for better feature selection,
which could be achieved through the integration of expert judgment tailored to the problem domain.

Wang et al. introduced an adaptive weighted oversampling method that combines the Support
Vector Machine (SVM) algorithm with the SMOTE technique, called Adaptive Weighting SMOTE
(AWSMOTE). This approach addresses a key limitation of traditional SMOTE, specifically the collinear-
ity problem between synthetic and original samples. The variable weights are determined based on
estimation vectors from SVM [44]. However, the method heavily relies on the SVM model to distin-
guish between support vectors and non-support vectors, which limits its applicability to SVM-based
models and leaves its potential unexplored for other methods, such as ensemble or decision tree-based
approaches. Another limitation is the absence of datasets with extreme imbalance ratios, such as 1:100,
in the evaluation, which restricts the validation of the method in more challenging scenarios.
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Fahrudin et al. proposed an approach called Attribute Weighted and KNN Hub on SMOTE (AWH-
SMOTE). Attribute weighting was implemented using four methods: Wojna1, Wojna2, Scaled Mis-
classification Ratio (SMR) Weight, and Information Gain [13]. However, the selection of the attribute
weighting method was performed randomly. A key limitation of this study is the lack of evaluation on
datasets with extremely imbalanced ratios, such as 1:100. Additionally, the approach has not been tested
with other machine learning algorithms, such as ensemble learning, to explore its broader applicability.

2.2. Chronic Diseases Prediction

Sorayaie Azar et al. conducted cancer prediction using six machine learning models: K-Nearest
Neighbours (KNN), SVM, Decision Tree (DT), Random Forest (RF), Adaptive Boosting (AdaBoost),
and Extreme Gradient Boosting (XGBoost). The dataset faced challenges such as class imbalance and
an excessive number of features. To address these issues, SMOTE was employed for imbalanced data
handling, and feature selection was applied to identify relevant features. The best prediction performance
was achieved with the RF model, yielding an F1-score of 71.78% and an AUC of 82.38% [40].

Kibria et al. employed a soft voting ensemble approach for predicting diabetes mellitus. The dataset
used was the public Pima Indian dataset, which faced the issue of class imbalance. SMOTE-Tomek was
utilized to handle the imbalance. The voting ensemble model combined XGBoost and RF, while several
standalone machine learning models, such as AdaBoost, XGBoost, RF, SVM, and Logistic Regression
(LR), were used for comparison. The soft voting ensemble model achieved an F1-score of 89% and an
AUC of 95%, outperforming the standalone machine learning models [22]. However, a limitation of the
study is that the data used was secondary and widely used by other researchers, with no direct validation
by medical experts to ensure the synthetic data’s interpretation aligns with clinical realities.

Ashfaq et al. analysed the application of several ensemble models, including stacking, bagging, and
voting, for diagnosing CVD. The study utilized the Cleveland dataset from the UCI open repository.
The best accuracy was achieved with the bagging ensemble model at 86%, while the other ensemble
models showed only a 1% difference: 85% for voting and 84% for stacking [5]. However, the study did
not specify the individual models used in the voting ensemble. In other disease prediction studies, voting
ensembles have been shown to outperform stacking ensembles by a margin of 10% [33]. This is due to
the selection of base models being a critical factor in determining prediction outcomes.

Habib predicted CVD by implementing a hard voting ensemble. The base models used for voting were
LR, RF, Multi-Layer Perceptron (MLP), and Gaussian Naïve Bayes (GNB). The study also considered
several critical factors that increase the risk of CVD, such as the number of cigarettes smoked per day,
glucose levels, and blood pressure. Additionally, imbalanced data handling was addressed using random
under sampling. The voting model achieved an F1-score of 82% and an AUC of 73% [16].

3. Method

Handling imbalanced datasets in medical data has become crucial as it can lead to inaccuracies in
prediction [34]. Additionally, handling imbalanced datasets prior to the machine learning process can
improve the quality of prediction models [37]. This study will modify the SMOTE algorithm. The mod-
ification was made by adding a weight variable to the algorithm. SMOTE was chosen because, in pre-
vious research, it demonstrated superior results compared to other oversampling algorithms such as
SMOTE-Tomek and Adaptive Synthetic (ADASYN) [35]. Additionally, SMOTE is independent of data
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distribution, so it can be applied to different types of datasets [10]. The traditional SMOTE oversam-
pling algorithm has a significant limitation: the quality of resampled data can be low when minority data
points are too far from their nearest neighbours or when neighbouring data points belong to a different
class (overlapping) [23].

This issue can be addressed using weighting, which aims to bring data points that are too far apart
closer together. The weighting concept can be applied to the attributes of the dataset [13]. Current at-
tribute weighting techniques include information gain [13], correlation score [28], and mutual infor-
mation [39]. Ramadhan et al. stated in their research that future studies could incorporate medical ex-
perts’ knowledge into the machine learning prediction process [34]. Therefore, in this study, the attribute
weighting technique utilizes weights determined based on expert judgment. Weighting is applied to help
the model prioritize relevant variables, enhancing prediction result. Additionally, it also utilizes doctors’
knowledge and expertise to assess attribute importance.

Fig. 1 illustrates the expert judgment rules for diagnosing several chronic diseases by identifying the
most influential features in the dataset. This expert judgment was obtained through discussions with a
team of doctors at the Telkom Health Foundation. The role of expert judgment in this study is to assign
weights to the attributes in the dataset. Assigning these weights requires a method to integrate expert
judgment with the SMOTE algorithm. In this study, the integration method involves incorporating a
weighting formula. Formulas (1) - (3) represent mathematical calculations to generate weight values,
which will serve as the weights for each feature in the data.

Wα = K × α (1)

Wβ = K × β (2)

(∑
S FE

×Wα

)
+

(∑
NS FE

×Wβ

)
= 1 (3)

Where:

•
∑

S FE represents the number of features in the GCU data that are significant according to expert
judgment.

•
∑

NS FE represents the number of features in the GCU data that are non-significant according to
expert judgment.

• K is a base constant used to ensure the total weight equals 1. The value of K in this formula must
be determined first before calculating the values of Wα and Wβ.

• α is a constant used to determine the relative weight difference for significant features, while β is a
constant for determining the relative weight difference for non-significant features.

• Wα represents the weight value for significant features, while Wβ represents the weight value for
non-significant features.

• The value of α is always set to be 10 times greater than β, as features deemed significant by experts
are considered to have 10 times more importance than non-significant features.
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Fig. 1. Expert Judgment Knowledge

The relationship between Fig. 1 and the methodology in this study serves as a conceptual framework
that illustrates how Expert Judgment is integrated with machine learning models to enhance prediction
outcomes for various medical conditions. Each branch in the figure represents a specific disease or med-
ical condition (e.g., Diabetes Mellitus, cardiovascular diseases, stroke), while the sub-branches denote
clinical features or variables identified as significant by experts. These features are selected based on
their proven relevance in clinical practice by the experts.

In the methodology, this framework guides the weighting process for features, ensuring that: relevant
features are prioritized, meaning variables identified by experts (e.g., blood glucose levels for diabetes or
blood pressure for hypertension) are given higher weights compared to non-significant features accord-
ing to the experts. By basing the feature weighting process on this expert judgment-driven methodology,
the approach ensures that the machine learning model is not only data-driven but also clinically informed.

Fig. 2 presents the flow diagram of the proposed research methodology. In this proposed diagram,
the process is divided into three stages. The first stage begins with the availability of the GCU dataset
for chronic diseases. Exploratory Data Analytics (EDA) is conducted on the GCU dataset to examine its
characteristics, structure, and existing issues. Details about the GCU dataset are presented in Section 3.3.
The results of the EDA indicate that the GCU data has issues with missing values and outliers. Feature
encoding is performed to convert string-type data into integer or numeric formats to facilitate machine
learning models in processing the data efficiently [32].

The second stage begins with checking whether the GCU data for each disease is imbalanced. If
the data is not imbalanced, the process directly proceeds to the third stage. However, if the data is
imbalanced, handling is performed specifically on the training data. The imbalanced data handling is
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Fig. 2. Proposed Research Diagram

carried out by integrating expert judgment and the SMOTE algorithm through weighting. The result of
this handling is that the number of minority class data becomes balanced with the number of majority
class data.

The third stage begins with calculating the entropy values for each GCU dataset. Entropy calculation is
performed to evaluate the relevance between features [8] and to assist in decision-making within machine
learning algorithms [7]. During the entropy calculation process, weighting is also applied to each data
attribute. The purpose of this weighting is to ensure that attributes given higher weights are prioritized
during the prediction process, enhancing the focus on critical features in the decision-making of the ML
model. Consequently, the prediction process utilizes data with entropy values that have already been
weighted. This study employs a tree-based voting ensemble learning prediction model.

3.1. Dataset GCU

This study uses a single type of GCU dataset for multiple chronic diseases, obtained from the Telkom
Health Foundation in Bandung, with sample collection spanning 2019–2021. The dataset comprises 26
features (including the class label) for six types of chronic diseases: DM, cancer, CVD, stroke, CKF, and
HT. The dataset characteristics includes 5 categorical features and 20 numerical features [36]. Details
of the GCU dataset used are available in the Zenodo data repository: https://doi.org/10.5281/zenodo.
14725457. The EDA results indicate a skewed data distribution, suggesting the presence of noise or
outliers. Therefore, outlier removal is necessary to achieve a cleaner and more normal data distribu-
tion. Additionally, the dataset faces an imbalanced class issue, where the number of class 0 (negative)

https://doi.org/10.5281/zenodo.14725457
https://doi.org/10.5281/zenodo.14725457
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instances significantly outweighs class 1 (positive) instances. Addressing this imbalance is crucial to
ensure it does not adversely affect prediction results.

3.2. Handling Missing Value and Outlier

Based on the detection of missing values in the GCU dataset, it was observed that the features with
missing values are consistent across all diseases. The feature "history sport" has the highest missing rate:
7.4% in the DM dataset, 7% in the cancer dataset, 6.9% in the CVD and stroke datasets, 8.2% in the
CKF dataset, and 8% in the HT dataset, while other features have a lower average missing rate. In this
study, missing values will be replaced using the mean value. Outliers in the GCU data will be removed
to ensure that the predictions are free from noise and outliers. However, categorical features such as
"history smoke," "history sport," "urine protein," and "urine glucose" will not undergo outlier removal,
as most values in these features represent general categories, and removing outliers could result in the
elimination of data that is valid.

3.3. Weighting of SMOTE

Data is considered highly imbalanced when the imbalance ratio (IR) approaches 0, whereas an IR
value close to 1 indicates balanced data [35]. The IR values for the GCU dataset used in this study are
presented in Table 1. The formula for calculating the IR can be seen in Formula (4) [31]. In this research,
the majority class refers to the negative label, while the minority class refers to the positive label.

IR =
Number of Data Minority
Number of Data Majority

(4)

Table 1
Imbalanced Ratio GCU Dataset

Dataset Label Negative Label Positive Imbalanced Ratio
2019 2020 2021 2019 2020 2021 2019 2020 2021

DM 932 926 911 0 6 21 0 0.00647 0.02305
Cancer 1146 1149 1148 5 2 3 0.00436 0.00174 0.00261
CVD 1207 1202 1198 0 5 9 0 0.00415 0.00783
Stroke 1333 1332 1325 0 1 8 0 0.00075 0.00603
CKF 1200 1199 1196 0 1 4 0 0.00083 0.00334
HT 1221 1217 1188 0 4 33 0 0.00328 0.02777

During the distance calculation in the SMOTE algorithm, Euclidean distance is used, as it is considered
the most effective distance metric for determining K [13]. Here is the formula to calculate the euclidean
distance using weights.

distancei, j =

√∑(
x j − xi

weights

)2

(5)
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Each variable in the equations (5) is defined as follows: x j and xi represent the values or coordinates
of two data points whose distance is being calculated. The term weights refers to the weight value of the
variable Wα or Wβ. Algorithm 1 is the pseudocode for the traditional SMOTE algorithm, enhanced with
weight variables for each data feature. Several steps in the weighted SMOTE process are as follows:

Step 1: Initialize SMOTE Object
In this step, the initial setup for the SMOTE algorithm variables is performed. The variable N is used
to determine the number of synthetic samples to be generated for each sample in the minority class.
This is typically expressed as a percentage of the minority class samples. The variable K specifies the
number of nearest neighbors to be used to find other similar minority class samples. The variable dis-
tance defines the distance metric (e.g., Euclidean distance) to measure similarity between samples. The
variable weights assigns a weight to each data dimension, allowing specific dimensions to have a greater
influence on distance calculations. A blank list named synthetic arr is created to store the synthetic data
samples generated by SMOTE. The variable newindex is initialized to 0, serving to track the index
of new synthetic samples added to syntheticArr. This variable ensures the new synthetic data is added
sequentially to the list as the algorithm runs.

Step 2: Generate Synthetic Points
This step generates synthetic samples. However, before proceeding, it validates the input parameters. If
the value of N (percentage) is less than 100, an error is raised. It verifies that the distance metric used is
either Euclidean or Ball Tree. If neither is used, an error is raised. It ensures that K does not exceed the
number of minority samples. After validation, the algorithm computes the number of synthetic samples
to generate: N = N/100. T = the total number of minority samples, is also calculated.

Step 3: Find K Nearest Neighbors
In this step, the algorithm identifies the nearest neighbors for each minority sample to generate synthetic
samples. During this process, weights are applied to distance calculations. For each minority sample i
is the algorithm calculates the weighted distance to all other samples. These distances are stored in a
matrix, sorted, and the K nearest neighbors are selected.

Step 4: Populate Synthetic Samples
This step generates new synthetic samples based on the nearest neighbors. For each sample i in the
minority class: Randomly select one neighbor from the K-Nearest Neighbors. For each feature of the
sample, calculate the difference between the sample and its neighbor. Generate a new synthetic point
along the line connecting the sample and the neighbor using a random gap. The new synthetic sample is
added to syntheticarr, and newindex is incremented.

Step 5: Return Synthetic Samples
In this final step, the algorithm finalizes and returns the generated synthetic samples. The syntheticArr
list is converted into a NumPy array. The array is returned as output, containing the newly generated
synthetic samples. The process continues until the number of minority class samples equals the number
of majority class samples.

3.4. Weighting of Ensemble Learning Method

This study employs a machine learning prediction model based on Decision Tree (DT). In addition to
DT, the research will implement a voting ensemble using RF (Random Forest), AdaBoost, and XGBoost
models. These three models are selected for the voting ensemble because, in several studies on chronic
disease prediction, this method has demonstrated robust prediction results. Furthermore, in preliminary
experiments conducted by the researchers, this method outperformed other machine learning and deep
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Algorithm 1 Weighting of SMOTE
1: Initialize SMOTE Object
2: Set N, K, distance metric, and weights
3: Initialize an empty list synthetic_arr to store synthetic samples
4: Set newindex to 0
5: Generate Synthetic Points
6: Input Validation:
7: if N < 100 then
8: Raise an error
9: end if

10: if distance metric is not Euclidean or Ball Tree then
11: Raise an error
12: end if
13: if K exceeds the number of minority samples then
14: Raise an error
15: end if
16: Compute the number of synthetic samples to generate:
17: N = integer(N/100)
18: T = len(min_samples)
19: Find K Nearest Neighbors
20: if distance metric is Euclidean then
21: for each sample i in min_samples do
22: Perform weighted calculation using formulas (1)–(3)
23: for each sample j in min_samples do
24: Compute the weighted distance between sample i and j
25: Calculate the weighted distance using formula (4)
26: Store the distance in a distance matrix
27: end for
28: Sort the distances and select the K nearest neighbors
29: end for
30: else
31: Use Ball Tree algorithm to find K for each sample, considering weights
32: end if
33: Populate Synthetic Samples
34: for each sample i in min_samples do
35: Randomly select a neighbor nn from the K nearest neighbors
36: for each feature attr do
37: Compute the difference di f f between sample i and neighbor nn
38: Generate a synthetic point along the line between i and nn using a random gap
39: end for
40: Add the new synthetic sample to synthetic_arr
41: Increment newindex by 1
42: end for
43: Return Synthetic Samples
44: Convert synthetic_arr to a numpy array and return as synthetic samples
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learning methods [32]. Additionally, model ensemble learning has a strong ability to capture non-linear
interactions between features [27], which aligns with the characteristics of GCU data that include com-
plex features such as risk factors for disease (lifestyle, age, and genetics). An analysis will be performed
to evaluate the differences in prediction results obtained by each of these models.

Attribute weighting is also applied in the voting ensemble model. The weighting process begins by
calculating the entropy value for each dataset after data balancing. Additionally, weighting is applied
to each attribute using the weighting formula. This ensures that during the voting ensemble process,
the model places greater emphasis on attributes with higher entropy values. The entropy calculation is
performed using formula (6) [31].

H(x) = −
n∑

i=1

p(xi) logb p(xi) (6)

In the formula:

• H(X) represents the entropy value of the random variable X.
• p(xi) is the probability of the occurrence of the value xi in the random variable X.
• n denotes the total number of possible values that the random variable X can take.
• logb is the logarithm function, where the base b is typically 2, commonly used in the context of

binary classification.

The evaluation metrics used in this study for analyzing the results are F1-score, Receiver Operating
Characteristic-Area Under Curve (ROC-AUC), and Balanced Accuracy Score (BAS). The F1-score is
utilized as it represents the harmonic mean of precision and recall [17]. ROC-AUC is employed to evalu-
ate the performance of the classification model and to assess how well the model can distinguish between
positive and negative classes [14]. BAS ensures that the performance of both classes is weighted equally,
providing a more realistic evaluation [18]. The accuracy metric is excluded because it can produce high
scores that may cause confusion when analyzing imbalanced datasets, as it tends to focus on the majority
class [18]. The algorithm related to the proposed voting ensemble can be seen on Algorithm 2. Several
steps in the weighted voting ensemble process are as follows:

Step 1: Define Function to Calculate Entropy
This function is used to measure the uncertainty in a dataset by calculating how diverse the data is.
Higher entropy values indicate higher uncertainty or impurity in the dataset. This concept is often used
in decision tree algorithms to effectively split nodes.

Step 2: Define Function to Calculate Entropies for All Features
In this step, a function is created to calculate and store the entropy values of all features in the dataset.
These entropy values help measure the uncertainty of each feature and can be used for further feature
evaluation, such as selecting the most informative feature.

Step 3: Define Feature Weights
In this step, a dictionary called weights is created to map each feature name to a corresponding weight.
The dictionary contains the feature names as keys and the weights assigned to those features as values.
These weights indicate how important or relevant a feature is in the analysis or predictive model. The
weights can be based on factors such as expert consultation, evaluation of the feature’s information,
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Algorithm 2 Weighting of Voting Ensemble
1: Define Function to Calculate Entropy:
2: Compute the frequency counts of values in the column
3: Convert count to probabilities
4: Calculate entropy
5: Return the entropy values
6: Define Function to Calculate Entropies for All Features:
7: Create a function feature_entropies
8: Initialize an empty dictionary entropies
9: for each column in the dataframe do

10: Calculate the entropy using calculate_entropy
11: Store the entropy in the entropies dictionary with the column name as the key
12: end for
13: Define Feature Weights:
14: Create a dictionary weights mapping each feature name to a corresponding weight
15: Calculate Entropy for Each Feature:
16: Calculate entropy using the formula (4)
17: Calculate Weighted Entropies:
18: Initialize an empty dictionary weighted_entropies
19: for each feature do
20: Multiply the feature’s entropy by its corresponding weight
21: Store the result in the weighted_entropies dictionary
22: end for
23: Adjust Weighted Entropies:
24: Add the weighted entropies to the corresponding columns in the training dataframe to create a

new weighted dataframe
25: Make Predictions:
26: Use weighted voting ensemble (RF, AdaBoost, and XGBoost)
27: Evaluate the Model:
28: Evaluate the model using F1-score, BAS, and AUC

or certain statistical calculations. For example, if a dataset has the features age, blood pressure, and
cholesterol, the weights dictionary might look like this:

weights =


’age’ : 0.2,
’blood_pressure’ : 0.5,
’cholesterol’ : 0.3

Step 4: Calculate Entropy for Each Feature
In this step, the previously defined feature entropies function is called to calculate the entropy of each
feature in the dataset. The function iterates through each column and computes the entropy, which rep-
resents the level of uncertainty or diversity in the values within that column.

Step 5: Calculate Weighted Entropies
A blank dictionary called weighted entropies is created to store the weighted entropy calculations for
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each feature. This function iterates through each feature in the dataset. Each feature has an entropy value
(stored in the entropy dictionary) and a weight (stored in the weights dictionary). The entropy of each
feature is multiplied by its assigned weight. This step emphasizes or reduces the uncertainty of a feature
based on its importance. For example, if the entropy of the blood pressure feature is 1.2 and its assigned
weight is 0.5, the weighted entropy will be calculated as: 1.2 + 0.5 = 1.7

Step 6: Adjust Weighted Entropies
This step helps improve the interpretation and results of the analysis or predictive model. By adjusting
the dataset using the weighted entropy values, the model can focus more on features that have a greater
impact based on expert assessment or prior calculations. For example, if the blood pressure feature has
a weighted entropy of 0.6, its values in the dataframe can be updated to reflect the effect of that weight.
This creates a new dataset called the "weighted dataframe," which is used to train the model and better
account for the relative impact of each feature.

Step 7 and Step 8: Make Predictions and Evaluate the Model
In this step, predictions are made using a weighted voting ensemble model that combines three models:
RF (Random Forest), AdaBoost, and XGBoost. These models make predictions, and the final result is
determined based on a weighted voting mechanism across the three models. Once the ensemble model
generates predictions, its performance is evaluated by calculating the F1-Score, BAS, and AUC.

4. Result

In this study, four testing scenarios were conducted: Scenario 1 evaluates the extent of differences
before and after applying normalization to the weight values. Scenario 2 determines the optimal weight
value, ranging from 10 to 10,000. Scenario 3 identifies which model performs the best and assesses
the differences before and after applying weighting. Scenario 4 tests the best model for multi-year pre-
dictions. The purpose of these four scenarios is to evaluate and optimize the performance of machine
learning models under various conditions and to understand the impact of different techniques, such as
normalization and weighting.

4.1. Scenario 1

In the first scenario, the objective is to evaluate the differences in applying normalization to the weight
values generated from the weighting formula. The normalization criteria for the weight values used in
this study are as follows: (1) Significant features identified by experts have a minimum weight of 0.5
and a maximum weight of 0.9. (2) Non-significant features identified by experts have a minimum weight
of 0.1 and a maximum weight of 0.4. These minimum and maximum thresholds are determined while
ensuring that the total weight of the 26 features used equals 1, and no feature has a weight of 0. The
results of this first scenario are presented in Table 2.

Based on Table 2, after the normalization process, there is an improvement in all evaluation metrics for
several datasets. Specifically, the F1-Score for the DM dataset increased by 4%, while BAS and ROC-
AUC improved by 7%. For the CKF dataset, the F1-Score increased by 5%, whereas BAS and ROC-AUC
showed a smaller improvement of 0.3%. These improvements indicate that data normalization combined
with weighted SMOTE algorithms and entropy-based voting ensembles can enhance the model’s ability
to detect positive cases in datasets with class imbalances. Meanwhile, for other datasets such as Cancer,
CVD, Stroke, and HT, evaluation metrics remained stable before and after normalization.
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Table 2
Result of Scenario 1

Dataset Before Normalization After Normalization

F1-
Score
(%)

BAS
(%)

ROC-
AUC
(%)

F1-
Score
(%)

BAS
(%)

ROC-
AUC
(%)

DM 65 63.5 63.5 69 70.5 70.5

Cancer 83 75 75 83 75 75

CVD 75 66.7 66.7 75 67 67

Stroke 70 66.5 66.5 70 67 67

CKF 60 49.7 49.7 65 50 50

HT 61 61.5 61.5 61 62 62

This stability suggests that the applied method does not degrade the model’s performance on these
datasets, even though it does not always result in significant improvements. Thus, data normalization
can enhance model performance, especially when combined with appropriate oversampling and ensem-
ble techniques. Furthermore, normalization and weighting have proven to contribute positively to the
model’s ability to capture better patterns, particularly in datasets with significant label imbalances.

4.2. Scenario 2

In the testing of Scenario 2, used normalized weight values, as in several cases, normalization suc-
cessfully improved prediction performance. The purpose of this phase is to determine the optimal weight
value within a specific range (10–10,000). The use of a range with increments in multiples of ten aims to
observe whether there are significant jumps in prediction results compared to using shorter increments.
The results obtained from this second scenario are presented in Table 3.

Based on the results from Table 3, with a low weight value of 10, the model performance is relatively
low, with F1-Score, BAS, and ROC-AUC ranging between 50–75% for most datasets. This indicates
that low weights do not give sufficient priority to important features, preventing the model from effec-
tively capturing patterns. At a weight value of 100, a significant improvement is observed in datasets
such as DM, where the F1-Score increased by 14%, while BAS and ROC-AUC improved by 4%. This
suggests that weighting begins to influence the synthetic distribution in the minority class data. The
weight value of 1.000 delivers the best results across almost all datasets, particularly for DM, CKF,
and HT. For instance: DM: F1-Score reached 86%, with BAS and ROC-AUC achieving 90%. CKF:
F1-Score increased to 65%, with BAS and ROC-AUC both reaching 74%. HT: F1-Score improved from
61% (without weighting) to 75%, while BAS and ROC-AUC rose to 85%. These results demonstrate
that a weight value of 1000 allows the model to focus optimally on significant features without causing
overfitting.

On the other hand, with a weight value of 10.000, performance decreases for most datasets, such as
DM (F1-Score dropping from 86% to 75%) and CKF (F1-Score reverting to 50%). This shows that ex-
cessively high weights can lead to overfitting, where the model becomes too focused on the minority
class and loses its ability to generalize. Therefore, a weight value of 1.000 provides the best results for
most datasets, balancing improvements in the minority class with maintaining the model’s generaliza-
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tion. However, very high weights, like 10.000, tend to cause overfitting, which lowers performance in
most datasets.

Table 3
Result of Scenario 2

Dataset Weight Value: 10 Weight Value: 100 Weight Value: 1000 Weight Value: 10000

F1-
Score
(%)

BAS
(%)

ROC-
AUC
(%)

F1-
Score
(%)

BAS
(%)

ROC-
AUC
(%)

F1-
Score
(%)

BAS
(%)

ROC-
AUC
(%)

F1-
Score
(%)

BAS
(%)

ROC-
AUC
(%)

DM 68 74 74 80 78 78 86 90 90 75 74 74

Cancer 83 74 75 73 75 75 83 80 80 83 75 75

CVD 75 67 67 75 67 67 78 78 78 75 75 75

Stroke 70 67 67 70 67 67 70 67 67 75 75 75

CKF 50 50 50 60 69 69 65 69 69 65 65 65

HT 61 72 72 61 75 75 75 85 85 71 77 77

4.3. Scenario 3

In this third testing scenario, a weight of 1000 is used to compare the performance of individual models
(RF, AdaBoost, and XGBoost) with a tree-based soft voting ensemble combining these three models
after applying weighting. The purpose of this testing is to evaluate the impact of applying weights to
the SMOTE algorithm and the tree-based voting ensemble, by analyzing the differences in performance
before and after the weighting application.

Based on Table 4, the addition of weighting significantly improved model performance across nearly
all datasets, particularly in the metrics F1-Score, BAS, and AUC. Before applying weighting, most mod-
els recorded low F1-Scores (49–50%) with BAS and AUC stagnating in the 50–65% range. However,
after applying weighting, models like Decision Tree (DT) demonstrated drastic improvements in the
DM dataset, with the F1-Score increasing from 49% to 86% and BAS/AUC rising from 55% to 88%. A
similar pattern was observed in the Cancer and CVD datasets, where the DT model achieved F1-Scores
of 83% and 75%, respectively, after weighting was applied. This indicates that weighting effectively
enhances the model’s ability to capture patterns in datasets with imbalanced classes or complex feature
distributions.

Additionally, ensemble models such as XGBoost and Voting Ensemble demonstrated the highest per-
formance after weighting, particularly on the DM dataset, with F1-Score reaching 96% and AUC 97%.
Models like RF and AdaBoost also showed significant improvements but remained below the perfor-
mance of the ensemble models. This improvement highlights that weighting helps ensemble models
leverage the combined strengths of individual models, resulting in more accurate and balanced predic-
tions. However, there were cases where the impact of weighting was less pronounced, such as in the
Stroke and CKF datasets. This suggests that datasets with less complex data distributions or less infor-
mative features may require additional approaches beyond weighting. Overall, these results underline
the importance of weighting in enhancing model performance, particularly for datasets with significant
class imbalances, such as those with a ratio of 1:1000.
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Table 4
Result of Scenario 3

Model Dataset Before Weighting After Weighting

F1-
Score
(%)

BAS
(%)

AUC
(%)

F1-
Score
(%)

BAS
(%)

AUC
(%)

DT DM 49 55 55 86 88 88

Cancer 49 49 59 83 85 85

CVD 49 49 59 75 77 77

Stroke 49 49 59 70 73 73

CKF 50 50 50 65 67 67

HT 53 50 59 65 68 68

RF DM 49 49 65 83 86 87

Cancer 49 50 45 90 92 92

CVD 50 50 74 90 92 92

Stroke 50 50 64 75 78 78

CKF 50 50 50 65 66 67

HT 49 50 63 71 73 73

AdaBoost DM 49 49 50 77 80 80

Cancer 50 49 59 55 57 58

CVD 50 50 55 90 91 91

Stroke 50 49 41 75 78 78

CKF 50 50 65 65 67 67

HT 49 50 56 65 69 69

XGBoost DM 50 50 45 96 97 97

Cancer 50 49 45 82 84 84

CVD 50 50 74 90 92 93

Stroke 50 50 45 75 78 78

CKF 50 50 55 65 67 68

HT 49 50 63 66 69 69

Voting
Ensemble

DM 49 49 59 96 97 97

Cancer 50 49 45 83 85 85

CVD 50 50 84 90 92 92

Stroke 50 50 49 75 78 78

CKF 50 50 68 65 68 75

HT 49 50 72 73 76 76
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4.4. Scenario 4

In this scenario, the voting ensemble model was tested for multi-year predictions. Multi-year predic-
tions refer to forecasting for the next year (Y+1) and for two years ahead (Y+2). The results of this
testing are presented in Table 5.

Table 5
Result of Scenario 4

Dataset Y+1 Y+2

F1-
Score
(%)

BAS
(%)

AUC
(%)

F1-
Score
(%)

BAS
(%)

AUC
(%)

DM 75 78 82 83 86 88

Cancer 83 83 86 83 84 87

CVD 61 66 67 75 73 77

Stroke 60 65 64 75 74 77

CKF 50 51 67 65 67 70

HT 78 75 75 83 81 81

The multi-year prediction results reveal a noticeable difference between the model’s performance for
short-term predictions (Y+1) and long-term predictions (Y+2). In the DM dataset, there was a significant
improvement in F1-Score (from 75% to 83%), BAS (from 78% to 86%), and AUC (from 82% to 88%)
when predictions were extended to Y+2. This suggests that long-term trends are more stable, making
it easier for the model to identify relevant patterns. A similar pattern was observed in the HT dataset,
where scores consistently increased across all metrics for Y+2. This indicates that chronic diseases with
clear progression and well-defined risk factors tend to have better predictability over longer timeframes.

Conversely, datasets such as CVD, Stroke, and CKF presented greater challenges, particularly for
Y+1, with F1-Scores of 61%, 60%, and 50%, respectively. This may be due to the dynamic nature
of these diseases, characterized by sudden complications or high variability in short-term risk factors.
However, the scores improved significantly for Y+2, with CKF showing an F1-Score increase from
50% to 65%. This indicates that long-term trends are more predictable, even though CKF remains the
most difficult disease to forecast. Overall, the model demonstrates better performance for long-term
predictions across most datasets, emphasizing the importance of leveraging stable trends for improved
accuracy in chronic disease prediction.

5. Discussion

5.1. Discussion of the results for all scenarios

Weight normalization ensures that significant features have an appropriate influence on the model,
allowing it to focus more on relevant patterns. Conversely, less significant features are still considered
but with a smaller impact. By normalizing weights, the model reduces the risk of overfitting on minority
classes. This enables the model to learn more consistently from synthetic data generated by oversampling
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techniques (e.g., SMOTE). Weight normalization helps the model more effectively detect patterns related
to minority classes, thus improving evaluation metrics. Without normalization, features with large values
can dominate the training process. With normalization, the model can fairly consider each feature based
on its significance. On the other hand, the complexity of disease patterns also plays a role. For example,
diabetes (DM) data often has more stable risk patterns and clearer predictive features (e.g., blood sugar,
BMI), making it easier for the model to identify patterns after significant weights are normalized. In
contrast, stroke often involves more dynamic or indirect risk factors (e.g., hypertension, family history),
making normalization have a less significant impact on the outcomes.

The optimal weight value was found to be 1,000 because it provides the ideal balance between improv-
ing performance for the minority class and maintaining the model’s generalization ability, compared to
lower values like 10 or higher values like 10,000. At a weight of 1,000, the model can sufficiently priori-
tize significant features without completely disregarding non-significant ones. This enables the model to
capture relevant patterns from both types of features, which is crucial for datasets with complex features.
A low weight, such as 10, results in an influence that is too small, making significant features insuffi-
ciently helpful for the model in handling the minority class. Conversely, a high weight, such as 10,000,
overemphasizes the minority class, which can lead to reduced generalization ability. With a weight of
1,000, synthetic data generated by SMOTE has a more representative distribution for the minority class.
At lower weights, the influence of significant features on synthetic data is inadequate. At higher weights,
synthetic data may become overly dependent on certain features, leading to unrealistic patterns.

Using excessively high weights risks causing overfitting to the minority class and has implications
for reduced model generalization ability. With high weights, such as 10,000, the model becomes overly
focused on the minority class and learns patterns specific to the synthetic data. As a result, the model
struggles to recognize variations in unseen data during testing. Excessive weights make the model less
effective in handling new data, particularly from the majority class, as its primary attention is directed
toward the minority class. High weights can also lead significant features to dominate the training pro-
cess, while non-significant features are completely ignored. This may cause the model to miss important
information contained in the non-significant features. Synthetic data generated by SMOTE with overly
high weights may not reflect the true distribution of the minority class, reducing the validity of predic-
tions. The implication of overly high weights is that the model may perform well on the training dataset
but poorly on the testing dataset, undermining the primary goal of providing reliable predictions. There-
fore, it is crucial to maintain weights within an optimal range to maximize the model’s ability to capture
patterns from both classes effectively.

The tree-based ensemble voting method demonstrates improved performance after weight adjustment
because ensemble voting combines the strengths of multiple models (Random Forest, AdaBoost, and
XGBoost), enabling it to capture more diverse patterns than individual models. The addition of weights
enhances this capability by ensuring a stronger focus on significant features. Individual models, such as
Decision Trees, are prone to either underfitting or overfitting [4]. In contrast, ensemble methods bene-
fit from the collective decision-making process, reducing the likelihood of these issues. By leveraging
weighted voting, the ensemble becomes better at addressing class imbalances and detecting meaningful
patterns, leading to more reliable and robust predictions. Using an ensemble, both bias and variance can
be minimized, while the addition of weights helps the model handle class imbalances more effectively.
Weights place greater emphasis on significant features relevant to the minority class, enabling the models
within the ensemble to leverage this information more optimally compared to individual models.

Tree-based ensembles are more resilient to data imbalances than single models because the voting
mechanism ensures that errors from one model can be compensated by others. This collective approach
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enhances the model’s ability to generalize across diverse patterns in the data while maintaining robust-
ness against the challenges posed by class imbalances [11]. Weights enhance this by making the minor-
ity class data more representative during training. Overall, adding weights to tree-based ensemble voting
not only improves performance on imbalanced datasets but also enhances the model’s ability to identify
complex patterns within the data. This ensures that the ensemble leverages its collective strengths to
achieve better generalization and more accurate predictions.

The model demonstrates improved performance in long-term predictions (Y+2) compared to short-
term predictions (Y+1) because long-term trends tend to be more stable and consistent, allowing the
model to identify clearer patterns. The ensemble voting method provides an advantage in recognizing
long-term patterns by combining the predictive strengths of multiple algorithms, each capable of detect-
ing different trends. As a result, long-term predictions are generally more stable and reliable for diseases
with clear risk patterns, such as diabetes mellitus (DM) and hypertension (HT), as the model can better
recognize consistent trends. However, there are challenges in predicting diseases with high variability,
such as chronic kidney disease (CKD), compared to diseases with more stable risk patterns like DM or
HT. These challenges include dynamic risk factors, limitations in minority class data, the complexity of
feature interactions, and the influence of external factors.

5.2. Implications for chronic disease prediction

The implications of this study cover several aspects, including impacts on the healthcare field, tech-
nological innovation, and the use of data for decision-making. The modified Weighted SMOTE method
allows for a more representative distribution of minority data, enabling the model to learn patterns more
effectively from previously underrepresented data. The addition of ensemble learning algorithms such as
Random Forest, AdaBoost, and XGBoost strengthens the model, as each algorithm excels in capturing
complex patterns. In the context of disease prediction, such as diabetes mellitus (DM) and hyperten-
sion (HT), a higher F1-score aids in diagnosing high-risk patients, enabling earlier preventive actions.
The improved F1-score also reduces the likelihood of diagnostic errors that could lead to inappropriate
treatments.

The use of the GCU dataset sourced from the Telkom Health Foundation provides an advantage in the
form of primary data that is more relevant to the local context compared to commonly used secondary
datasets. This ensures that the predictions generated are more aligned with real-world conditions. In
local clinical settings, primary data can reflect unique disease patterns, such as the prevalence of certain
diseases influenced by lifestyle or environmental factors. This also enables the personalization of models,
making them more suitable for specific communities or populations.

The addition of weights based on expert assessments enhances the interpretability of the model, which
is crucial in clinical decision-making. The model not only provides predictions but also offers insights
into which variables are most relevant, such as blood pressure or blood sugar levels. Physicians can use
the model’s results to design more specific therapies, for example, giving special attention to patients
with high blood pressure values in hypertension predictions. The use of an expert knowledge-based
model can foster better collaboration between data scientists and medical professionals, resulting in
more practical and applicable solutions.

The improvement in chronic disease prediction supports the global agenda to reduce the burden of
non-communicable diseases. Conditions such as diabetes and hypertension often go undetected until
advanced stages, making early prediction crucial. The implementation of this model can be utilized in
mass health screening programs to identify high-risk individuals, who can then be referred for further
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care. This model can also be adopted by other healthcare institutions to optimize limited resources, for
instance, by focusing on more vulnerable population groups.

The issue of data imbalance, where the majority class (negative class) dominates the minority class
(positive class), often causes bias in the model. The modification of Weighted SMOTE by incorporating
weights based on relevant attributes provides better data distribution and improves model performance.
This algorithm could set a new standard for handling imbalanced medical data, especially for datasets
with extreme imbalance ratios such as 1:1000. It also has the potential to extend SMOTE applications
beyond disease prediction, for example, in analyzing imbalanced sales data or other rare events.

Multi-year predictions demonstrate that the model can capture long-term trends better than short-term
ones. This is crucial because chronic diseases often develop gradually and are influenced by cumulative
risk factors. Long-term predictions aid in the formulation of public health strategies, such as targeted
health resource allocation or more focused awareness campaigns. Medical institutions can design more
measurable population-based prevention programs, emphasizing the prevention of disease progression
over several years.

The approach applied can be utilized in other domains facing similar challenges, such as data imbal-
ance or the need to integrate expert domain knowledge. Examples include fraud analysis in financial
systems or damage monitoring in the manufacturing industry. In the financial sector, this technique can
help detect rare but highly impactful fraudulent activities. In manufacturing, the algorithm can be used
for machine failure prediction, where failures are rare but require significant attention.

5.3. Future Directions and Challenges

Improvements to traditional SMOTE often address the issue of generating synthetic data that is less
representative when minority data has a distribution significantly different from the majority. By incor-
porating attribute weights based on domain knowledge, Weighted SMOTE ensures that critical attributes
are given higher priority in the generation of synthetic data.

This study also incorporates Expert Knowledge Integration. Typically, algorithms rely solely on data
to make decisions, but this research demonstrates that incorporating expert input (e.g., from doctor) can
produce results that are more clinically relevant.

This model sets the stage for further research on integrating domain knowledge into other algorithms,
such as clustering, neural networks, or reinforcement learning. This concept can be expanded to tackle
extreme data imbalance across various fields, including bioinformatics (e.g., genetic prediction), finance
(fraud detection), and transportation (rare incident analysis).

Dynamic attribute weighting: The current method utilizes fixed weights based on expert judgment.
Future research can explore the impact of adaptive methods, such as genetic algorithms or deep rein-
forcement learning, to determine weights in real-time. Evaluation of impact on non-SMOTE algorithms:
This weight-based approach can also be integrated into other algorithms, such as ADASYN (Adaptive
Synthetic Sampling), to compare its effectiveness.

A Weighted SMOTE-based system can automatically analyze general check-up data and provide risk
scores for various chronic diseases, such as diabetes, hypertension, or cardiovascular diseases. In the
future, with the integration of technologies like the Internet of Things (IoT), wearable devices could
collect real-time data and transmit it to the predictive system, enabling early warnings for patients and
doctors.

Several challenges arise, such as implementing this model on a large scale, which requires adequate
computational infrastructure to process data in real time. In large hospitals or healthcare centers, inte-
grating this technology must account for both hardware and software requirements. Health data is highly
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sensitive and requires strict security measures. This research should be followed by the development of
encryption and data anonymization protocols to ensure patient privacy. In areas with limited internet
access or inadequate hardware, this technology may require adaptation in the form of models optimized
for low-power devices.

6. Conclusion

This study presents a novel framework for chronic disease prediction leveraging GCU data, integrating
expert judgment into machine learning techniques. The research demonstrated a significant enhancement
in prediction accuracy, ranging from 10% to 47% compared to conventional methods, which underscores
the effectiveness of the proposed Weighted SMOTE and ensemble learning approach. Specifically, this
method addresses the challenges of imbalanced datasets by introducing attribute weighting informed by
expert judgment, enabling more accurate identification of minority classes—often the most critical in
medical diagnostics.

The integration of expert judgment not only enhanced the interpretability of the model but also ensured
the prioritization of clinically significant features, such as blood glucose levels and blood pressure. This
approach bridges the gap between data-driven algorithms and clinical expertise, making it a practical
solution for real-world healthcare applications.

The experimental scenarios validated the robustness and versatility of the proposed framework. For
instance, the weight normalization process improved key metrics, including F1-Score and ROC-AUC,
across various datasets. The optimal weighting factor of 1,000 provided the best balance between perfor-
mance and generalization, avoiding the pitfalls of overfitting or underrepresentation of critical features.
Moreover, the tree-based ensemble voting method, combining Random Forest, AdaBoost, and XGBoost,
further enhanced prediction accuracy by leveraging the strengths of multiple algorithms.

Long-term prediction scenarios (Y+2) demonstrated better performance than short-term predictions
(Y+1), particularly for chronic diseases with stable progression patterns like diabetes mellitus and hy-
pertension. This highlights the model’s ability to capture cumulative risk factors and stable trends over
time, making it a valuable tool for preventive healthcare planning.

Future research should focus on refining the dynamic weighting process, potentially employing adap-
tive algorithms like genetic optimization or reinforcement learning, to further enhance the flexibility and
applicability of the model. Additionally, expanding the framework to other domains, such as bioinfor-
matics, fraud detection, or rare event analysis, could validate its broader applicability.

This study contributes to the global health agenda by providing a scalable, interpretable, and accurate
predictive model that can be integrated into healthcare systems. It not only enhances diagnostic precision
but also aids in resource optimization for early intervention programs, ultimately improving patient
outcomes and reducing the burden of chronic diseases.
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