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Abstract. Evaluating the acceptance of an insurance policy requires the 

underwriter's accuracy in assessing prospective customers' risk profiles. If it is 
discovered that a prospective customer has a high risk, the policy application will 

automatically be rejected. It will take time and substantial costs if someone relies on 

the traditional underwriting process. Therefore, this research tries to apply the 
boosting machine learning method in classifying the risk level of life insurance 

policies using data from Prudential Life Insurance Assessment 2015. There are four 

boosting techniques used, namely multi-class adaptive boosting (AdaBoost), 
extreme gradient boosting (XGBoost), light gradient boosting machine (LightGBM), 

and categorical boosting (CatBoost). XGBoost and LightGBM perform best when 

training through hyperparameter optimization and experimenting on test data; both 
have a weighted F1 score of 0.48, with LightGBM performing much faster. 
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1. Introduction 

Based on the 2023 Insurance Barometer Study conducted by LIMRA and Life Happiness, 

39% of potential consumers intend to buy a life insurance policy the following year. 

Generation Z and millennials dominate this percentage. This enthusiasm is supported by 

data that the total premium income of the life insurance industry in 2022 will increase by 

9.8% compared to 2021. The COVID-19 pandemic in 2020 was one of the main factors 

in increasing life insurance momentum because this pandemic has claimed many lives 

from all age groups. If previously policies were more commonly owned by older age 

groups, now those who are young and healthy are starting to realize the critical role of 

having a life insurance policy. 

The underwriter will analyze the risk profile of each individual who applies for an 

insurance policy to prevent approval for high-risk individuals. This evaluation process is 

known as the underwriting process. An underwriter will evaluate the age, health 

condition, employment, marital status, credit application history, and assets owned by 

the policy applicant. This data will determine how much premium needs to be paid and 

the potential policyholder's ability to pay these obligations. Suppose the insurance 

company sees that the candidate cannot pay off his debts or has a high possibility of 

claims shortly. In that case, the policy application will be rejected. The historical data is 
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also used to group customers based on their risk level so that the similarities between 

customers in one risk group can be seen. However, traditional underwriting procedures 

are often lengthy and costly. On average, the underwriting process can take four to six 

weeks, depending on the applicant's risk profile [1]. The longer it takes, the higher the 

company's expenses; therefore, predictive analysis techniques are introduced. 

The insurance industry increasingly turns to predictive analysis to bolster its 

business efficiency. This powerful tool, successfully applied by Manulife Canada in 

analyzing HIV patient policies and by the Property and Casualty (P&C) business line in 

assessing disability claims, is a game-changer in the fight against adverse selection. 

Predictive analysis techniques, particularly machine learning models, enable the 

classification of customers according to their risk level, thereby instilling confidence in 

the insurance industry's robust risk management practices. 

In this research, we will discuss the application of boosting machine learning in 

classifying life insurance policy risks into several levels. Boosting is known to perform 

well because it builds models iteratively by correcting errors in previous iterations. 

Boosting techniques developed starting from adaptive boosting (AdaBoost), which is 

usually applied for classification, then statistical boosting was created, which can be used 

for regression problems, such as gradient boosting machines (GBM) [2]. AdaBoost 

performs weight optimization, while GBM attempts to minimize the residual from the 

prediction results for each iteration. Similar research has proven that various GBM 

techniques are more accurate than decision trees, random forests, logistic regression, and 

other machine learning methods. In this research, the multi-class AdaBoost method and 

several GBM development methods will be used, such as extreme gradient boosting 

(XGBoost), light gradient boosting machine (LightGBM), and categorical boosting 

(CatBoost) in classifying life insurance policy risks. We will test the method on various 

experiments to find optimal conditions that improve model performance. We also will 

compare the classification abilities of all methods by observing the weighted 𝐹1 score. 

The research aims to determine the optimal conditions for the dataset to build a risk 

classification model with various boosting methods. Then, decide whether applying 

clustering before building the risk classification model provides better performance, as 

recommended by [1]. Finally, we will compare the performance of boosting methods 

with optimized parameters based on accuracy, weighted 𝐹1, and execution time. 

2. Theoretical Foundations and Literature Review 

2.1. Adaptive Boosting (AdaBoost) 

The concept of boosting originates from developing a weak learner who performs 

slightly better than a random learner into a strong learner who performs much better than 

a random learner. Freund and Schapire [3] first introduced the boosting algorithm to learn 

the results of iterations and combine them into an accurate classifier. In the case of binary 

classification, weak learners can classify with an accuracy slightly higher than 50%, 

while strong learners have an accuracy close to perfect or greater than 99% [2]. The basic 

concept of boosting is manipulating training data by giving weight to each observation 

in each iteration; it will give greater weight to data misclassified in an iteration. As a 

result, the weak learner will produce different results in each iteration, paying particular 

attention to observations misclassified in the previous iteration. For example, 𝑚 =



1, . . . , 𝑀 are the iterations performed, and 𝜔(𝑚) = (𝑤1
(𝑚)

, … , 𝑤𝑛
(𝑚)

) are the weights of 

each 𝑛 observations in the 𝑚-th iteration. In the final stage, the results of the 𝑀 weak 

learner predictions are combined into a final prediction and then compared with the 

actual target. The base learners or basic models often used in boosting are linear functions 

and decision trees. Some nodes (root node, branch node, leaf node) form a decision tree, 

where a splitting procedure is carried out for each node except the leaf for each feature 

(see Figure 1). The best measuring tool for determining split features is the Gini index, 

entropy, or information gain [4]. 

 

 

Figure 1. Decision tree illustration 
Source: https://miro.medium.com/v2/resize:fit:828/format:webp/1*ekWgr-yVc-ba6DHC_9FeRA.png 

 

AdaBoost is the first practical application of the boosting method, generally used in 

binary classification problems with simple decision tree weak learners. AdaBoost has 

adaptive properties, as the name suggests because it automatically adjusts its parameters 

at each iteration or reweights. By setting the initial weight of each observation equal, a 

decision tree for classification is built. If there are observations that are misclassified, 

they will be given greater weight in the next iteration. This iteration continues to repeat 

until a set limit, so the final decision model is a linear combination of each weak learner 

multiplied by the amount of say (𝛼). The contribution's magnitude to an iteration's results 

is represented by the 𝛼 value [5]. 

For example, given a dataset (𝑥𝑖 , 𝑦𝑖)𝑖=𝑖
𝑛

 and the number of weak learner iterations is 

𝑀. In the case of AdaBoost binary classification, the 𝑦𝑖  value is converted to 𝑦𝑖 ∈{-1,1}. 

The final decision model of the AdaBoost method has the following equation: 

𝑇(𝑥) = 𝑠𝑖𝑔𝑛 [∑ 𝛼(𝑚) ⋅ 𝑇(𝑚)(𝑥)𝑀
𝑚=1 ],        (1) 

where 𝛼(𝑚) is the amount of say the mth iteration and 𝑇(𝑚)(𝑥) is the prediction result of 

the 𝑚-th weak learner for observation 𝑥. The 'sign' notation aims to capture the positive 

or negative sign of the calculation result. The AdaBoost algorithm uses the exponential 

loss function as the objective function to be minimized, namely: 

   𝐸(𝑚) = ∑ 𝑒𝑥𝑝 [−𝑦𝑖 ⋅ 𝑆(𝑚)(𝑥𝑖)]𝑛
𝑖=1 ,                                       (2) 

where 𝑆(𝑚)(𝑥𝑖) is the number of linear combinations of the amount of say and weak 

learner until the 𝑚-th iteration. After decomposing and deriving equation (2), the amount 

of say formula can be obtained: 

https://miro.medium.com/v2/resize:fit:828/format:webp/1*ekWgr-yVc-ba6DHC_9FeRA.png


𝛼(𝑚) =
1

2
𝑙𝑜𝑔

1−𝑒𝑟𝑟(𝑚)

𝑒𝑟𝑟(𝑚) ,                (3) 

where 𝑒𝑟𝑟(𝑚) is the weighted proportion of observations misclassified for an iteration. 

When dealing with multi-class cases, the Stagewise Additive Modeling algorithm using 

a Multi-class Exponential loss function (SAMME) is used, with a final decision model 

[6]: 

𝑇(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘 ∑ [𝛼(𝑚) ⋅ 𝐼(𝑇(𝑚)(𝑥) = 𝑘)]𝑀
𝑚=1 .           (4) 

The argmax notation will find the value of 𝑘  that maximizes the number in square 

brackets for 𝑘 = 1, . . . , 𝐾. 

 

2.2. Gradient Boosting Machine (GBM) 

 

The application of boosting is not only for classification problems but can predict 

quantitative outcomes, as introduced by Friedman in statistical enhancement. One 

elaboration of statistical enhancement is the gradient enhancement machine (GBM), 

which has been proven to outperform other machine learning models and is classified as 

working quickly. Almost similar to AdaBoost, GBM improves model performance by 

providing greater focus on observations that are difficult to predict for each iteration. 

AdaBoost gives greater weight to misclassified data, while GBM identifies errors 

through large residuals. GBM will utilize the steepest descent algorithm to determine the 

best weak learner decision tree that minimizes a specific objective function [2]. 

Again, consider the dataset (𝑥𝑖 , 𝑦𝑖)𝑖=𝑖
𝑛  for binary classification {0,1} and the number 

of weak learner iterations is 𝑀. Suppose the predicted probability of the 𝑖-th observation 

being in class 1 is 𝑓𝑖. GBM looks for the initial prediction value by minimizing the loss 

function, which is the sum of the negative log-likelihoods of all observations. The loss 

function can be expressed in 𝑓𝑖  or log(odds)i or 𝑂𝑖 , namely: 

𝐿(𝑦𝑖 , 𝑓𝑖) = −[𝑦𝑖  ·  log(𝑓𝑖) +  (1 − 𝑦𝑖)  ·  log(1 − 𝑓𝑖)],        (5) 

𝐿(𝑦𝑖 , 𝑂𝑖) = − ∑ [𝑦𝑖  ·  𝑂𝑖]
𝑛
𝑖=1 + ∑ log(1 + 𝑒𝑥𝑝(𝑂𝑖))𝑛

𝑖=1 .        (6) 

By reducing equation (6) to log(odds), we obtain that the initial probability prediction 

for all observations is the average of 𝑦𝑖 . In GBM, the term output value (Ψ) is known for 

each weak learner iteration leaf node. The output value is obtained by minimizing the 

objective function: 

ℒ (𝑚) = 𝐿 (𝑦𝑖 , 𝑓𝑖
(𝑚−1)

+ 𝜓𝑗
(𝑚)

),                (7) 

where 𝜓𝑗
(𝑚)

 is the output value of the terminal region 𝑗 = 1, . . . , 𝐽𝑚  for 𝑚  iterations. 

Through second-order Taylor series expansion in equation (7) and then deriving it with 

respect to ψ, we obtain: 

    𝜓 =
∑ 𝑒𝑖

(𝑚)𝑛
𝑖=1

∑ [𝑓
𝑖
(𝑚−1)

⋅(1−𝑓
𝑖
(𝑚−1)

)]𝑛
𝑖=1

,                (8) 

with 𝑒𝑖
(𝑚)

= 𝑦𝑖 − 𝑓𝑖
(𝑚−1)

.  

  GBM will use the One-vs-All (OVA) approach when facing a multi-class case, as 

illustrated in Figure 2. For example, assume the response data is a class with three 

categories: unmarried, married, and divorced. In each iteration, GBM will build three 

binary classification models, namely (unmarried vs married, divorced), (married vs 

unmarried, divorced), and (divorced vs unmarried, married). The final class prediction 

will choose the model with a higher confidence level. For example, model one is 60% 

confident that the observation is unmarried, model two is 75% confident that the 

observation is married, and model three is only 50% confident. Based on these 



percentages, GBM classifies the observation as married [7]. GBM, discovered in 1999, 

has evolved into various boosting techniques with better performance. Extreme gradient 

boosting (XGBoost) developed in 2016 is known for its high performance and 

regularization capabilities. In 2017, the light gradient boosting machine (LightGBM) was 

designed with high working speed and is relatively efficient. Then, categorical boosting 

(CatBoost) was introduced in 2018 to help process categorical features. 

 
Figure 2. One-vs-all illustration 

Source: https://jermwatt.github.io/machine_learning_refined/notes/7_Linear_multiclass_classification/7_2_OvA.html 
 

XGBoost, a GBM technique development, was first introduced by Tianqi Chen and 

Carlos Guestrin [8]. XGBoost has a higher working speed than traditional GBM due to 

the improvement of the split-finding algorithm to find the best split. This algorithm 

consists of the basic exact greedy algorithm, approximate algorithm, and sparsity-aware 

split finding algorithm to handle missing data automatically [8]. The objective function 

of XGBoost is similar to equation (7), except that there are additional components: 

    𝛺(𝜓𝑗
(𝑚)

) = 𝛾 ⋅ 𝐽𝑚 +
1

2
⋅ 𝜆 ⋅ ||𝜓𝑗

(𝑚)
||

2

,             (9) 

with 𝛾 and 𝜆 are regularization parameters. As a result, the output value formula has an 

additional 𝜆  component in the denominator. When determining the splitting node, 

XGBoost looks for features that cause the most significant loss reduction, namely: 

   ℒ𝑠𝑝𝑙𝑖𝑡 =
1

2
[

(∑ 𝑔𝑖𝑖∈𝑅𝑙𝑒𝑓𝑡 )
2

𝜆+∑ ℎ𝑖𝑖∈𝑅𝑙𝑒𝑓𝑡

+
(∑ 𝑔𝑖𝑖∈𝑅𝑟𝑖𝑔ℎ𝑡 )

2

𝜆+∑ ℎ𝑖𝑖∈𝑅𝑟𝑖𝑔ℎ𝑡

−
(∑ 𝑔𝑖𝑖∈𝑅 )

2

𝜆+∑ ℎ𝑖𝑖∈𝑅

] − 𝛾,       (10) 

for 𝑔𝑖 and ℎ𝑖 are the loss function's first and second derivatives, respectively. 

Microsoft developed LightGBM to obtain models quickly without involving all 

observations or features. LightGBM uses XGBoost as a baseline by adding the Gradient-

Based One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB) applications 

[9]. The LightGBM decision tree selects the split feature s at node d based on the most 

significant variance value after splitting, namely: 

 Ṽ𝑠(𝑑) =
1

𝑛
[

(∑ 𝑔𝑖𝑥𝑖∈𝐴𝑙𝑒𝑓𝑡
+

1−𝑎

𝑏
∑ 𝑔𝑖𝑥𝑖∈𝐵𝑙𝑒𝑓𝑡

)
2

𝑛𝑙𝑒𝑓𝑡
𝑠 (𝑑)

+
(∑ 𝑔𝑖𝑥𝑖∈𝐴𝑟𝑖𝑔ℎ𝑡

+
1−𝑎

𝑏
∑ 𝑔𝑖𝑥𝑖∈𝐵𝑟𝑖𝑔ℎ𝑡

)
2

𝑛𝑟𝑖𝑔ℎ𝑡
𝑠 (𝑑)

],       (11) 

for 𝐴 is the set of (𝑎. 100)% observations with large absolute values of residuals and 𝐵 

is the set of (𝑏. 100)% observations with small absolute values of residuals. 

Prokhorenkova et al. introduce CatBoost to handle the prediction shift problem by 

applying the ordering principle technique [10]. CatBoost uses ordered boosting to modify 

the standard GBM when building a weak learner and uses a new algorithm in the initial 

processing of categorical features. CatBoost handles categorical features more 



effectively by substituting a numeric feature equivalent to the target statistic, called 

ordered target encoding [10]. When selecting a splitting node in a decision tree, CatBoost 

looks for the feature that produces the largest cosine similarity value, namely: 

    Cosine similarity =  
∑ (𝐴𝑖⋅𝐵𝑖)𝑖∈𝑑

√∑ 𝐴𝑖
2

𝑖∈𝑑  ⋅ √∑ 𝐵𝑖
2

𝑖∈𝑑

,        (12) 

where 𝐴𝑖 is the residual of observation 𝑖 in the previous iteration and 𝐵𝑖  is the output 

value of the leaf node before observation 𝑖 was occupied. 

In this study, the performance of the boosting model is measured by the weighted 

𝐹1 score because it considers the inequality of the response classes. The weighted 𝐹1 

formula is: 

           Weighted 𝐹1 = ∑ 𝑤𝑘 ⋅ 𝐹1𝑘
𝐾
𝑘=1 ,         (13) 

where 𝐾 represents the number of response classes, 𝑤𝑘 represents the weight of the 𝑘-th 

response class, and 𝐹1𝑘 is the weighted 𝐹1 score of the 𝑘-th class [11]. 

3. Research Methods 

The dataset used in this study is the attribute data of prospective life insurance 

policyholders published by Prudential Life Insurance Assessment for the Kaggle 

competition in November 2015. Prudential, as one of the largest insurance companies, 

sees the crucial role of predictive models in creating a more effective policy evaluation 

process, so it is expected that those interested in data analytics can participate in 

processing the dataset. This published data is most likely fictitious because it relates to 

customers' personal information, but it is still close to the reality in the field. The dataset 

consists of 59,381 observations and 127 variables (126 features and 1 response). There 

are 13 continuous features, five discrete features, 60 categorical features, and 48 dummy 

features. The response is a risk measure consisting of eight different levels. 

 

 
Figure 3. Response with eight risk levels barplot 

 

Figure 3 shows the imbalance in the response level; risk level 7 has the largest 

number of observations, and risk level 2 has the smallest. The eight response levels are 



ordinal, where level 0 means that the prospective policyholder is at low risk, so the higher 

the level represents, the greater the risk. Most categorical features have two to three 

different categories; only Medical_History_2 is divided into many categories. Un-

fortunately, the dataset used does not explain the meaning of the existing categories, so 

it is left as is. Empty data cannot be processed in machine learning, so it needs to be 

handled first. The prospective policyholder attribute data has thirteen columns with NaN 

values. Columns with more than 20% missing data will be deleted, but before that, it is 

necessary to see whether the nine features are worthy of being removed through a heat 

map. From the heat map analysis, we decide that the Insurance_History_5 and 

Family_Hist_4 features were not deleted, or only seven of the thirteen columns were 

removed. The remaining six columns must be filled in for missing data. Continuous nu-

meric features are filled with mean values, and discrete numeric features are filled with 

median values [12]. 

In this study, all numeric features were converted into categorical ones by 

considering the dimensionality reduction technique to be used later. The conversion was 

done using the binning method into three categories per feature. Binning is a procedure 

for dividing the range of each category equally without making the number of 

observations in each category the same. After conversion, one-hot encoding was 

performed on the features to avoid ordinary problems and facilitate machine learning 

methods that can only accept numeric values. After encoding, the total features that were 

initially 119 became 910 features. The study set the proportion of training and testing 

data at 80% and 20%. We will conduct model training under five different conditions, 

and the best conditions were applied to clustering. The boosting method with the best 

weighted 𝐹1 score during training would be tested on the test data under optimal training 

conditions. Hyperparameter optimization was also carried out for the boosting method 

selected for testing. During training, only two hyperparameters were not the default 

Python parameters, namely n_estimators (𝑛) and learning_rate (𝜂). The entire study was 

conducted on Google Collaboratory, a cloud-based platform based on Python. 

4. Results 

The performance of the four boosting methods during training is seen in five different 

conditions. This variation is done because there is an alleged problem of imbalance in 

response levels and dimensionality problems. Overcoming the imbalance is attempted 

through random sampling and combining risk levels 2, 3, and 4. Meanwhile, the 

dimensionality problem is overcome through dimensionality reduction with chi-squared 

feature selection. These five conditions consist of the following: the first is without 

handling imbalanced data or feature selection. The second condition is the application of 

random sampling without feature selection. The third condition uses six risk levels 

without feature selection. The fourth condition uses eight risk levels plus a chi-squared 

feature selection. The fifth condition uses six risk levels plus a chi-squared feature 

selection. During training, each method is run on three combinations of 𝑛 and 𝜂, and 

each applied 5-fold cross-validation. 

 

 

 

 

 



Table 1. Comparison of boosting performance for five training conditions 

Condition 𝑛 and 𝜂  

Mean weighted 𝐹1 (SD weighted 𝐹1) 

Multi-class 

AdaBoost 
XGBoost LightGBM CatBoost 

8 Level 

Model 

n=150;𝜂=0.05 0.2694(0.0037) 0.4515(0.0036) 0.4619(0.0045) 0.4342(0.0044) 

n=100;𝜂=0.1 0.2679(0.0032) 0.4553(0.0036) 0.4608(0.0041) 0.4387(0.0050) 

n=50;𝜂=0.15 0.2707(0.0048) 0.4520(0.0032) 0.4591(0.0039) 0.4322(0.0032) 

8 Level 

Model 
+  

Random 

Sampling 

n=150;𝜂=0.05 0.2561(0.0025) 0.4528(0.0034) 0.4608(0.0037) 0.4400(0.0042) 

n=100;𝜂=0.1 0.2566(0.0020) 0.4550(0.0054) 0.4608(0.0056) 0.4448(0.0031) 

n=50;𝜂=0.15 0.2564(0.0030) 0.4518(0.0047) 0.4562(0.0027) 0.4397(0.0039) 

6 Level 
Model 

n=150;𝜂=0.05 0.2767(0.0033) 0.4643(0.0018) 0.4713(0.0016) 0.4418(0.0022) 

n=100;𝜂=0.1 0.2776.0.0031) 0.4666(0.0029) 0.4721(0.0024) 0.4488(0.0031) 

n=50;𝜂=0.15 0.2766(0.0033) 0.4638(0.0024) 0.4710(0.0032) 0.4414(0.0018) 

8 Level 
Model 

+  

Feature 
Selection 

n=150;𝜂=0.05 0.2694(0.0037) 0.4520(0.0034) 0.4627(0.0051) 0.4363(0.0049) 

n=100;𝜂=0.1 0.2679(0.0032) 0.4558(0.0031) 0.4625(0.0055) 0.4426(0.0044) 

n=50;𝜂=0.15 0.2707(0.0048) 0.4524(0.0023) 0.4612(0.0037) 0.4356(0.0034) 

6 Level 

Model 

+  
Feature 

Selection 

n=150;𝜂=0.05 0.2767(0.0033) 0.4644(0.0028) 0.4711(0.0022) 0.4445(0.0024) 

n=100;𝜂=0.1 0.2776(0.0031) 0.4671(0.0031) 0.4705(0.0023) 0.4517(0.0041) 

n=50;𝜂=0.15 0.2766(0.0033) 0.4635(0.0026) 0.4707(0.0031) 0.4446(0.0019) 

 

Based on the observation of the weighted 𝐹1 and the program running time for each 

condition, we conclude that overcoming the imbalance by combining several minority 

risk levels was able to slightly improve (+0.01) the multi-class classification ability of 

AdaBoost, CatBoost, XGBoost, and LightGBM. Random sampling is not an excellent 

solution to overcome the imbalance in the dataset handled because it does not improve 

performance and slows down the results. Furthermore, selecting features based on the 

chi-squared statistical test can significantly reduce the model construction time and 

extract important features. The model with additional selection did not experience much 

change in the weighted 𝐹1  score. Therefore, the experimental design chosen for 

clustering was the fifth condition, combining several minority response levels and 

applying chi-squared feature selection. The selected features were 297 out of 910, with 

the top three being BMI_3, Wt_2, and Medical_Keyword_15. LightGBM performed the 

best in various condition modifications; the execution time required was also the 



minimum. The second method occupies the XGBoost position, whose score deviation 

often overlaps with LightGBM—followed by CatBoost in the third position and multi-

class AdaBoost in the fourth position. CatBoost requires the longest execution time 

compared to the other three boosting methods, most likely due to the ordering principle 

algorithm. Figure 4 visually compares the weighted 𝐹1 scores under optimal conditions, 

and Figure 5 enlarges Figure 4 without including the results of the AdaBoost method. 

 

 
Figure 4. Comparison of weighted 𝐹1 scores with six levels and feature selection 

 

                     
Figure 5. Comparison of weighted 𝐹1 scores with six levels and feature selection without AdaBoost 

 

According to the suggestion to use clustering techniques [1], k-mode clustering was 

carried out before applying the boosting technique to the data of six risk levels consisting 

of 297 categorical features. Clustering aims to collect observations with similar feature 

characteristics into one group, so the model can learn more optimally. According to the 

elbow method and silhouette score results, only two clusters are needed to group all 

observations. Through the k-mode algorithm, which is repeated five times with random 

center selection, the distribution of response levels in the two clusters is quite balanced. 

The weighted 𝐹1 plot in Figure 6 shows the difference in performance of the boosting 

method when using some and all of the data. Notes 1, 2, and 3 indicate the combination 

of the number of iterations and the learning rate. Note 1 for 𝑛 =  150 and 𝜂 =  0.05, 

note 2 for 𝑛 =  100  and 𝜂 =  0.1 , while note 3 represents 𝑛 =  50  and 𝜂 =  0.15. 

Clustering does not seem to help improve the classification results of the XGBoost, 

LightGBM, and CatBoost methods because if the scores of clusters one and two are 

averaged, it will give worse results than using the entire data. There is a slight 



improvement in the multi-class AdaBoost, where the average score of the two clusters 

exceeds the results without clustering. For the Prudential Life Insurance Assessment 

dataset, the main goal of the performance of the two clusters being above the whole has 

not been achieved. 

 

 
Figure 6. Comparison of boosting performance before and after clustering 

 

In the previous training series, the parameters outside the number of iterations and 

learning rate still use the default values, so we carry out the optimal hyperparameter 

search for the XGBoost and LightGBM methods. CatBoost was not studied further 

because it requires a very long execution time. At the same time, multi-class AdaBoost 

does have the opportunity to improve the model, but adding depth gradually also 

increases program time, so it is not an effective method. Table 2 shows the results of 

hyperparameter optimization of XGBoost and LightGBM. Through 50 optimization 

iterations with each applied 5-fold cross-validation, the best model for the LightGBM 

method produces a weighted 𝐹1  score of 0.4730. Meanwhile, the optimal XGBoost 

model for the risk level classification problem has a weighted 𝐹1 score of 0.4736. 

 
Table 2. List of optimization result hyperparameters 

Hyperparameter LightGBM XGBoost 

learning_rate 0.1067315 0.1125662 

n_estimators 171 183 

max_depth 13 7 

max_leaves 20 200 



min_child_samples 75 - 

colsample_bytree 0.6618760 0.25 

reg_alpha 1 0.5296959 

reg_lambda 0.4503880 0.7928206 

min_split_gain/gamma 0.5 0 

top_rate 0.5227312 - 

other_rate 0.4 - 

 

The best model estimator was applied on the test data that had been separated from 

the beginning. Table 3 shows the most essential features in building the model based on 

the amount of gain. The features that are in the top five ranks for both XGBoost and 

LightGBM are Medical_Keyword_15, Wt_1, and BMI_3. This means that these features 

can divide the response levels well when performing the splitting procedure in building 

the model. The results on the test data show that XGBoost has an accuracy level of 0.51, 

while LightGBM is slightly below it at 0.50. Based on the weighted 𝐹1, both boosting 

methods have similar scores of 0.48. If observations are explicitly made per response 

level, the highest 𝐹1 score of 0.71 is at risk level 5 for both methods. Other risk levels 

are in the range of 0.30 to 0.40. This shows that XGBoost and LightGBM cannot detect 

low to medium-risk levels correctly but can detect high-risk policies well. When 

choosing only one best-boosting technique for a multi-class classification problem with 

response inequality and all categorical features like the data in this study, LightGBM is 

the best option. The algorithm's improvement when selecting features and samples in 

each iteration produces an effective model. 

 
Table 3. Feature importance according to total gain 

XGBoost Importance LightGBM Importance 

Medical_Keyword_15 13101.1318 Wt_1 24379.367 

Wt_1 12934.2646 Medical_History_4_1 21080.798 

Medical_History_4_2 12292.2998 Medical_Keyword_15 17302.895 

BMI_3 11791.0117 BMI_3 17080.575 

Medical_History_23_2 9446.1611 Wt_2 15043.828 

5. Conclusions 

The prospective life insurance policyholder dataset needs help with response level 

inequality and dimensionality. According to the training data experiment results, the 



disparity is better overcome by combining risk levels 2, 3, and 4 to reduce the number of 

response levels to six. The size of the dimension can be reduced using the chi-squared 

statistical test. Of the 910 categorical features, only 297 were extracted at a significance 

level 0.05. Clustering trials on conditions of six response levels and selected features 

showed no performance improvement. Both the elbow method and the silhouette score 

suggest grouping into two clusters, but there has been no increase in the weighted 𝐹1 

score. 

Of the five training conditions in the experimental design, the XGBoost and 

LightGBM methods have the best classification ability based on weighted 𝐹1 scores that 

often overlap each other. CatBoost followed it in third place, but its execution time is the 

longest. AdaBoost has the lowest score, which is far from the other three methods. 

Hyperparameter search for XGBoost and LightGBM resulted in the best model estimates, 

with the most essential features such as Medical_Keyword_15, Wt_1, and BMI_3. 

XGBoost has an accuracy of 0.51, and LightGBM has an accuracy of 0.50, while the 

weighted 𝐹1 scores of both methods are similar at 0.48. Specific observations at each 

response level show that the highest risk level tends to be more accurately predicted than 

other levels. This study will help users interested in the policy risk classification process. 

The results of the boosting method can provide affirmation if a policy is indeed high risk 

and must be rejected. Likewise, the use of all categorical features can help during the 

process of identifying prospective customers if numerical data is challenging to obtain. 
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