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Abstract

Accurate temperature forecasting plays a pivotal role in environmental management, agriculture, and
energy planning, where reliable predictions underpin informed decision-making and resource allocation.
However, effectively modeling the intricate seasonal patterns, long-term trends, and nonlinear fluctuations
inherent in temperature data remains a persistent challenge.

To address these complexities, we introduce STR-NBEATS, a hybrid framework that integrates
Seasonal-Trend Decomposition using Regression (STR) with the Neural Basis Expansion Analysis (N-
BEATS) deep learning architecture. STR decomposes temperature time series into interpretable trend
and seasonal components, along with a remainder term. This enables a tailored forecasting strategy
wherein predictable cyclical behavior is handled through a simple seasonal naive approach, and more
complex trend and residual dynamics are captured by the highly flexible N-BEATS network.

We rigorously benchmark our approach against robust and well-established forecasting methods capa-
ble of modeling seasonality, including an STL-based hybrid model combined with Exponential Smoothing
(STL-ETS) and an automated seasonal ARIMA model. Empirical results on real-world datasets demon-
strate that STR-NBEATS consistently outperforms these strong benchmarks, achieving lower error met-
rics and delivering forecasts that are both more accurate and interpretable. By enhancing the fidelity of
temperature predictions and providing clearer insights into underlying climatic patterns, STR-NBEATS
offers a valuable tool for stakeholders seeking to navigate the challenges of a changing environment with
greater confidence and precision.

Keywords: Temperature forecasting, Seasonal-Trend decomposition, N-BEATS, Seasonal ARIMA,
STL-ETS, Time series analysis, Environmental science

1 Introduction

Accurate temperature forecasting is crucial for a wide range of socio-economic and environmental applica-
tions, including agriculture, environmental management, and energy planning. Precise predictions enable
stakeholders to make informed decisions, allocate resources efficiently, and implement effective adaptation
measures in the face of climate variability. As weather patterns become increasingly uncertain due to cli-
mate change, the demand for robust forecasting frameworks that offer both accuracy and interpretability
has grown more urgent.

In agriculture, reliable temperature forecasts guide farmers in determining optimal planting times, irri-
gation schedules, and harvesting operations, thereby minimizing the risk of crop failure and enhancing yield
quality [1, 2]. Such foresight supports long-term adaptation strategies, including breeding climate-resilient
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crop varieties and employing precision agriculture techniques to safeguard food security amid evolving cli-
mate conditions [3]. In environmental management, anticipating extremes like droughts, heatwaves, and
floods enables timely intervention and resource allocation to mitigate damage and support sustainable con-
servation efforts [4, 5]. Likewise, in the energy sector, temperature-driven forecasts underpin efficient energy
generation, distribution, and consumption, informing the integration of renewable resources and enhancing
grid stability [6, 7].

Despite these wide-ranging benefits, temperature forecasting remains challenging due to the inherently
complex patterns present in climatic data, including multiple seasonal cycles, evolving trends, and stochastic
fluctuations. Traditional statistical and numerical methods have shown limitations when grappling with
these complexities. Numerical Weather Prediction (NWP) models, while accurate in the short term, are
computationally intensive and sensitive to initial conditions, restricting their long-term reliability [8, 9, 10].
ARIMA-based methods and exponential smoothing approaches, though conceptually simpler, often struggle
to capture nonlinearities, multiple seasonalities, and shifting trends, leading to suboptimal forecast accuracy
[11, 12, 13, 14, 15, 16].

Advances in machine learning (ML) and deep learning (DL) have sparked a paradigm shift in forecasting.
Deep neural networks can model complex, nonlinear relationships and subtle patterns that elude tradi-
tional methods. Techniques such as LSTM networks, hybrid LSTM-CNN architectures, and attention-based
mechanisms have demonstrated remarkable improvements in predictive accuracy [17, 18, 19, 20, 21, 22, 23].
However, these models are often considered “black boxes” and may be prone to overfitting, prompting
ongoing research into more interpretable and robust approaches.

A promising strategy to enhance both accuracy and interpretability involves integrating decomposition
techniques with advanced ML/DL models. Decomposition methods like Empirical Mode Decomposition
(EMD), Seasonal-Trend Decomposition using LOESS (STL), and Singular Spectrum Analysis (SSA) separate
time series into seasonal, trend, and residual components, enabling targeted modeling of each element. Such
hybrid frameworks have led to improved forecast performance and clarity, as demonstrated by EEMD-LSTM,
CEEMDAN-based models, and STL-based neural network hybrids [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34].

Among these methodologies, Seasonal-Trend Decomposition using Regression (STR) [35] is a powerful
recent development. STR employs a regression-based framework to model trend and multiple seasonal
patterns with remarkable flexibility. Unlike traditional methods that assume fixed, unchanging seasonality,
STR can represent complex and evolving seasonal topologies, handle time-varying and seasonal covariates,
and ensure that extracted components remain smooth, interpretable, and stable over time. This opens up
new avenues for handling intricate and dynamic climatic phenomena.

Despite STR’s strengths, it has rarely been integrated with cutting-edge deep learning frameworks.
Recent advances in deep learning have given rise to models that can flexibly and accurately capture the
nonlinear, multi-timescale dynamics of complex data. One such model, Neural Basis Expansion Analysis
for Time Series (N-BEATS) [36], has emerged as a state-of-the-art forecasting architecture due to its ability
to leverage hierarchical basis expansions for improved accuracy and interpretability. Originally introduced
to compete in global forecasting challenges, N-BEATS and its variants have demonstrated exceptional per-
formance in diverse applications, including financial markets, energy load forecasting, quality of service in
cellular networks, and the control of automated guided vehicles [37, 38, 39, 40, 41, 42, 43, 44, 45]. These
studies consistently report that N-BEATS outperforms traditional statistical methods like ARIMA and ETS,
as well as other deep learning architectures (e.g., LSTMs and CNNs), both in terms of forecast accuracy and
robustness.

In this context, the integration of STR—offering a sophisticated, regression-based decomposition of trend
and multiple seasonal components—with an N-BEATS model capable of extracting complex residual dy-
namics presents a compelling opportunity. STR effectively isolates seasonal and trend variations, yielding
interpretable components that can be more accurately modeled once stripped of extraneous patterns. N-
BEATS, in turn, excels at modeling and forecasting the decomposed signals, capturing nonlinearities and
subtle features that may elude simpler methods. By uniting STR’s interpretability and decomposition power
with N-BEATS’s state-of-the-art forecasting ability, the proposed STR-NBEATS framework aims to deliver
accurate, stable, and transparent forecasts.

Contributions of This Study: This paper introduces a novel hybrid framework, STR-NBEATS,
that seamlessly integrates Seasonal-Trend Decomposition using Regression with the N-BEATS forecasting
architecture. The key contributions are:
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1. Innovative Integration: We bridge the interpretability and structural clarity of STR with the
high-accuracy predictive capabilities of N-BEATS, creating a unified model that leverages both approaches’
strengths.

2. Enhanced Forecasting Performance: The STR-NBEATS framework yields forecasts that improve
upon state-of-the-art benchmarks. By decomposing the time series, we enable N-BEATS to focus on the
residual complexity and deliver sharper, more accurate predictions.

3. Robustness and Interpretability: Decomposition via STR ensures that seasonal and trend patterns
are clearly identified and isolated, making forecasts more interpretable and enabling stakeholders to discern
underlying climatic dynamics with greater confidence.

4. Benchmarking and Validation: We rigorously compare our framework against established seasonal
ARIMA and STL-ETS models, demonstrating consistent improvements across accuracy metrics and offering
valuable insights into the benefits of combining advanced decomposition with cutting-edge deep learning.

The remainder of this paper is organized as follows. Section 2 details the STR methodology, the N-BEATS
model, and the integration process. Section 3 presents the experimental setup and dataset. In Section 4, we
discuss results and compare performance against benchmark models. Finally, Section 5 concludes the paper
and outlines avenues for future research.

2 Methodology

In this section, we present the integrated STR-NBEATS forecasting framework. Our approach begins with
the Seasonal-Trend Decomposition using Regression (STR), which decomposes the time series into trend,
seasonal, and remainder components. Next, we employ a simple seasonal naive (sNaive) model to forecast the
seasonal components. We then apply N-BEATS, a state-of-the-art neural network model, to the non-seasonal
(trend + remainder) component. Finally, we combine these forecasts to obtain the final prediction.

2.1 Notation

Let {yt}Tt=1 denote a univariate time series of length T . We aim to produce forecasts ŷt+h for horizons
h = 1, 2, . . . ,H. We consider I distinct seasonal periods {ωi}Ii=1, such as daily or annual cycles, which may
be non-integer and heterogeneous.

2.2 Seasonal-Trend Decomposition using Regression (STR)

The STR model [35] decomposes the time series into trend, seasonal, and remainder (noise) components,
potentially including covariates. Formally, STR represents the observed series as:

yt = Tt +

I∑
i=1

S
(i)
t +

P∑
p=1

ϕp,tzp,t +Rt, (1)

where:

• Tt is the smooth trend component,

• S
(i)
t is the i-th seasonal component with period ωi,

• ϕp,tzp,t represents the effect of external covariates,

• Rt is the remainder (noise) component.

STR enforces smoothness and identifiability through penalization of differences. For example, the trend
is often encouraged to be smooth by penalizing its second difference:

∆2Tt = Tt − 2Tt−1 + Tt−2 ∼ N (0, σ2
T ), (2)

ensuring that abrupt changes in Tt are unlikely.
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After fitting the STR model, we obtain estimates T̂t, Ŝ
(i)
t , and R̂t. Thus,

yt ≈ T̂t +

I∑
i=1

Ŝ
(i)
t + R̂t. (3)

2.3 Seasonal Forecasting with sNaive

To forecast the seasonal components, we apply a seasonal naive method. The sNaive forecast for each

seasonal component S
(i)
t over the horizon h is:

Ŝ
(i)
t+h = Ŝ

(i)
t+h−ωi

, (4)

assuming that seasonal patterns repeat. If multiple seasonal components exist, we sum their forecasts:

Ŝt+h =

I∑
i=1

Ŝ
(i)
t+h. (5)

2.4 N-BEATS Modeling of Trend+Remainder

Next, we combine the estimated trend and remainder to form a non-seasonal series:

T̂Rt = T̂t + R̂t. (6)

Before training N-BEATS, we normalize T̂Rt:

T̃Rt =
T̂Rt − µT̂R

σT̂R

, (7)

where µT̂R and σT̂R are the mean and standard deviation of the training segment of T̂Rt.

2.4.1 N-BEATS Architecture

N-BEATS (Neural Basis Expansion Analysis for Time Series) [36] is a deep neural network designed for
interpretable and accurate forecasting. It uses stacks of fully-connected layers organized into blocks. Each
block:

• Produces backcast and forecast outputs,

• Expands the time series into a basis using learned coefficients.

A block computes expansions of the form:

x̂
(l)
t =

∑
i

θl,igi(t), (8)

where gi(t) are basis functions (polynomial, Fourier, or learned), and θl,i are the corresponding coefficients.
N-BEATS employs residual stacking, where each block refines what previous blocks did not explain:

xl+1 = xl − x̂
(l)
l , y =

L∑
l=1

ŷ(l). (9)

After training N-BEATS on {T̃Rt}, it provides forecasts ˆ̃TRt+h. We invert the normalization:

T̂Rt+h = ˆ̃TRt+hσT̂R + µT̂R. (10)
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2.5 Final Forecast Combination

Finally, we combine the non-seasonal forecast from N-BEATS and the seasonal forecasts from sNaive:

ŷt+h = T̂Rt+h + Ŝt+h. (11)

This fusion preserves the seasonal structure from STR and the complex, non-seasonal patterns captured
by N-BEATS.

2.6 Algorithmic Description

Algorithm 1 STR-NBEATS Forecasting Algorithm

Require: Time series {yt}Tt=1, seasonal periods {ωi}Ii=1, forecast horizon H.

1: STR Decomposition: Decompose yt into T̂t, {Ŝ(i)
t }, R̂t using STR.

2: Combine Trend and Remainder: T̂Rt = T̂t + R̂t.
3: Forecast Seasonal Components (sNaive):
4: for h = 1 to H do
5: for i = 1 to I do

Ŝ
(i)
t+h = Ŝ

(i)
t+h−ωi

6: end for

Ŝt+h =

I∑
i=1

Ŝ
(i)
t+h

7: end for
8: Normalization: Compute µT̂R and σT̂R, then

T̃Rt =
T̂Rt − µT̂R

σT̂R

.

9: Train N-BEATS on T̃Rt and obtain forecasts ˆ̃TRt+h.
10: Inverse Normalization:

T̂Rt+h = ˆ̃TRt+hσT̂R + µT̂R.

11: Combine Final Forecasts:
ŷt+h = T̂Rt+h + Ŝt+h.

12: return {ŷt+h}Hh=1.

The proposed STR-NBEATS methodology leverages STR decomposition to separate the time series into
interpretable components and sNaive forecasts to handle seasonal patterns. N-BEATS then models the
remaining non-seasonal complexity. By blending these forecasts, we preserve interpretable structures while
benefiting from the flexibility and accuracy of a powerful neural forecasting model.

2.7 Benchmark Models

To rigorously evaluate the performance of the proposed STR-NBEATS framework, we compare it against
two well-established benchmarking models: a seasonal ARIMA model capable of capturing seasonal patterns,
and an STL-based decomposition model combined with Exponential Smoothing (ETS) [46]. Both of these
benchmarks are widely recognized in the forecasting literature and serve as strong baselines.
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2.7.1 Seasonal ARIMA Model

The Autoregressive Integrated Moving Average (ARIMA) model is a commonly used statistical approach
for time series forecasting. ARIMA(p, d, q) incorporates three types of parameters:

• p: The order of the autoregressive (AR) part.

• d: The degree of differencing required to achieve stationarity.

• q: The order of the moving average (MA) part.

When seasonality is present, a seasonal extension, ARIMA(p, d, q)(P,D,Q)m, can be employed, where:

• P,D,Q: The seasonal AR, differencing, and MA orders respectively.

• m: The number of periods in each seasonal cycle (e.g., m = 365 for daily data with annual seasonality).

The general form of a seasonal ARIMA model can be expressed as:

ΦP (B
m)ϕp(B)∇d∇D

myt = ΘQ(B
m)θq(B)εt, (12)

where:

• yt is the time series value at time t,

• B is the backshift operator (Byt = yt−1),

• ∇ = (1−B) and ∇m = (1−Bm) are the non-seasonal and seasonal differencing operators,

• ϕp(B) and ΦP (B
m) represent the non-seasonal and seasonal AR components,

• θq(B) and ΘQ(B
m) represent the non-seasonal and seasonal MA components,

• εt is white noise with zero mean and constant variance.

An automated seasonal ARIMA approach uses model selection criteria (such as AIC, AICc, or BIC) to
choose optimal parameters (p, d, q) and (P,D,Q), providing a robust baseline that can adapt to different
seasonal structures in the data.

2.7.2 STL-ETS Model

The STL-ETS model first applies Seasonal-Trend decomposition using LOESS (STL) to the original time
series before employing an Exponential Smoothing (ETS) model for forecasting the decomposed components.

The STL decomposition breaks the original time series yt into three additive components:

yt = Tt + St +Rt, (13)

where:

• Tt is the trend component,

• St is the seasonal component,

• Rt is the remainder (or residual) component.

Following the decomposition, the remainder series or seasonally adjusted series (yt−St) is modeled using
an ETS framework. The ETS family includes a range of models allowing for different configurations of Error
(E), Trend (T), and Seasonal (S) components. Common forms include:

• Additive or multiplicative error terms,

• Linear or damped trends,
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• Additive, multiplicative, or no seasonal patterns.

In its most general form, an ETS model can be represented as ETS(E,T,S), where E ∈ {A,M}, T ∈
{N,A,Ad,M,Md}, and S ∈ {N,A,M}, indicating the chosen combination of error, trend, and seasonality
types. An automated model selection procedure is often employed to choose the appropriate configuration
that best fits the data.

By first isolating and stabilizing seasonal and trend variations through STL, the subsequent ETS mod-
eling step can focus on forecasting a more homogeneous remainder series. This hybrid STL-ETS approach
effectively handles complex seasonal patterns and trends, making it a strong and flexible competitor against
more advanced forecasting models.

Both the automated seasonal ARIMA and the STL-ETS models are strong benchmarks. The seasonal
ARIMA method adeptly handles seasonal patterns and can be tuned automatically, while the STL-ETS
method leverages powerful decomposition to disentangle underlying structures before forecasting. These
benchmarks provide a robust baseline against which the performance of the proposed STR-NBEATS frame-
work can be fairly assessed.

3 Data Description

The dataset comprises daily temperature observations recorded in Umm Al Quwain, UAE, obtained from the
National Center of Meteorology. It spans from January 1, 2020, to March 31, 2024, providing a comprehensive
basis for training and testing the forecasting model.

For the purpose of this study, the dataset was divided into:

• Training Set: All observations from January 1, 2020, to March 31, 2023, used to train the forecasting
model.

• Test Set: The last 365 days, from April 1, 2023, to March 31, 2024, designated for evaluating the
model’s forecasting performance.

To address the inherent complexities of temperature data, including annual and semi-annual seasonal
patterns, the series was modeled as a multi-seasonal time series with seasonal periods of 365 and 182 days.
This preprocessing ensures the data is well-prepared for the STR-NBEATS hybrid model.

4 Analysis and Results

This section provides a thorough exploratory analysis of the daily temperature dataset alongside a detailed
decomposition and forecasting study. The primary objective is to uncover intrinsic structural patterns,
distributional characteristics, and temporal dependencies that can guide the selection and calibration of
suitable forecasting methodologies. By leveraging multiple visual representations, summary statistics, and
advanced decomposition techniques, we establish a comprehensive understanding of the underlying climatic
processes.

Figure 1 presents four key visual diagnostics arranged in a single frame: the daily temperature time series,
the autocorrelation function (ACF), the partial autocorrelation function (PACF), and the histogram of daily
temperatures. The time series plot reveals a pronounced annual cycle, evidenced by regular peaks and troughs
that correspond to seasonal climatic transitions. This repetitive pattern suggests that models incorporating
explicit seasonal terms will likely prove effective. The ACF shows significant correlations at lags consistent
with the yearly cycle, further confirming the presence of strong seasonality. Moreover, the appearance of
additional, albeit weaker, peaks may reflect semi-annual or other sub-annual climatic influences. The PACF
declines steeply after the first lag, indicating that much of the short-term memory in the series is captured
by immediate past values and the strong seasonal structure. The histogram of daily temperatures, while
centered around moderately high values, displays hints of multimodality, reflecting temperature regimes
associated with different times of the year. This distributional complexity suggests that standard Gaussian
assumptions may be inappropriate, and more flexible approaches could be warranted for both inference and
prediction.
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Figure 2 complements this initial exploration with a boxplot, Q-Q plot, seasonal subseries plot, and
lag plot of the daily temperatures. The boxplot reveals a relatively stable median and only modest dis-
persion, illustrating a climate that, while seasonally dynamic, does not exhibit frequent extreme outliers.
The Q-Q plot confirms deviations from normality, particularly in the tails, underscoring the need for ro-
bust or nonparametric methods that can handle such departures. The seasonal subseries plot arranges the
data by seasonal cycle, making the annual pattern unmistakably clear and affirming that these temperature
fluctuations recur with notable regularity year after year. Such consistency across multiple annual cycles
underscores the suitability of seasonal-trend decomposition frameworks. The lag plot, which displays cur-
rent temperatures against their one-day lagged values, shows a strong linear relationship, confirming that
immediate past observations are highly predictive and reinforcing the fundamental premise of using time
series models capable of leveraging this strong temporal dependence.

Table 1 offers descriptive statistics that further characterize the data. The mean and median align
closely, indicating near-symmetry in the central tendency. Minimal skewness and moderate kurtosis levels
suggest no extreme deviations from a roughly symmetric distribution, although the Q-Q plot’s nonlinearity
emphasizes that subtle distributional complexities remain. The moderate standard deviation points to
a reasonable spread, while the strong and persistent seasonal signals suggest that much of the observed
variability is structured rather than random. Together, these findings highlight a dataset that is both stable
and periodically dynamic, posing distinct challenges and opportunities for modeling.

Figure 3 introduces the Seasonal-Trend decomposition using Regression (STR). By decomposing the
data into a smoothly varying trend, multiple seasonal components, and a residual term, STR elucidates
the fundamental building blocks of the time series. The original data plot in the top-left panel of the
figure exhibits the well-defined annual cycles. Below it, the trend component shows a gradual, long-term
progression, possibly reflecting broader climatic shifts or subtle environmental changes over the observed
period. The seasonal components isolate both a dominant 365-day cycle and a 182.5-day sub-annual pattern,
each capturing distinct cyclical behaviors. The former aligns neatly with known annual climatology, while
the latter may stem from regional weather patterns or secondary climate drivers. The residual component
appears substantially more stationary after extracting trend and seasonal factors, confirming that the STR
approach effectively removes structured variability and leaves behind a noise-like remainder suitable for
further modeling steps.

Building upon the decomposition, the forecasting phase aims to leverage both classical and modern
methodologies to predict future temperatures. Figure 4 displays the sNaive forecasts for the 182-day and
365-day seasonal components. These forecasts project historical seasonal patterns into the future without
imposing additional complexity, thus serving as stable benchmarks. The retained seasonal structures en-
sure that expected seasonal peaks and troughs are faithfully reproduced beyond the observed data. When
combined with the non-seasonal Trend+Random component forecasts produced by a state-of-the-art deep
learning model, N-BEATS, the forecasting framework becomes more adaptable and precise. Figure 5 shows
the comparison between the historical Trend+Random values and the N-BEATS predictions. The N-BEATS
model adeptly captures gradual shifts in the baseline temperature level as well as irregular fluctuations not
directly tied to the seasonal cycles. This flexible modeling of residual dynamics yields a more accurate and
nuanced understanding of the underlying climatic processes.

Finally, Figure 6 integrates these components into a cohesive predictive solution. By summing the sNaive-
based seasonal forecasts and the N-BEATS Trend+Random forecast, the final predictions align closely
with the out-of-sample test data. This close alignment attests to the robustness of the decomposition-
based approach and the potency of combining classical seasonal modeling techniques with advanced machine
learning methods. The resulting forecasts are both interpretable—given the transparent decomposition into
trend, seasonal, and residual elements—and empirically effective.

In sum, the exploratory analysis and decomposition confirm that the temperature data exhibit strong and
persistent seasonalities, stable yet non-Gaussian distributions, and meaningful autocorrelation structures.
Employing the STR decomposition clarifies the drivers of variability, while the hybrid forecasting strategy
that merges sNaive seasonal forecasts with N-BEATS-based residual modeling demonstrates the advantage
of leveraging complementary methods. These results establish a framework well-suited for handling complex
environmental time series and lay the groundwork for further refinements, including the incorporation of
additional covariates or advanced hierarchical modeling approaches.

8



15

20

25

30

35

2020 2021 2022 2023 2024

Date

Te
m

pe
ra

tu
re

 (
°C

)

Daily Temperature Over Time

−0.5

0.0

0.5

1.0

0 250 500 750 1000

Lag

A
C

F

Autocorrelation Function

0.00

0.25

0.50

0.75

1.00

0 250 500 750 1000

Lag

PA
C

F

Partial Autocorrelation Function

0

30

60

90

15 20 25 30 35 40

Temperature (°C)
F

re
qu

en
cy

Histogram of Daily Temperatures

Figure 1: Daily temperature over time (top-left), autocorrelation function (top-right), histogram of daily
temperatures (bottom-right), and partial autocorrelation function (bottom-left). The figure demonstrates
strong annual seasonality, significant autocorrelation at seasonal lags, and a distribution that may deviate
from strict normality.

15

20

25

30

35

−0.4 −0.2 0.0 0.2 0.4

Te
m

pe
ra

tu
re

 (
°C

)

Boxplot of Daily Temperatures

0

20

40

−2 0 2

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

Q−Q Plot of Daily Temperatures

15

20

25

30

35



Season

year

1

2

3

4

5

Seasonal Subseries Plot

lag 1

15 20 25 30 35

15

20

25

30

35

Season

100

200

300

Lag Plot

Figure 2: Boxplot, Q-Q plot, seasonal subseries plot, and lag plot of daily temperatures. The boxplot suggests
a stable median and limited outliers, the Q-Q plot indicates departures from normality, the seasonal subseries
plot confirms recurring annual patterns, and the lag plot shows strong linear autocorrelation.
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Statistic Value

Minimum Temperature 15.10°C
1st Quartile 21.60°C
Median 26.95°C
Mean 27.08°C
3rd Quartile 32.50°C
Maximum Temperature 38.70°C
Standard Deviation 5.94°C
Skewness -0.03
Kurtosis -1.29

Table 1: Descriptive statistics of daily temperatures. The distribution is roughly symmetric with moderate
variability, and the climate appears stable without frequent extremes.
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Figure 3: STR decomposition of the temperature time series. The top-left panel shows the raw data with
annual cycles. Below it, the trend component reveals gradual long-term changes. To the right, the 365-day
seasonal pattern dominates, while a 182.5-day seasonal component captures intra-annual fluctuations. The
random residual is substantially reduced and appears stationary, confirming the efficacy of the decomposition.
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Figure 7: Forecast results from the STL + ETS(A,N,N) model. The black line represents historical tem-
perature data, while the dark blue line and shaded region represent the point forecasts and their associated
prediction intervals, respectively. Note the model’s ability to capture seasonal patterns to some extent, but
also observe the relatively wide prediction intervals, indicating increased uncertainty as the forecast horizon
extends.
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Figure 8: Forecast results from the ARIMA(5,1,1)(0,1,0)[365] model. The historical time series is shown in
black, with the forecasts and corresponding intervals represented in blue. While ARIMA-based methods can
model seasonal patterns through appropriate differencing and autoregressive terms, their prediction intervals
may still widen considerably over longer horizons, reflecting uncertainty and the difficulty in capturing
complex, nonlinear relationships.

4.1 Model Fit and Benchmark Discussion

Both the STL-ETS and ARIMA models serve as valuable benchmarks for evaluating our proposed STR-
NBEATS framework. The STL-ETS approach applies Seasonal-Trend decomposition using LOESS (STL)
to isolate underlying patterns, followed by an ETS(A,N,N) model for forecasting. According to the model
summary:

Forecast method: STL + ETS(A,N,N)

Smoothing parameters:

alpha = 0.796

Initial states:

l = 27.1896

sigma: 1.2788

AIC=8990.861, AICc=8990.881, BIC=9006.098

This suggests a relatively simple exponential smoothing model without trend or multiplicative compo-
nents. The use of STL decomposition provides a clearer separation of seasonal patterns, but as illustrated in
Figure 7, the resulting forecasts still exhibit broad uncertainty bands, reflecting the limitations of a purely
statistical approach when confronted with complex, high-frequency data and nonlinear dynamics.

On the other hand, the ARIMA(5,1,1)(0,1,0)[365] model incorporates seasonal differencing and multiple
autoregressive terms to handle temporal dependencies and seasonal effects:

ARIMA(5,1,1)(0,1,0)[365]

Coefficients:

ar1 ar2 ar3 ar4 ar5 ma1

0.9226 -0.4145 0.1391 -0.0996 0.0803 -0.9896

s.e. 0.0364 0.0473 0.0495 0.0472 0.0364 0.0112
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sigma^2 = 2.019

log likelihood = -1455.17

AIC=2924.34, AICc=2924.47, BIC=2957.31

Despite its sophistication, the ARIMA model’s forecasts (Figure 8) still widen significantly as the lead
time increases. While ARIMA models can capture certain linear and seasonal structures, they often struggle
with more intricate nonlinear behaviors and multiple seasonalities. The observed expansion of prediction
intervals over time underscores the challenges associated with relying solely on traditional statistical models
for temperature forecasting.

In summary, these benchmark graphical results highlight the inherent complexities and uncertainties asso-
ciated with temperature forecasting. While STL-ETS and ARIMA methods can provide baseline predictions
and capture simpler patterns, they often fail to fully represent the underlying dynamics or achieve tight con-
fidence intervals. These insights underscore the need for more advanced hybrid modeling approaches—such
as the proposed STR-NBEATS framework—that combine the interpretability of decomposition techniques
with the predictive power and flexibility of deep learning architectures.

5 Results and Discussion

In order to evaluate the effectiveness of the proposed STR-NBEATS framework, we conducted comparative
analyses against two benchmark models: (1) a seasonal ARIMA model and (2) an STL-based hybrid model
combined with Exponential Smoothing (ETS) forecasting. The test sets from our evaluation were identical
across all models, allowing for a consistent assessment of forecasting performance. Table 2 summarizes the
forecasting accuracy metrics for STR-NBEATS, the automatic seasonal ARIMA model, and the STL-ETS
model.

Table 2: Accuracy metrics for the proposed STR-NBEATS model compared to the seasonal ARIMA model
with covariates and the STL-ETS model. Metrics include Mean Error (ME), Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE), Mean Percentage Error (MPE), and Mean Absolute Percentage
Error (MAPE).

Model ME RMSE MAE MPE MAPE

STR-NBEATS 0.2783 1.8781 1.4685 0.4831 5.6116
ARIMA (Seasonal) 0.0816 2.1830 1.6802 -0.2865 6.4599
STL-ETS 0.3378 1.9459 1.5247 1.0161 5.8563

The STR-NBEATS model demonstrates superior performance across multiple metrics compared to the
benchmark models. In particular, the RMSE of STR-NBEATS (1.8781) is notably lower than that of the
ARIMAmodel (2.1830) and the STL-ETS model (1.9459), indicating that the proposed approach consistently
reduces the magnitude of forecast errors. Similarly, the MAE for STR-NBEATS (1.4685) is lower than both
the ARIMA (1.6802) and STL-ETS (1.5247) models, underscoring its ability to provide more precise point
forecasts.

The percentage-based error metrics also highlight the effectiveness of STR-NBEATS. The MAPE for STR-
NBEATS (5.6116) outperforms both the ARIMA (6.4599) and STL-ETS (5.8563) approaches, reflecting a
reduction in relative error and an improvement in forecast reliability. While the ME and MPE values are
relatively small for all models, the STR-NBEATS model maintains a competitive edge, indicating a lower
systematic bias and more balanced predictive capabilities.

To provide a visual comparison of the models’ forecasting performance, Figure 9 plots the actual tem-
perature values alongside the forecasts generated by STR-NBEATS, ARIMA, and STL-ETS over the test
period. The figure clearly illustrates that the STR-NBEATS forecasts closely align with the observed values,
demonstrating improved accuracy and reduced forecasting errors compared to the benchmark models. The
alignment between STR-NBEATS and the observed data highlights the model’s ability to effectively capture
the underlying seasonal and trend structures while mitigating residual noise.
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These findings align with the core objectives of the STR-NBEATS framework. By integrating Seasonal-
Trend Decomposition using Regression (STR) with a powerful deep learning architecture (N-BEATS), the
model effectively captures and leverages underlying seasonal and trend patterns in temperature data. This
synergy leads to improved performance against both traditional statistical models, such as seasonal ARIMA,
and hybrid decomposition approaches like STL-ETS. The results illustrate that the proposed STR-NBEATS
framework is not only capable of enhancing predictive accuracy but also of delivering more interpretable
and robust forecasts, thereby supporting more informed decision-making and management strategies in
climatology, agriculture, energy, and related fields.
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Figure 9: Comparison of actual temperature values (black) with ARIMA (blue), STL-ETS (green), and STR-
NBEATS (red) forecasts over the test period. The STR-NBEATS forecasts closely align with the observed
values, demonstrating improved accuracy and reduced forecasting errors compared to benchmark models.

6 Conclusion

In this paper, we introduced the STR-NBEATS hybrid framework, integrating Seasonal-Trend Decompo-
sition using Regression with the Neural Basis Expansion Analysis architecture for enhanced temperature
forecasting. Our results demonstrate that STR-NBEATS consistently outperforms traditional statistical
models and hybrid decomposition approaches, as evidenced by lower RMSE, MAE, and MAPE values. By
effectively capturing complex seasonal patterns and long-term trends, while addressing the limitations of clas-
sical and purely data-driven methods, the STR-NBEATS framework provides a more accurate, interpretable,
and robust solution for environmental and climate-related forecasting tasks.

The improved performance of STR-NBEATS in handling non-stationary temperature data and its ability
to deliver meaningful decomposed components underscores its potential for a wide range of applications,
including climate risk assessment, agricultural planning, and renewable energy management. Future work
may explore the integration of additional external covariates, more sophisticated decomposition techniques,
and domain-specific model adaptations to further enhance forecasting capabilities and generalize to other
types of time series data.

15



References

[1] Balyan, S., et al., “Seeding a Sustainable Future: Navigating the Digital Horizon of Smart Agriculture,”
Sustainability (Switzerland), vol. 16, no. 2, art. no. 475, 2024. DOI: 10.3390/su16020475.

[2] Wang, H., et al., “Application of the Informer Long-Term Sequence Model in Agricultural Tem-
perature Prediction,” Proceedings - 2023 China Automation Congress, pp. 7122-7127, 2023. DOI:
10.1109/CAC59555.2023.10451131.

[3] Falloon, P., Betts, R., “Climate impacts on European agriculture and water management in the context
of adaptation and mitigation,” Science of the Total Environment, vol. 408, no. 23, pp. 5667-5687, 2010.
DOI: 10.1016/j.scitotenv.2009.05.002.

[4] Ukhurebor, K. E., et al., “Climate condition monitoring and automated systems,” AI, Edge and IoT-based
Smart Agriculture, pp. 437-447, 2021. DOI: 10.1016/B978-0-12-823694-9.00031-1.

[5] Sivakumar, M. V. K., “Climate prediction and agriculture: Current status and future challenges,” Climate
Research, vol. 33, no. 1, pp. 3-17, 2006. DOI: 10.3354/cr033003.

[6] Chen, L., et al., “Artificial intelligence-based solutions for climate change: a review,” Environmental
Chemistry Letters, vol. 21, no. 5, pp. 2525-2557, 2023. DOI: 10.1007/s10311-023-01617-y.

[7] Singh, S., Goyal, M. K., “Enhancing climate resilience in businesses: The role of artificial intelligence,”
Journal of Cleaner Production, vol. 418, art. no. 138228, 2023. DOI: 10.1016/j.jclepro.2023.138228.

[8] Woodhouse, N., Musilek, P., “Computational acquisition of meteorological data for applications in
electric power systems,” 2020 IEEE Electric Power and Energy Conference, EPEC 2020, 2020. DOI:
10.1109/EPEC48502.2020.9319917.

[9] Abdallah, W., et al., “A vector autoregressive methodology for short-term weather forecasting: tests for
Lebanon,” SN Applied Sciences, vol. 2, no. 9, 2020. DOI: 10.1007/s42452-020-03292-y.

[10] Niu, D., et al., “A Machine-Learning Approach Combining Wavelet Packet Denoising with Catboost
for Weather Forecasting,” Atmosphere, vol. 12, no. 12, 2021. DOI: 10.3390/atmos12121618.

[11] Elmaleh, M. S., “ARIMA Forecasting: Variables without a Cause,” Journal of Business Valuation and
Economic Loss Analysis, vol. 12, no. 1, 2017. DOI: 10.1515/jbvela-2016-0009.

[12] Lah, M. S. C., et al., “Fuzzy-Autoregressive Integrated Moving Average (F-ARIMA) Model to Improve
Temperature Forecast,” Lecture Notes in Networks and Systems, vol. 457, 2022. DOI: 10.1007/978-3-031-
00828-35.

[13] Katušić, D., et al., “A comparison of data-driven methods in prediction of weather patterns in central
Croatia,” Earth Science Informatics, vol. 15, no. 2, 2022. DOI: 10.1007/s12145-022-00792-w.

[14] Zakari, R. Y., et al., “Time series forecasting techniques for climate trend prediction,” Reshaping Envi-
ronmental Science Through Machine Learning and IoT, 2024. DOI: 10.4018/979-8-3693-2351-9.ch0014.

[15] Djouama, I., et al., “ML-Based Weather Forecasting Models: A Comparative Study,” Lecture Notes in
Networks and Systems, vol. 1170, 2024. DOI: 10.1007/978-3-031-73344-433.

[16] Elseidi, M., “Forecasting temperature data with complex seasonality using time series methods,” Mod-
eling Earth Systems and Environment, vol. 9, no. 2, 2023. DOI: 10.1007/s40808-022-01632-y.

[17] Yadav, H., Thakkar, A., “NOA-LSTM: An efficient LSTM cell architecture for time series forecasting,”
Expert Systems with Applications, vol. 238, 2024. DOI: 10.1016/j.eswa.2023.122333.

[18] Vo, T., “An Integrated Dual Attention with Convolutional LSTM for Short-Term Temperature Fore-
casting,” Cybernetics and Systems, vol. 55, no. 2, 2024. DOI: 10.1080/01969722.2022.2122010.

16

https://doi.org/10.3390/su16020475
https://doi.org/10.1109/CAC59555.2023.10451131
https://doi.org/10.1016/j.scitotenv.2009.05.002
https://doi.org/10.1016/B978-0-12-823694-9.00031-1
https://doi.org/10.3354/cr033003
https://doi.org/10.1007/s10311-023-01617-y
https://doi.org/10.1016/j.jclepro.2023.138228
https://doi.org/10.1109/EPEC48502.2020.9319917
https://doi.org/10.1007/s42452-020-03292-y
https://doi.org/10.3390/atmos12121618
https://doi.org/10.1515/jbvela-2016-0009
https://doi.org/10.1007/978-3-031-00828-3_5
https://doi.org/10.1007/978-3-031-00828-3_5
https://doi.org/10.1007/s12145-022-00792-w
https://doi.org/10.4018/979-8-3693-2351-9.ch0014
https://doi.org/10.1007/978-3-031-73344-4_33
https://doi.org/10.1007/s40808-022-01632-y
https://doi.org/10.1016/j.eswa.2023.122333
https://doi.org/10.1080/01969722.2022.2122010


[19] Khan, M. I., Maity, R., “Hybrid deep learning approach for multi-step-ahead prediction for daily max-
imum temperature and heatwaves,” Theoretical and Applied Climatology, vol. 149, no. 3-4, 2022. DOI:
10.1007/s00704-022-04103-7.

[20] Castro, R., et al., “STConvS2S: Spatiotemporal Convolutional Sequence to Sequence Network for
weather forecasting,” Neurocomputing, vol. 426, 2021. DOI: 10.1016/j.neucom.2020.09.060.
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