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Abstract. Stable states in complex systems correspond to local minima on the associated potential energy surface. Transitions
between these local minima govern the dynamics of such systems. Precisely determining the transition pathways in complex
and high-dimensional systems is challenging because these transitions are rare events, and isolating the relevant species in
experiments is difficult. Most of the time, the system remains near a local minimum, with rare, large fluctuations leading to
transitions between minima. The probability of such transitions decreases exponentially with the height of the energy barrier,
making the system’s dynamics highly sensitive to the calculated energy barriers. This work aims to formulate the problem of
finding the minimum energy barrier between two stable states in the system’s state space as a cost-minimization problem. It
is proposed to solve this problem using reinforcement learning algorithms. The exploratory nature of reinforcement learning
agents enables efficient sampling and determination of the minimum energy barrier for transitions.
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1. Introduction

There are multiple sequential decision-making processes one comes across in the world, such as con-
trol of robots, autonomous driving, and so on. Instead of constructing an algorithm from the bottom up
for an agent to solve these tasks, it would be much easier if one could specify the environment and the
state in which the task is considered solved, and let the agent learn a policy that solves the task [24, 31].
Reinforcement learning attempts to address this problem. It is a hands-off approach that provides a fea-
ture vector representing the environment and a reward for the actions the agent takes [43]. The objective
of the agent is to learn the sequence of steps that maximizes the sum of returns. [42]

One widespread example of a sequential decision-making process where reinforcement learning is
utilized is solving mazes [33, 39]. The agent, a maze runner, selects a sequence of actions that might
have long-term consequences [49]. Since the consequences of immediate actions might be delayed, the
agent must evaluate the actions it chooses and learn to select actions that solve the maze. Particularly, in
the case of mazes, it might be relevant to sacrifice immediate rewards for possibly larger rewards in the
long term. This is the exploitation-exploration trade-off, where the agent has to learn to choose between
leveraging its current knowledge to maximize its current gains or further increasing its knowledge for
some possibly larger reward in the long term, possibly at the expense of short-term rewards [7, 40]. The
process of learning by an agent while solving a maze is illustrated in Figure 1.

(a) (b)

(c) (d)

(e) (f)

Fig. 1. Maze solving using reinforce-
ment learning: (a) The agent is at a
state at a particular time step, and
(b) takes an action (according to a
policy) to reaches the next state. (c)
The agent records the reward obtained
by taking the action at that state and
(d) continues exploring the environ-
ment. After a large number of inter-
actions with the environment (e), the
agent learns a policy (f) which max-
imizes the rewards collected by the
agent. The policy (f) gives the se-
quence of actions that the agent has
to take from the initial state to the fi-
nal state so that it collects the maxi-
mum rewards in an episode. The fig-
ures are taken from the slides of Dan
Klein and Pieter Abbeel for the course
CS188 Introduction to Artificial Intel-
ligence at UC Berkeley and available
at http://ai.berkeley.edu.

GridWorld is an environment for reinforcement learning that mimics a maze [43]. The agent is placed
at the start position in a maze with blocked cells, and the agent tries to reach a stop position with
the minimum number of steps possible. One might note an analogy of a maze runner with an agent

http://ai.berkeley.edu/home.html
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negotiating the potential energy landscape of a transition event for a system along the saddle point
with the minimum height. The start state and the stop state are energy minima on the potential energy
surface, separated by an energy barrier for the transition. The agent would have to perform a series of
perturbations to the system to take it from one minimum (the start state) to another (the end state) through
the located saddle point. In the case of a maze, the (often discrete) action changes the position of the
agent (by a fixed measure), but while locating minimum energy pathways, the physical problem demands
a continuous action space. However, as in the case of a maze, an action changes the variables describing
the system (be it physical coordinates or state variables) by a small measure. As in the maze-solving
problem, the agent tries to identify the pathway with the minimum energy barrier. If the number of steps
is considered the cost incurred in a normal maze, it is the energy along the pathway that is the cost for the
transition event. Reward maps can vary depending on the maze considered, but in the original GridWorld
problem, the agent was given a negative reward if the action led to a wall cell, and a zero reward for all
non-terminal states (a discount factor < 1 enforces the minimum count of steps). In the case of locating
trajectories with a low energy barrier, the agent should be penalized if the action leads to a state with
progressively higher energies (but not to an extent that it hinders exploration). The exact reward map used
is detailed later in Section 2. A comparison is attempted in Figure 2. A smooth potential energy surface is
coarse-grained to construct a maze, where all positions with a negative potential energy are shaded blue
(possible move cells), while those with a positive potential energy are shaded red (representing walls).
The initial state in the maze is marked yellow, while the final state is marked green. However, instead
of classifying a grid cell of the constructed maze either as a wall or a cell, one can discretize the state
space and assign an energy value to a cell. An agent can then be trained to reach the final state starting
from the initial state and collect the maximum sum of rewards along its path (minimizing the energy
along the pathways requires assigning the negative of the energy as the reward for an action leading the
agent to the cell). Since this is an episodic problem, one already runs into the problem where the agent
moves back and forth between two adjacent cells, collecting rewards from each move in the attempt to
maximize the sum of rewards collected, rather than reach the final state and terminate the episode. For
this simple setting, the problem is solved by rewarding the agent only the first time it visits a cell and
terminating the episode after a fixed number of steps (in this case, 15). The energy profile of the pathway
followed by the agent (inferred from the rewards collected in an episode) in this maze is plotted as the
dashed green line in Figure 2b. As can be seen, coarse-graining the potential energy surface into an 8×8
maze and then solving it using standard reinforcement learning algorithms provides a reasonable starting
point for addressing the problem.

The problem of locating the minimum energy barrier for a transition has applications in physical
phase transitions, synthesis plans for materials, activation energies for chemical reactions, and the con-
formational changes in biomolecules that lead to reactions inside cells. In most of these scenarios, the
dynamics are governed by the kinetics of the system (rather than the thermodynamics) because the ther-
mal energy of the system is much smaller than the energy barrier of the transition. This leads to the
system spending most of its time around the minima, and some random large fluctuations in the system
lead to a transition. This is precisely why transition events are rare and difficult to isolate and charac-
terize with experimental methods. Moreover, these ultra-fast techniques can be applied to only a limited
number of systems. Because transition events are rare, sampling them using Monte Carlo methods re-
quires long simulation times, making them inefficient [6]. To sample the regions of the potential energy
surface around the saddle point adequately, a large number of samples have to be drawn. Previous work
has been done to identify the saddle point and determine the height of the transition barrier—transition
path sampling [23], nudged elastic band [19], growing string method [22], to name a few—which use
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(a) (b)

(c) (d)

Fig. 2. Estimating reaction barriers by modeling the potential energy surface as a maze: (a) The pathway with the lowest energy
barrier as determined by a growing string method on the potential energy surface with 9 intermediate images. (b) The reaction
profile, plotted as a solid blue line (interpolated to give a smooth curve) from the pathway determined by the growing string
method. The reaction barrier is marked as ∆E‡. Instead of the extreme binary classification of a grid cell as a wall or move as
in the maze (c), each cell can be assigned an energy value as in (d).
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ideas from gradient descent. However, even for comparatively simple reactions, these methods are not
always guaranteed to find the path with the energy barrier that is a global minimum because the initial
guess for the pathway might be wrong and lead to a local minimum.

With the advent of deep learning and the use of neural nets as function approximators for complex
mappings, there has been increased interest in the use of machine learning [41] to either guess the con-
figuration of the saddle point along the pathway (whose energy can then be determined by standard ab
initio methods) or directly determine the height of the energy barrier given the two endpoints of the
transition. Graph neural networks [47], generative adversarial networks [32], gated recurrent neural net-
works [8], transformers [30], machine-learned potentials [18, 21], and so on, have been used to optimize
the pathway for such transitions.

Noting the superficial similarities between solving a maze and determining the transition pathway
with the lowest energy barrier, it is proposed to use standard and tested deep reinforcement learning
algorithms used to solve mazes in an attempt to solve the problem of finding minimum energy pathways.
The problem is formulated as a min-cost optimization problem in the state space of the system. An actor
function approximator suggests the action to be taken by the agent when it is in a particular state. A
critic function approximator provides an estimate of the sum of rewards until the end of the episode from
the new state after taking the action suggested by the actor. Actor-critic based reinforcement learning
techniques have been shown to solve problems effectively, even in higher dimensions [53]. Neural nets
are used as the actor and critic function approximators, and a randomly perturbed policy is used to
facilitate exploration of the potential energy surface by the agent. Delayed policy updates and target
policy averaging are used to stabilize the learning, especially during the first few epochs, which are
crucial to the optimal performance of the agent. This formulation is used to determine the barrier height
of the optimal pathway in the Müller-Brown potential.

Section 2 describes the methods used to formulate the problem as a Markov decision process and the
algorithm used to solve it. Section 3 elaborates on the experiments where the formulated method is used
to determine the barrier height of a transition on the Müller-Brown potential. Section 4 contains a short
discussion of the work in the context of other similar studies while Section 5 outlines the conclusions
drawn from this work.

2. Methods

To solve the problem of finding a pathway with the lowest energy barrier for a transition using rein-
forcement learning, one has to model it as a Markov decision process. Any Markov decision process
consists of (state, action, next state) tuples. In this case, the agent starts at the initial state (a local min-
imum) and perturbs the system (the action) to reach a new state. Since the initial state was an energy
minimum, the current state will have higher energy. However, as in many sequential control problems,
the reward is delayed. A series of perturbations that lead to states with higher energies might enable
the agent to climb out of the local minimum into another one containing the final state. By defining a
suitable reward function and allowing the agent to explore the potential energy surface, it is expected
that the agent will learn a path from the initial to the final state that maximizes the rewards. If the reward
function is defined properly, it should correspond to the pathway with the lowest energy barrier for the
transition.

Once the problem is formulated as a Markov decision process, it can be solved by some reinforcement
learning algorithm. In most reinforcement learning algorithms this (state, action, reward, next state, next
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action) tuple is stored while the agent is learning. Twin Delayed Deep Deterministic Policy Gradient
(TD3) [11] is a good start because it prevents the overestimation of the state value function, which of-
ten leads to the agent exploiting the errors in the value function and learning a sub-optimal policy. Soft
Actor Critic (SAC) [15] tries to blend the deterministic policy gradient with a stochastic policy opti-
mization, promoting exploration by the agent. In practice, using a stochastic policy to tune exploration
often accelerates the agent’s learning.

2.1. Markov Decision Process

The Markov decision process is defined on:

• a state space S, consisting of states s ∈ Rd, where d is the dimensionality of the system, chosen to
be the number of degrees of freedom in the system.

• a continuous action space A, where each action ∆s ∈ Rd : | (∆s)i | ⩽ 1 is normalized, and the
action is scaled using an appropriate scaling factor λ.

At a state s(k), the agent takes an action ∆s(k). Since the action is considered a perturbation to the
current state of the system, the next state s(k+1) is determined from the current state s(k) as s(k+1) =
s(k) + λ ·∆s(k).

To determine the minimum energy barrier for a transition, the reward for an action taking the agent
to state s(k+1) from state s(k) is chosen to be the negative of the energy of the next state, −E

(
s(k+1)

)
.

The negation makes maximizing the sum of rewards collected by the reinforcement learning agent in an
episode equivalent to minimizing the sum of energies along the pathway for the transition. The reward
acts as immediate feedback to the agent for taking an action in a particular state. However, what is
important is the long-term reward, captured by the sum of the rewards over the entire episode, leading
the agent to identify a transition pathway with a low sum of energies at all intermediate steps.

Since both the state space and action space are continuous, an actor-critic based method, specifically
the soft actor-critic (SAC), is used. Additionally, since the state space is continuous, the episode is
deemed to have terminated when the difference between the current state and the target state is smaller
than some tolerance, x ∈ Rd : |x − xt| < δ for some small δ. Otherwise, it would be extremely unlikely
that the agent would land exactly at the coordinates of the final state after taking some action. An obvious
problem with this definition of the Markov process is that the agent may prefer to remain in a state near
the target state (but far enough so that the episode does not terminate), collecting rewards for the rest of
the episode. This behavior was observed in Section 3.

2.2. Algorithm

SAC, an off-policy learning algorithm with entropy regularization, is used to solve the formulated
Markov Decision process because the inherent stochasticity in its policy facilitates exploration by the
agent. Entropy regularization tries to balance maximizing the returns till the end of the episode with
randomness in the policy driving the agent. The algorithm learns a behavior policy πθ and two critic
Q-functions, which are neural nets with parameters ϕ1 and ϕ2 (line 1 of Algorithm 1).

The agent chooses an action a(k) ≡ ∆s(k) to take when at state s(k) following the policy πθ (line
8). The returns from the state s(k) when acting according to the policy π is the discounted sum of
rewards collected from that step onwards till the end of the episode: Rt = −

∑T
i=t γ

i−t E(s(i)). The
objective of the reinforcement learning agent is to determine the policy π∗ that maximizes the re-
turns, Rt, for states s ∈ S. This is done by defining a state-action value function, Q(s(i), a(i)), which
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Algorithm 1 Computing minimum energy barrier using SAC in environment env
1: Initialize actor net parameters θ and critic Q-net parameters ϕ1, ϕ2
2: Hard update target Q-net parameters: ϕi,target ← ϕi for i = 1, 2
3: Initialize replay bufferR
4: training_step = 1
5: for step = 1 to numEpisodes do
6: state, _ = env.reset()
7: for t = 0 to maxSteps do
8: let actor select an action by policy πθ
9: perturb the action with some noise ϵ ∼ N (0, σ)

a(k) = πθ(s(k)) + clip(ϵ,−ϵlim, ϵlim)

10: execute action in the env and observe the
(

s(k), a(k), r(k), s(t+1), done
)

tuple
11: push it to the replay bufferR
12: if training_step % agent_update == 0 then
13: sample a minibatch B of (s, a, r, s′, done) tuples from the replay bufferR
14: compute targets as (where a′ = πθ(·|s′) + clip(ϵ,−ϵlim, ϵlim))

y(r, s′) = r + γ(1− done)
(
min
i=1,2

Qϕi,target(s′, a′)− α log πθ(a′|s′))
)

15: update critic Q-nets parameters by one step of gradient descent with loss function (with
the gradient clipped by some maximum value)

1

|B|
∇ϕi

(∑
s∈B

min
i=1,2

Qϕi(s, a)− y(r, s′)

)2

for i = 1, 2

16: if t % update_target == 0 then
17: update actor net parameters by one step of gradient descent with loss function (with

the gradient clipped by some maximum value)

1

|B|
∇θ

(∑
s∈B

min
i=1,2

Qϕi(s, πθ(s))− α log πθ(a|s)

)2

18: update the entropy coefficient α as one step of gradient descent with loss function

1

|B|
∇α

(∑
s∈B
−α log πθ(a|s)− α log a′

)2

19: soft update the target networks: ϕi,target ← τϕi + (1− τ)ϕi,target
20: end if
21: end if
22: end for
23: end for
24: return the actor net parameters θ and critic Q-net parameters ϕ1, ϕ2.
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gives an estimate of the expected returns if action a(i) is taken by the agent when at state s(i):
Q(s(i), a(i)) = E

[
Rt : st = s(i), at = a(i)

]
. Since the objective is to maximize the sum of the returns,

the action-value function can be recursively defined as

Q(s(i), a(i)) = −E(s(i+1)) + γ max
a(i+1)∈A

Q(s(i+1), a(i+1))

which is implemented in line 14 of Algorithm 1.
A replay buffer with a sufficiently large capacity is employed to increase the probability that indepen-

dent and identically distributed samples are used to update the actor and two critic networks. The replay
buffer (in line 3) is modeled as a deque where the first samples to be enqueued (which are the oldest) are
also dequeued first, once the replay buffer has reached its capacity and new samples have to be added.
Since an off-policy algorithm is used, the critic net parameters are updated by sampling a mini-batch
from the replay buffer at each update step (line 13). Stochastic gradient descent is used to train the actor
and the two critic nets.

The entropy coefficient α is adjusted over the course of training to encourage the agent to explore more
when required and exploit its knowledge at other times (line 18) [16]. However, some elements from the
TD3 algorithm [11] are borrowed to improve the learning of the agent, namely delayed policy updates
and target policy smoothing. Due to the delayed policy updates, the critic Q-nets are updated more
frequently than the actor and the target Q-nets to allow the critic to learn faster and provide more precise
estimates of the returns from the current state. To address the problem of instability in the learning,
especially in the first few episodes while training the agent, target critic nets are used. Initially, the critic
nets are duplicated (line 2) and subsequently soft updates of these target nets are carried out after an
interval of a certain number of steps (line 19). This provides more precise estimates for the state-action
value function while computing the returns for a particular state in line 14. Adding noise to the inputs
during the training of a machine learning model often leads to improved performance because it acts as
an L2-regularizer [5] and prevents the model from memorizing patterns in the training data sample in
supervised learning scenarios. Similarly, TD3 adds noise to the action predicted by the actor network to
smooth out the Q-function, so that the agent does not memorize the imprecise estimates of the Q-function
early on during the training process. This prevents the policy from exploiting the imprecise estimates
of the Q-function approximator for certain actions, reducing the chances of learning a brittle policy that
does not generalize well. The logic is that for well-behaved, smooth reward maps, the reward should not
abruptly change with small differences in the action. The addition of clipped noise to the action chosen
by the actor net (in line 9) also encourages the agent to explore the potential energy surface. The changes
to the SAC algorithm, borrowed from TD3, are highlighted in blue in the pseudocode of Algorithm 1.
The parameters used in the particular implementation of the algorithm are listed in Table 1.

3. Experiments

The proposed algorithm is applied to determine the pathway with the minimum energy barrier on
the Müller–Brown potential energy surface [37]. The Müller–Brown potential has been used to bench-
mark the performance of several algorithms that determine the minimum energy pathways, such as the
molecular growing string method [12], Gaussian process regression for nudged elastic bands [26], and
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Parameter Value

Qϕ(s, a)

network architecture 4-256-256-1
activation for hidden layer relu
activation for output layer none

learning rate 10−4

πθ(s)

network architecture 2-256-256-2
activation for hidden layer relu
activation for output layer none

learning rate 10−4

Agent

τ or Polyak averaging parameter 0.005
γ or discount factor 1− 10−2

λ or scaling factor for actions 0.01

optimizer Adam
replay buffer R capacity 104

minibatch size for update 128

maximum steps per episode 500

number of training epochs 10000

SAC specific
initial α or entropy coefficient 0.5

α value variable
learning rate for α 10−4

TD3 specific
target update delay interval 8 steps

actor noise standard deviation 0.4

actor noise clip 1.0

Table 1
Parameters used while training the RL agent.

accelerated molecular dynamics [46]. Therefore, it is also used in this work to demonstrate the applica-
bility of the proposed method. A custom Gym environment [44] was created following the gymnasium
interface (inheriting from the class Gym) to model the problem as a Markov Decision Process to be
solved by a reinforcement learning pipeline. The values for the parameters used in Algorithm 1 are listed
in Table 1.

3.1. Results

The Müller–Brown potential is characterized by the following potential:

V(x, y) =
3∑

i=0

Wi · exp
[
ai (x− xi)

2 + bi (x− xi) (y− yi) + ci (y− yi)
2
]

(1)

where W = (−200,−100,−170, 15), a = (−1,−1,−6.5, 0.7), b = (0, 0, 11, 0.6), c =
(−10,−10,−6.5, 0.7), x = (1, 0,−0.5,−1), and y = (0, 0.5, 1.5, 1). The potential energy surface for
the system is plotted in Figure 3a, and the coordinates of the local minima and saddle points for the
potential energy surface and their corresponding energies are tabulated in Table 3b. The RL agent was
trained to locate a path on this surface from S (0.623, 0.028) with an initial random step (with zero mean
and a standard deviation of 0.1) taken as the starting state to T (−0.558, 1.442) as the terminal state,
with the minimum energy barrier. The first random step was chosen to avoid the same starting point in
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(a) Potential energy surface to find the paths with minimum
energy barrier.

pt x y E
S 0.623 0.028 −108.2

Minima T −0.558 1.442 −146.7
U −0.050 0.467 −80.8

Saddle V 0.210 0.300 −72.3
points W −0.820 0.620 −40.7

(b) Minima and saddle points on the chosen poten-
tial energy surface.

Parameter Value
number of dimensions (d) 2

limits for dimensions 1 (−1.70, 1.30)
limits for dimensions 2 (−0.40, 2.10)

scaling factor for action (λ) 0.01
tolerance for convergence (δ) 10−4

(c) Some parameters of the Markov Decision pro-
cess to find pathways with the minimum energy
barrier on the chosen potential.

Fig. 3. The environment in which the agent learns to find the path with the minimum energy barrier.

(a) TD3 (b) SAC (c) Algorithm 1

Fig. 4. Scatter plot of the regions visited by the reinforcement learning agent during the course of learning while using different
algorithms.

each training iteration of the agent, so it learns a more generalized policy. Some of the parameters for
the Markov Decision Process to model this potential are given in Table 3c.

Figure 4 shows scatter plots of the trajectories generated by various reinforcement learning algorithms:
TD3 in Figure 4a, SAC in Figure 4b, and the proposed modified SAC algorithm in Figure 4c. While the
agent trained by the TD3 algorithm does reach the intended target state, it starts exploiting a flaw in
the formulation of the MDP by trying to reach the vicinity of the final state quickly and staying near
enough to it so that it collects rewards but does not terminate the episode. This results in a high density
in the plot along the straight line connecting the initial and final states and around the final state. It gives
a much higher estimate than the correct minimum energy barrier for the transition. The agent trained
using SAC shows improved performance, possibly due to the entropy regularizer forcing it to learn a
more diverse policy (rather than one that would result in a straight line connecting the initial and final
states). However, while generating trajectories in the testing environment, most of the trajectories did not
leave the local minima in the vicinity of the start state. Moreover, the learned policy has high variance.
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(a) Learning curve for the agent averages over 11 trials. (b) Least reward collected in the episode.

(c) Trajectories generated by the agent after training. (d) Energy profiles for the generated trajectories.

Fig. 5. (a) The learning curve for the agent in the reinforcement learning environment. (b) The plot of the variation of the least
reward collect by the agent in a step with the validation episode count. (c) Trajectories generated by the trained agent following
the learnt policy along with the corresponding energy profiles (d).

The proposed Algorithm 1 learns a much more stable policy and confines itself to exploring the region
with lower energies leading to the terminal state (specifically the vicinity of the saddle point) rather
than the entire environment. It explores sufficiently and then exploits the state-action values learned
appropriately, providing better estimates of the energy barrier for the transition.

The learning curve for the agent under Algorithm 1 is shown in Figure 5a. The data for this curve was
generated by allowing the agent to solve the MDP in evaluation mode once every 10 training episodes,
where the neural networks were not updated to monitor the agent’s learning. The ascending learning
curve indicates that the agent gradually learns to find a path to the terminal state that maximizes the
rewards. The blue line represents the median reward, while the green line shows the mean reward over
11 training iterations, each consisting of 10 × 1000 training episodes. The light blue shaded region
denotes the spread of the rewards (maximum and minimum). A low spread in the rewards indicates
consistent performance by the reinforcement learning agent in the validation episodes.

In Figure 5c, an ensemble of paths generated by the trained RL agent with the starting points slightly
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perturbed from (0.623, 0.028) by noise added from N (0, 0.1) is plotted on the potential energy surface.
The model used to generate these trajectories was the model at the 500th validation step (and not after
the entire training consisting of 1000 validation steps) for reasons elaborated later. It can be seen from
Figure 5c that the agent spends more time near the terminal state rather than reaching the terminal state to
get an immediate reward, as it allows the agent to collect rewards for more steps. In the case of a coarse-
grained maze representation of the potential energy surface, this problem was solved by rewarding the
agent only the first time it visited a grid cell. Using a similar idea of not rewarding the agent when it is in
the close neighborhood of an already visited state artificially perturbs the reward map and did not work
in this case. The best performance was achieved by gradually varying the maximum number of steps the
agent was allowed to take in an episode. If the number of steps allowed in an episode is too short, the
agent does not escape the local minima to reach the terminal state. If the number of steps is too large,
then the agent reaches the terminal state and discovers that it receives larger rewards by remaining in its
vicinity, but not so close that the episode is terminated. In an attempt to reach the terminal state earlier,
the agent tries to approach the terminal state sooner, choosing a more direct pathway, which lifts the
trajectory out of the saddle point. It was observed that a maximum of 500 steps per episode led to the
best performance by the agent. The agent did not leave the local minima if fewer steps were allowed (200
steps), and the agent passed through states with much higher energies than optimal to reach a minimum
energy state if longer episodes were allowed (1000 steps).

Early stopping during the training of a neural network has often been found to be helpful in scenarios
where continued training worsens the model’s performance [1, 38]. Borrowing the idea of early stopping,
the agent’s training was stopped when the minimum reward collected by the agent (corresponding to the
maximum energy along the pathway) started increasing again. Such behavior was observed in the case
of the agent, as plotted in Figure 5b. The minimum reward collected by the agent during the episode
increases initially (indicating that the agent finds a pathway with a progressively better energy barrier)
until the 500th validation step before decreasing slightly. Plots for only 4 of the 11 trials are shown for
clarity. This might indicate that the agent does not improve its performance after that step. Additionally,
the learning curve in Figure 5a shows an increase in the spread after 500 iterations. These reasons
led to using the model after 500 iterations for generating the final trajectory in test mode to estimate
the energy barrier for the reaction. The energy profiles along the generated trajectories are plotted in
Figure 5d aligned by the maximum of the profiles (and not by the start of the trajectories) for better
visualization. The predicted energy barrier for the transition of interest is −40.36 ± 0.21. One can see
that the agent learns to predict the path with the correct minimum energy barrier, albeit the energy barrier
estimated by the agent is a little higher than the optimal analytical solution (−40.665). However, the
result demonstrates that reinforcement learning algorithms can be used to locate the minimum energy
barrier for transitions between stable states in complex systems. The paths suggested by the trained
agent cluster around the minimum energy path and pass through the vicinity of the actual saddle point
representing the energy barrier. However, there still seems to be some way to go to improve the sampling
densities around the saddle point, which determines the barrier height, to avoid overestimating it.

3.2. Ablation Studies

Several modifications were made to the standard SAC algorithm to be used in this particular case
(highlighted in blue in Algorithm 1). Studies were performed to understand the contribution of each
individual component to the working of the algorithm in this particular environment by comparing the
performance of the algorithm with different hyperparameters for a component. The parameters for one
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Modification Value Returns
target policy absent 8082± 10

smoothing present 8651 ± 107
0 4826± 984
2 7738± 234

policy update 4 7741± 220
delay 8 7994 ± 206

16 7677± 204
32 5783± 142

α tuning

10−3 3877± 29
10−2 4153± 14
10−1 7425± 414

2× 10−1 4880± 654
5× 10−1 6247± 190

tunable 8651 ± 107

(a) Returns for the last 100 episodes of trials
for each modification on the learning of the agent.

(b) Effect of adding noise to the target action
on the learning of the agent.

(c) Effect of delaying the update of the actor net,
and target critic-nets on the learning of the agent.

(d) Effect of varying constant values of α and
a tunable α on the learning of the agent.

Fig. 6. Effect of the various modifications to the SAC algorithm on the learning of the agent.

modification was varied, keeping the parameters for the other two modifications unchanged from the
fine-tuned algorithm. Each modification and its contribution to the overall learning of the agent are
described in the following sections. The mean and the standard deviation of the returns from the last
100 training steps for each modification to the existing algorithm are listed in Table 6a to compare the
performance of the agents. The modification that leads to the highest returns is highlighted.

3.2.1. Target Policy Smoothing
Injecting random noise (with a standard deviation σ) into the action used in the environment (in line

9 of Algorithm 1) encourages the agent to explore, while adding noise to the actions used to calculate
the targets (in line 14 of Algorithm 1) acts as a regularizer, forcing the agent to generalize over similar
actions. In the early stages of training, the critic Q-nets can assign inaccurate values to some state-action
pairs, and the addition of noise prevents the actor from rote learning these actions based on incorrect
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feedback. On the other hand, to avoid the actor taking a too random action, the action is clipped by some
maximum value for the noise (as done in lines 9 and 14 of Algorithm 1). The effect of adding noise to
spread the state-action value over a range of actions is plotted in Figure 6b. Adding noise leads to the
agent learning a policy with less variance in the early learning stages and a more consistent performance.

3.2.2. Delayed Policy Updates
Delaying the updates for the actor nets and the target Q-nets (in lines 17 and 19 of Algorithm 1)

allows the critic Q-nets to update more frequently and learn at a faster rate, so that they can provide a
reasonable estimate of the value for a state-action pair before it is used to guide the policy learned by
the actor net. The parameters of the critic Q-nets might often change abruptly early on while learning,
undoing whatever the agent had learned (catastrophic failure). Therefore, delayed updates of the actor
net allow it to use more stable state-action values from the critic nets to guide the policy learned by it. The
effect of varying intervals of delay for the actor update on the learning of the agent is plotted in Figure 6c.
Updating the actor net for every update of the critic nets led to a policy with a high variance (blue plot).
Delaying the update of the actor net to once every 2 updates of the critic resulted in the agent learning
a policy that provided higher returns but still had a high variance (green plot). Delaying the update of
the actor further (once every 4 and 8 updates of the critic net plotted as the red and magenta curves,
respectively) further improved the performance of the agent. One can notice the lower variance in the
policy of the agent during the early stages (first 200 episodes of the magenta curve) for the agent which
updates the actor net and target critic nets once every 8 updates of the critic nets. However, delaying
the updates for too long intervals would cripple the learning of the actor. The performance of the agent
suffers when the update of the actor is delayed to once every 16 updates of the critic nets (yellow curve)
and the agent fails to learn when the update of the actor net is further delayed to once every 32 updates
of the critic nets (cyan curve).

3.2.3. Tuning the Entropy Coefficient
The entropy coefficient α can be tuned as the agent learns (as done in line 18 of Algorithm 1), which

overcomes the problem of finding the optimal value for the hyperparameter α [16]. Moreover, simply
fixing α to a single value might lead to a poor solution because the agent learns a policy over time: it
should still explore regions where it has not learned the optimal action, but the policy should not change
much in regions already explored by the agent that have higher returns. In Figure 6d, the effect of the
variation of the hyperparameter α on the learning of the agent is compared. As can be seen, a tunable α
allows the agent to learn steadily, encouraging it to explore more in the earlier episodes and exploiting
the returns from these explored regions in the latter episodes, resulting in a more stable learning curve
(blue curve). A too low value of α, such as 10−3 or 10−2, makes the algorithm more deterministic (TD3-
like), which leads to sub-optimal performance and the agent being stuck in a local minimum (plotted as
green and red curves, respectively). An α value of 0.1 has comparable performance to the tunable α, but
the learning curve is less stable and there are abrupt changes in the policy function (magenta curve). The
original implementation of SAC suggested 0.2 as a fixed value for α, which leads to a learning curve
resulting in a policy with high variance (yellow curve). A too high value of α, such as 0.5, makes the
algorithm more stochastic (REINFORCE-like), which also leads to sub-optimal learning (cyan curve).

4. Discussions

Previous works in determining transition pathways using deep learning or reinforcement learning tech-
niques include formulating the problem as a shooting game solved using deep reinforcement learning
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[52]. The authors in [52] sample from higher energy configurations and shoot trajectories with ran-
domized initial momenta in opposite directions, expecting them to converge at the two desired local
minima. In contrast, the method proposed here starts from a minimum on the potential energy sur-
face and attempts to generate a trajectory to another minimum. Additionally, in [20], the problem is
formulated as a stochastic optimal control problem, where neural network policies learn a controlled
and optimized stochastic process to sample the transition pathway using machine learning techniques.
Stochastic diffusion models have also been used to model elementary reactions and generate the struc-
ture of the transition state, preserving the required physical symmetries in the process [9]. Furthermore,
the problem of finding transition pathways was recast into a finite-time horizon control optimization
problem using the variational principle and solved using reinforcement learning in [14]. Moreover, a
hybrid-DDPG algorithm was implemented in [35] to identify the global minimum on the Müller–Brown
potential, but did not identify pathways between minima as done in this work. Recent work [2] used an
actor-critic reinforcement learning framework to optimize molecular structures and calculate minimum
energy pathways for two reactions.

There has also been previous work [54] to optimize chemical reactions by perturbing the experimental
conditions to achieve better selectivity, purity, or cost for the reaction using deep reinforcement learn-
ing. While this approach has macroscopic applications in laboratory settings, the method proposed here
focuses on a much narrower problem: given a potential energy surface, how well can the minimum en-
ergy barrier be estimated for a transition between two minima? Deep reinforcement learning has also
been used to find a minimum energy pathway consisting of multiple elementary transitions in catalytic
reaction networks [27]. While the free energy barrier for a transition (which is mapped to a reward)
between two states is calculated using density functional theory (DFT) with VASP software in [27, 28],
the objective of the proposed method in this work is to estimate that free energy barrier using an agent
trained via deep reinforcement learning, requiring no quantum mechanical calculations. Additionally,
reinforcement learning techniques are implemented in [51] to minimize the cost of synthesis pathways
(consisting of multiple elementary transitions) by considering the price of the starting molecules and
the atom economy of individual transitions. Furthermore, a reinforcement learning approach is used to
search for process routes that optimize economic profit for a Markov decision process modeling the
thermodynamic state space as a graph.

5. Conclusion

Advancements in reinforcement learning algorithms based on the state-action value function have led
to their application in diverse sequential control tasks such as Atari games, autonomous driving, robot
movement control and more physical domains [3, 4, 13, 48]. This project formulated the problem of
finding the minimum energy barrier for a transition between two local minima as a cost minimization
problem, solved using a reinforcement learning setup with neural networks as function approximators
for the actor and critics. A stochastic policy was employed to facilitate exploration by the agent, further
perturbed by random noise. Target networks, delayed updates of the actor, and a replay buffer were used
to stabilize the learning process for the reinforcement learning agent. While the proposed framework
samples the region around the saddle point sufficiently, providing a good estimate of the energy barrier
for the transition, there is definitely scope for improvement. The method has been applied only to a two-
dimensional system, but as future work, it could be extended to more realistic and higher-dimensional
systems. One promising alternative would be to use max-reward reinforcement learning [45], as it aligns
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(a) A potential energy surface with pathways passing
through three different saddle points.

(b) The energy profiles of the three pathways depicted
in (a) with their respective barrier heights.

Fig. 7. (a) Three possible pathways on a potential energy surface passing though different saddle points and (b) the energy
profile for the three possible transition pathways.

well with the objective of maximizing the minimum reward obtained in an episode. However, a drawback
of this method is that the reinforcement learning agent must be trained from scratch if one needs to find
minimum energy pathways on a different potential energy surface. In other words, an agent trained on
one potential energy surface cannot be used to determine the minimum energy barrier on a different
surface, similar to how an agent trained in one Gymnasium environment cannot solve tasks in another.
Another limitation is that the agent can only locate pathways to minima lower than the starting minimum;
otherwise, remaining in the starting minimum would yield higher rewards for the agent.

This work differs from previous works using reinforcement learning [2, 14, 20, 52] by providing
a much simpler formulation of the problem, using the energy of the state directly as the reward while
searching for transition pathways with the minimum energy barrier. One of the main advantages of using
a reinforcement learning based method is that, unlike traditional methods such as the nudged elastic band
or the growing string method, it does not require an initial guess for the trajectory. Traditional methods
use energy gradient information along the trajectory to iteratively improve to a trajectory with better
energetics. However, the success of these methods depends on the initial guess for the trajectory, and
gradient based methods might get stuck in a local minimum. As shown in the constructed potential
energy surface taken from [10] in Figure 7, there may be multiple saddle points between two minima.
The trajectory to which a nudged elastic band or growing string method converges depends on the initial
guess for the starting trajectory. Typically, the initial guess trajectory is a simple linear interpolation
between the starting and ending points, which leads to the dotted trajectory (Path 2 with a barrier of
1.50 units). Traditional gradient-based methods report this trajectory as the optimal one because the
local gradients along the trajectory are minimal and cannot be improved by perturbation. However, the
reinforcement learning-based method proposed in this work identifies the trajectory represented by a
solid line (Path 3 with a barrier of 1.27 units) as the minimum energy pathway. The suboptimal solution
overestimates the energy barrier for the transition by (150−127)/127 or 18%, and hence underestimates
the frequency with which it occurs by 1 − e−1.50−(−1.27) = 20%. Underestimates of the probability for
a transition to occur would leading to imperfect modeling of the dynamics of the system. The use of a
stochastic policy in a reinforcement learning setup avoids this problem, increasing the chances of finding
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a better estimate of the transition barrier as the agent explores the state space. However, as a trade-off for
the simple model and generic approach, the agent learns slowly, requires a large number of environment
interactions, and would have to retrained to work in a new potential energy surface.
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The text added in the re-submission is in red. The count of works in the .tex file was ∼ 9000, which
was below the target of 12000 words for a submission.

I thank reviewer 1 for the positive comments. The reply to the reviewer’s suggestions are listed below.

(1) The computational methods should be described in greater technical detail. Of the parameters in
Tables 1 and 2, only the choice of the entropy coefficient α is covered in depth. As a minimum the
choice of values for the Polyak averaging parameter τ, discount factor γ and scaling factor λ should
be explained. The reasons for the choice of neural network architecture could also be discussed.

The choice of the values for the parameters τ and γ, and the neural network architecture were kept
the same as the TD3 and SAC algorithm implementations. The scaling factor λ adjusts the step size
for the agent, and it was this combination of the scaling factor and number of steps in an episode
which led to the best performance of the agent. The agent reaches near the terminal state with
just the number of required small enough steps to end the episode. A larger value of λ resulted in
the agent taking longer steps over regions of the potential energy surface with a higher energy to
give an incorrect estimate of the barrier height. Smaller values of λ led to smaller steps, and the
agent did not leave the local minima to explore other regions of the potential energy surface, and
is unsuccessful a its assigned task. It is difficult to visualizing these effects as a plot of the rewards
against the number of validation steps as those in Figure 6.

(2) The captions of the figures contain a lot of useful information which may be better presented in
the body of the text. Examples include the sentence “In most reinforcement learning algorithms this
(state, action, reward, next state, next action) tuple is stored while the agent is learning” from Figure
1, the final sentence under Figure 3, and all of the discussion on Figure 4 which is not referenced at
all in the main text. The final sentence of the caption for Figure 2 could also be moved, but should
also be rewritten for clarity and contains two typos (“course” and “ans”).

The captions of all the figures, and Figure 1, 3 and 4 in particular have been shortened. The typos
in the caption of Figure 2 has been corrected.

(3) Page 5 paragraph 2 describes how the actor and critic functions are to be approximated without
having introduced these terms first.

A sentence introducing the actor and critic functions has been added (Page 5, lines 14-18).

(4) Figure 7 may benefit from clarifying which pathway each energy profile refers to, as it was not im-
mediately obvious to me that the plotting characters alone (dotted/dashed/solid lines) identify this.

The three pathways are labeled and the labels are used to identify the energy profiles of the respec-
tive pathways.

https://github.com/sfujim/TD3/blob/34770ccdcb51df6f6c7d85c1ba7e40d71b940d16/TD3.py
https://github.com/haarnoja/sac/blob/8258e33633c7e37833cc39315891e77adfbe14b2/sac/algos/sac.py
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I thank reviewer 2 for the constructive comments and suggestions. The reply to the reviewer’s sugges-
tions are listed below.

(1) A solution is only presented for a (likely unrealistically) simple version of the problem here. While a
new RL algorithm is presented, there are only limited discussions comparing it with the state-of-the-
art existing methods. The paper itself feels rushed and unrefined.

While I admit that the Müller–Brown potential is a constructed artificial potential, nevertheless it
had been used to show the effectiveness of the algorithms is use to determine minimum energy
pathways:

• Growing String Methods: Wolfgang Quapp; A growing string method for the reaction path-
way defined by a Newton trajectory. J. Chem. Phys. 1 May 2005; 122 (17): 174106.
https://doi.org/10.1063/1.1885467

• Nudged Elastic Band: Graeme Henkelman, Hannes Jónsson; Improved tangent estimate in the
nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys.
8 December 2000; 113 (22): 9978–9985. https://doi.org/10.1063/1.1323224 used a two dimen-
sional LEPS model potential with two minima only (Müller–Brown potential has an intermediate
third minima).

• Baron Peters, Andreas Heyden et. al, A growing string method for determining transition states:
Comparison to the nudged elastic band and string methods. J. Chem. Phys. 1 May 2004; 120
(17): 7877–7886. https://doi.org/10.1063/1.1691018

• Accelerated Molecular Dynamics: Adaptively Accelerating Reactive Molecular Dynamics Us-
ing Boxed Molecular Dynamics in Energy Space, Robin J. Shannon, Silvia Amabilino et. al,
Journal of Chemical Theory and Computation 2018 14 (9), 4541-4552. DOI: 10.1021/acs.jctc.8b00515.

• Artificial Force Induced Reaction: Quapp W, Bofill JM, Mechanochemistry on the Müller–Brown
surface by Newton trajectories. Int J Quantum Chem. 2018;118:e25522. 10.1002/qua.25522

• Reinforcement Learning: Exploring Potential Energy Surfaces Using Reinforcement Machine
Learning, Alexis W. Mills, Joshua J. Goings et. al, Journal of Chemical Information and Mod-
eling 2022 62 (13), 3169-3179, DOI: 10.1021/acs.jcim.2c00373 uses a RL agent to explore the
potential energy surface.

The discussions section has been rewritten to compare it with the state-of-the-art existing methods.

(2) Below are extra comments/suggestions for improving the paper. Introduction: Could use more cita-
tions when discussing what RL is. (Pg. 2 Ln. 3-18)

Some more citations have been added while introduction reinforcement learning in Section 1.

(3) Figure 1 doesn’t really add any value or insight (especially given how much space it takes up and
that it is not an original figure to this manuscript). The introduction would benefit from just including
the figure caption in the main text instead.

The figure has been downsized to occupy less space and its source is acknowledged.

https://doi.org/10.1063/1.1885467
https://doi.org/10.1063/1.1323224
https://doi.org/10.1063/1.1691018
https://doi.org/10.1021/acs.jctc.8b00515
https://doi.org/10.1002/qua.25522
https://doi.org/10.1021/acs.jcim.2c00373
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(4) Making the comparison of navigating a maze to navigating a potential energy landscape is useful
for making the problem accessible to readers in either field but I feel it could be taken further. Cur-
rently the author connects start/end states in these two scenarios but the analogy could benefit from
connecting other components as well (such as actions and rewards) to complete the analogy. (Pg.
2 Ln. 19-29)

While it was a little difficult to make an analogy between the actions and rewards (especially re-
wards because the agent has different objectives in both environments), it has been added at lines
5-8 and 11-16 on page 3.

(5) Typo in Figure 2 caption “ans solving then solving it using standard reinforcement”. (Pg. 4 Ln. 46)

The typo was removed and most of the caption is incorporated into the main text.

(6) Methods: There seems to be a typo in the equation for Rt (extra comma). (Pg. 6 Ln. 30)

The typo was corrected.

(7) State-action function is missing a gamma. (Pg. 6 Ln. 38)

The missing γ was added.

(8) In the methods section (2), there is a mix of presenting the basic ideas of RL in detail (which as-
sumes the readers are not familiar with RL) and glossing over more advanced concepts such as
actor-critic methods and target policy smoothing (which assumes the readers are extremely familiar
with RL). The author defines these concepts much later but it should be done in this section (rather
than in Experiments).

A sentence introducing the actor and critic functions has been added on page 5, lines 14-18. Target
policy smoothing is introduced on page 8 lines 25-33.

(9) There are some clear issues with how the MDP is defined and what the author’s intentions of an op-
timal solution are. The episode terminates when the current state and target state are equal (within
some tolerance δ) giving the agent an immediate (and final) reward of 146.7. The reward function
encourages the agent to minimize the sum of energies over the states it occupies at each time step.
The agent could sit in some state δ away from the target state and receive rewards of 146.7 − ϵ
for infinite steps (the results shown in Figure 5a support this). While the point of this study is to
determine reaction barriers (and not necessarily the entire optimal reaction pathway), the reward
function isn’t necessarily encouraging the agent to find the minimum energy barrier. With this re-
ward function, one could imagine a chemical landscape where it is more beneficial for the agent to
pass through states with much higher energies than the optimal reaction barrier because it allows
the agent to reach the minimum energy states much faster. Thus this set-up does not guarantee
one would find the optimal reaction barrier energy nor the optimal reaction pathway.
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The author acknowledges that formulated MDP suffers from the problem raised by the reviewer.
The number of steps in an episode, the scaling factor of actions and the number of training epochs
were varied to come up with a set of values for these three parameters which minimize the problems
cause due to the imperfect formulation of the MDP. The aim is to discourage the agent from sitting
in some state δ away from the target state, and collect rewards for the remainder of the episode by
truncating the episode after 500 steps. A small scaling factor λ was used for the actions, so that the
agent does not make too many long jumps through higher energy states to reach a state with lower
energy faster. Decreasing λ would require increasing the maximum number of steps in an episode,
so that the agent explores regions away from the starting point, but not too much that the trajectory
passes through regions with higher energy. The lowest reward in the episode (corresponding to the
highest energy along the pathway, plotted in Figure 5b) was monitored to decide when the agent
stops improving at its intended task. Using the model after 1000 validation steps indeed led to a
higher estimate of the energy barrier.

(10) Experiments: Figure 3b is not referenced in the text and seems unrelated to Figure 3a. It would be
much better paired with the results shown in Figure 5. This figure claims that the agent is achieving
an average return of 55,000, however based on how the author defined the return in this envi-
ronment, this is impossible. Even if the agent started in the state with a global minimum energy
of -146.7 (which it does not), using the discount factor provided in Table 1 (1-10-2), the maximum
possible theoretical return would be:

∑
146.7 ∗ 0.99n <= 14670. This does not take into account

that the episode ends if the agent reaches this state (which would lower the theoretical maximum
even further).
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The figure was shifted to be a part of Figure 5, as suggested by the reviewer. I would like to ac-
knowledge my mistake of not multiplying the discount factor γ while calculating the returns from
the episodes which has been corrected. It leads to a much flatter learning curve.

(11) Figure 4 is not referenced in the text at all. This figure suggests the author did more experiments
comparing TD3, SAC, and their hybrid algorithm of the two, however there are no other indications
of this work.

Some text is added on Pages 10 and 11 to elaborate on the plots in Figure 4.

(12) I appreciate the experiments shown in Figure 6. They provide some justifications to the modifica-
tions made to SAC but are not sufficient for the introduction of a new RL algorithm.

The table in figure 6 was updated after multiplying the discount factor while calculating the aver-
age rewards.

(13) Figure 7 is only offhandedly mentioned in the Conclusions, despite being arguably the most inter-
esting result of the paper.

Text was added to page 16, lines 38 onward, to elaborate on the results from Figure 7. However,
it was kept a part of conclusions because it demonstrates an advantage of a reinforcement learning
based approach compared to the existing gradient based algorithms.

(14) This section should be split. There should be a discussion on the results presented separate from
the conclusions of the paper.

The section has been split. Discussions contain comparison of the current work with previous work,
while conclusions focus only on this work.

(15) There are several very relevant studies in the intersection of chemical reactions and RL not cited in
this work that need to be addressed. At the very least, a discussion needs to be added that com-
pares these works with the work presented here and explains the relative novelty of it.

I would like to thank out the reviewer for pointing out relevant references. A discussion of these in
the context of the current work is added in Section 4.

(16) There are only two examples of potential energy surfaces shown in this paper and both are 2-
dimensional. While these are convenient for visualization purposes, I would imagine one of the
major advantages of this approach is that it could be applied to higher dimensional systems with
little modification.

I acknowledge that two-dimensional (simpler) environments have been as examples. Higher dimen-
sional state spaces would require more computational resources and longer training-times for the
agent to learn. I would like to point out that most state-of-the art works also use two-dimensional
models. One of the references suggested bu the reviewer (which was already present in the first
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submission), Zhang, Jun, et al. Deep reinforcement learning of transition states." Physical Chem-
istry Chemical Physics 23.11 (2021): 6888-6895, uses four two dimensional models, all with two
potential wells. While all systems, except the first, have multiple dimensions, two dimensions have
been chosen (by expert knowledge, called order parameters), and the agent used only those two
dimensions. To avoid this (human) choice, environments with (only) two dimensions were used.
When higher dimensions are used in Lan, Tian, and Qi An. "Discovering catalytic reaction net-
works using deep reinforcement learning from first-principles." Journal of the American Chemical
Society 143.40 (2021): 16804-16812, the state space is discrete.

(17) The paper feels rushed and disjointed. There’s not a clear flow of the study as there are methods
explained in Experiments and results shown Discussions and Conclusions. While the problem and
algorithm are worth presenting, there is not enough results shown for either.

Several sections of the paper have been rewritten for clarity.

https://doi.org/10.1039/D0CP06184K
https://doi.org/10.1039/D0CP06184K
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