Data Science 0 (0) 1 **IOS Press** 

# Heterogeneous Multi-layered Network for Modeling Complex Graph-Data

Shraban Chatterjee and Suman Kundu

Department of CSE, IIT Jodhpur, N.H. 62, Nagaur Road, Karwar, Jodhpur, Rajasthan, India

Abstract. The present paper provides a generalized model of network, namely, Heterogeneous Multi-layered Network (HMN), which can simultaneously be multi-layered and heterogeneous. We proved that the sets of all homogeneous, heterogeneous and multi-layered networks are subsets of the set of all HMNs depicting the model's generalizability. The proposed HMN is more efficient in encoding different types of nodes and edges when compared to representing the same information through heterogeneous or multilayered networks. It is found experimentally that the HMN model when used with GNNs improve tasks such as link prediction. In addition, we present a novel parameterized algorithm (with complexity analysis) for generating synthetic HMNs. The networks generated from our proposed algorithm are more consistent in modelling the layer-wise degree distribution of a real-world Twitter network (represented as HMN) than those generated by existing models. Moreover, we also show that our algorithm is more effective in modelling an air-transportation multiplex network when compared to an algorithm designed specifically for the task. Further, we define different structural measures for HMN namely multilayer neighborhood, degree centrality, closeness centrality and betweeness centrality. Accordingly, we established the equivalency of the proposed structural measures of HMNs with that of homogeneous, heterogeneous, and multi-layered networks.

Keywords: Network Science, Heterogeneous, Multilayer, Network Generation

## 

## 1. Introduction

Network analysis is widely used to explain behaviors of different complex systems, ranging from physical processes to biological systems. In many cases complex systems cannot be expressed with sim-ple networks of homogeneous nodes. Networks having diverse nodes and edges require a heterogeneous graph [39, 76, 83]. In the literature, multilayer networks have also been used for different network sci-ence problems [7, 8, 16, 62]. However, considering the nature of complex systems, it may be natural to have multiple layers, each of which contains diverse type of nodes and edges. For example, the Face-book [60] network which is heterogeneous due to different nodes like users, posts, pictures, and groups is also multi-layered due to the different relations among these nodes. A layer in Facebook can contain interactions between users based on friendship; another layer can contain relationships between users who belong to the same picture; and a third layer can be formed with interactions between users and groups. A multi-layered network cannot support heterogeneity in a layer due to the absence of node or edge types [9-11, 56]. On the other hand, a single heterogeneous network cannot retain all the infor-mation present in a multi-layered network. The existing heterogeneous networks allow only one type of link between two objects, although the network may require different links. If we use these existing data structures for the Facebook network as described, we will lose certain information. Similarly, the network of chemical, gene, pathways, and diseases (CGPD) also shows multilayer and heterogeneous characteristics [110]. However, due to the lack of modeling techniques available, in [110] the authors have used multi-relational graphs. A multirelational graph represents multiple heterogeneous graphs as 

a collection, and there is no way to express relations between these subgraphs. Networks with heteroge-neous links between similar or different types of nodes are becoming more and more prominent in the present era. These complex networks are results of the modern internet and social networks. Furthermore, due to the availability of ActivityPub [81] protocol and the corresponding services (Fediverse <sup>1</sup>), which allow different social networking apps to communicate among them, we will see more heteroge-neous multilayer datasets in the future. The existing data-structure has several limitations, as mentioned, to handle such complex networks. A model to represent the different semantic relationships among dif-ferent entities in the form of a graph is the need of the hour.

Many networks used in different applications [43, 46, 68, 74] are not homogeneous in nature. Nev-ertheless, such networks are assumed to be homogeneous [27, 109], heterogeneous [52, 71] as well as multilayered [22, 47, 119] network while solving different problems. Although the combination of the words 'multilayer' and 'heterogeneous' is utilized in many of the social network research [1, 41, 65, 80, 85, 99, 100, 103, 118], these methods are merely a manifestation of the multilayer net-work data structure [11] in the context of application. In other words, the underlying data structure used therein does not support heterogeniety in independent layer. For example, work on sentiment analysis [41] and inter-layer coupling dynamics [85] consider each layer as homogeneous while different layers contain different types of nodes, i.e., none of the layers are heterogeneous. Nevertheless, the literature does not propose a generalized model of network that incorporates all possible characteristics of modern complex networks. 

This paper proposes a new network model, generalized heterogeneous multi-layered network that can express modern complex networks, by supporting heterogeneity and multi-layered properties simul-2.2 taneously. Homogeneous, heterogeneous and multilayered networks are special case of the proposed HMN. Various structural measures are developed for this network. In addition, the paper proposes a novel parameterized algorithm for generating a synthetic HMN. The algorithm is capable of generat-ing homogeneous, heterogeneous, multilayered, and heterogeneous multilayered networks by setting the parameters appropriately. The generated network will provide different research opportunities with heterogeneous multilayer network where it is difficult to obtain a real-world data set. The paper has four main contributions as follows. 

- Proposes a generalized heterogeneous multi-layered network model. We define various structural measures for this model.
- We prove that the set of all homogeneous, heterogeneous, and multilayered networks is a subset of the set of all generalized heterogeneous multilayered networks.
  - We present an algorithm that generates a heterogeneous multi-layered network with various layers and different types of nodes.
- Various experimental results show the applicability of the proposed model in different applications and the benefit of incorporating layers within the model.

The remaining paper is organized as follows. In Section 2 we will briefly discuss the preliminaries, Section 3 reports the related work in the field. The proposed definition of a generalized heterogeneous multi-layered network along with its structural properties are presented in Section 4. Section 5 con-tains the algorithm for generating a heterogeneous multi-layered network and experimental results are presented in 7. Finally, Section 8 concludes the findings.

<sup>1</sup>https://fediverse.to

**Definition 2.1** (Homogeneous Networks). A homogeneous network is a graph G = (V, E) with the vertex set V and the edge set E denoting the relations among these vertices.

**Definition 2.2** (Neighborhood). The neighbourhood of a node v in a homogeneous network are the nodes that have an edge with v i.e. the neighbourhood of a node v is as defined as,

$$N(v) = \{v_j | (v, v_j) \in E\}$$
(1)

**Definition 2.3** (Degree Centrality). In a homogeneous network, the degree centrality (DC) of a node v is the ratio of its degree to the total number of nodes defined as,

$$DC(v) = \frac{1}{n-1} |N(v)|$$
(2)

**Definition 2.4** (Betweenness Centrality). The betweenness centrality (BC) of a node *v* in a homogeneous network is the fraction of the shortest paths passing through the node with the total number of shortest paths in the network. It is defined as,

$$BC(v) = \sum_{x,y \in V \setminus \{v\}} \frac{|sp(x,y|v)|}{|sp(x,y)|}$$
(3)

The function sp(x, y) denotes the set of all shortest paths between two nodes x and y in a network and sp(x, y|v) returns the shortest paths from x to y that passes through v.

**Definition 2.5** (Closeness Centrality). In a homogeneous network, the closeness centrality (CC) of a node v is the sum of the reciprocal of the shortest path length from v to all other nodes in the network. It is defined as,

$$CC(v) = \sum_{w \in V \setminus \{v\}} \frac{1}{distance(v, w)}$$
(4)

Here (distance(v,w)) denotes the sum of the weights on the edges of the shortest path between two nodes v and w in a network.

Definition 2.6 (Multi-layered Network [11]). A multi-layered network is defined as a triple  $M = (Y, G_{intra}, G_{inter})$  where  $Y = \{1, 2, \dots, k\}$  is the set of layers,  $G_{intra} = (G_1, G_2, G_3, \dots, G_k)$  is a sequence of graphs with each graph  $G_i = (V_i, E_i)$  belonging to a layer, and  $G_{inter} = \{G_{ij} = (V_i, V_j, E_{ij}) | i \neq j\}$ . An inter layer graph  $G_{ij}$  for layer *i* to *j* contains all the nodes and edges from layer *i* to layer *j*.

<sup>42</sup> **Definition 2.7** (Multiplex Network). A multiplex network is a network M = (V, E, L) with V as the <sup>43</sup> vertex set, E as the edge set and L as the layer set. An edge in E is a tuple (x, y, l) where  $x, y \in V$  and <sup>44</sup>  $l \in L$ . The vertex set is common across the layers which allows a multiplex network to have multiple <sup>45</sup> relations between the same pair of nodes with each relation captured in a different layer. 2.0

2.2

**Definition 2.8** (Heterogeneous Network [91]). A network  $H = (V, E, \{A, B\}, \{f_1, f_2\})$  with edges having multiple nodes and edge types with functions  $f_1$  and  $f_2$  to map nodes and edges respectively to their types *A* and *B* is called a heterogeneous network. It is mandatory for either the node type or the edge type to be greater than one. Two links which belong to the same relation type have the same starting node type as well as the ending node type.

#### 3. Related Work

<sup>10</sup> Heterogeneous networks have existed for a long time, with earlier work subsisting in the social sci-<sup>11</sup> ences. One of the earlier works on heterogeneous network mining [44] explored the applications of links <sup>12</sup> to mine such networks and distinguish objects based on links. The survey [91] presents a good idea <sup>13</sup> about some of the more recent works on heterogeneous networks. Heterogeneous networks are seen to <sup>14</sup> be applied in link prediction [71], community detection [78], modeling human collective behavior [35], <sup>15</sup> rail transit network [36] and heterogeneous susceptible infected network [106].

One of the pioneering works on multi-layer networks was by Moreno et al. [56]. They have proposed a formal definition of multi-layered networks. The definition was further simplified along with the addition of structural measures in [11]. The formalism of multi-layer networks have led to various studies and applications on them. Multi-layer networks have been studied in various contexts like the study of flow processes or diffusion [17, 18], epidemic modelling and disease spreading [30, 119], generalization of the percolation theory [89, 114], clique based heuristic node analysis [53], localization properties of 2.2 the network helping to understand the propagation of perturbation [50], and how the failure of nodes in one layer propagates to other layers [63]. It is essential to mention that the literature contains a wide variety of networks very similar in definition to multi-layered networks like multiplex networks [15, 57], multilevel networks [54, 115] and network of networks [75]. 

Heterogeneous and multilayered network models are used separately for different problems. Further, multilayer network data structure had been referred as 'heterogeneous multilayer' [41, 65, 80, 85, 99, 100, 103] or 'multilayered heterogeneous' [1, 118] when used in many applications. The probable reason for the same is to express that the whole network is heterogeneous. However, the data structures used therein do not support heterogeneity in each layer, rather can be trivially reduced to the same definition used in [56]. Hence, all these are not representative of any generalized model of networks irrespective of the nomenclatures used. Next we will highlight recent work where a multilayer network is referred to as heterogeneous multilayer network. A layered network with multiple nodes and edge types are considered heterogeneous in [41, 65, 80]. However, nodes of an individual type constitute a layer designating it as similar to multilayer network. The authors of [103] consider each type of relation to be in a separate layer, again failing to incorporate heterogeneity within a layer. Similarly, [99], considers the type of node (a person wearing a mask) to be fixed in a layer. In [1], the word heterogeneous is used to represent different non-overlapping communities in a layer. The nodes are homogeneous and, interestingly, some communities are shared between layers. This definition of layers and heterogeneity cannot be generalized to accommodate different network data. 

The literature review shows us that despite having much work on heterogeneous and multi-layered networks, the literature has not addressed heterogeneity and multi-layered property simultaneously. Further, there is a requirement of data structure for network that can be used to express various types of network depending upon the problem at hand.

Chatterjee and Kundu / HMN



Fig. 1. a) An example to demonstrate a heterogeneous-multi-layered networks with node and edge types. In the figure the black colored edges are undirected and the green colored edges are directed. b) The figure shows the author paper relation for the authors and papers marked in bold in Figure 1(a). The circle represents paper and the triangle represents author. The dotted links and circles are the possibilities of two authors collaborating on a paper in the future. 

### 4. Generalized Heterogeneous Multi-layered Network (HMN)

Definition 4.1 (Heterogeneous Multi-layered Network). A heterogeneous-multi-layered network (HMN) is defined by quintuple  $G = (V, E, L, T, \mathcal{R})$  where V is the set of vertices,  $E \subseteq ((V \times L) \times (V \times L))$  is the set of edges, L is the set of layers,  $T = \{T_V, T_E\}$  is the set of sets of vertex and edge types and  $\mathcal{R}$ is the set of functions.  $\mathcal{R}$  contains 3 primary functions  $R_{VT}$ :  $V \rightarrow T_V$ ,  $R_{ET}$ :  $E \rightarrow T_E$  to map vertex and edges to type and,  $R_{VL}$ : V  $\rightarrow 2^L \setminus \{\emptyset\}$  to map a vertex to a set of layers. 

A vertex may be present in many layers and cannot exist outside layers, hence the function  $R_{VL}$  maps a vertex to a power set of layers except the null set. For example a node u belonging to 3 layers  $l_1, l_2, l_3$  will 

2.0

2.2

have  $R_{VL}(v) = \{l_1, l_2, l_3\}$ . We denote a node v at layer l as  $v^l$  for sake of convenience, i.e.,  $l \in R_{VL}(v^l)$ . There must be at least one layer in an HMN, i.e.,  $|L| \ge 1$ . The set  $T_V$  and  $T_E$  at minimum contains one type  $\{\bot\}$  each. An edge  $e = (v_a^{l_b}, v_c^{l_d})$  denotes that there is a directed connection from  $v_a$  at layer  $l_b$  to  $v_c$  at layer  $l_d$ . An edge is called an intra-edge if  $l_b = l_d$  or inter-edge if  $l_b \neq l_d$ . The set  $\mathcal{R}$  contain functions for mapping nodes and edges to their respective types and layers. The functions  $R_{VT}$  and  $R_{ET}$  map a vertex and an edge to  $T_V$  and  $T_E$  respectively. Let us see the model with an example shown in Figure 1a. The network contains three layers with layers representing research in the machine and deep learning (Layer 1), bio-science (Layer 2), and self-driving cars (Layer 3). The figure contains three types of nodes in the Layers 1 (paper, author, lab) and 2 (paper, author, organization), and Layer 3 contains four types of nodes namely paper, author, lab, and organization. There are directed interconnections between layers to show that papers in bio-science or self-driving cars cite another paper in machine and deep learning. The network cannot be represented with a homogeneous network without losing information. Even a multi-layered or heterogeneous net-work will fail to capture the network due to the presence of multiple types of nodes (and edges) and multiple layers respectively. It may be apparent that a heterogeneous network will describe Figure 1a by merging different layers into one. However, a heterogeneous network only partially captures the given network as described in Remark 4.1. 

**Remark 4.1** (Heterogeneous Multi-Layer network is not another variant of a heterogeneous network). The Figure 1a shows us in bold that three authors from three different layers have collaborated on a paper in the third layer. Consider that these three layers get merged into one, then these three authors and the paper will have the structure as shown in Figure 1b. Once we avoid the layer structure all these three authors become homogeneous. Hence there is no way to separately keep their association with each other in terms of the subjectivity expressed by the layers. For example, the possibility of collaboration between the authors of layer 1 with 3, 2 with 3 and 1 with 2 can be different. The only way we can keep this subjectivity is through the layers. Hence it is relevant to have both heterogeneity and multi-layered property in the network definition itself. This will provide a generalized definition of a complex network. We call such a network as a heterogeneous multi-layered network. 

<sup>30</sup> **Lemma 4.1.** The set of all multi-layered networks  $\mathcal{M}$  is a subset of the set of all heterogeneous multi-<sup>31</sup> layered networks  $\mathcal{H}_m$ .

Proof. We will prove this by contradiction. Let us assume that  $\exists x = (Y, G_{intra}, G_{inter})$  such that  $x \in \mathcal{M}$ but  $x \notin \mathcal{H}_m$ . Now,  $\exists y = (V, E, L, T, \mathcal{R}) \in \mathcal{H}_m$  such that

| 35 |                      |                                                              | 35 |
|----|----------------------|--------------------------------------------------------------|----|
| 36 | L                    | =Y                                                           | 36 |
| 37 | C(V E)               | -C, $  C$ , where                                            | 37 |
| 38 | O(v, L)              | $= O_{intra} \cup O_{inter}$ where                           | 38 |
| 39 | $G_{intra}$          | $= \{G_1, G_2, \cdots, G_k\}$ where $G_i = (V_i, E_i)$       | 39 |
| 40 | Ginton               | $= \{G_{ii}\}$ where $G_{ii} = (V_i \ V_i \ E_{ii})$         | 40 |
| 41 | Cimer                |                                                              | 41 |
| 42 | $V_i$                | $= \{ v \mid v \in V \& i \in R_{VL}(v) \}$                  | 42 |
| 43 | F                    | $((\ldots, \ldots) + (, l_i,, l_i) \in \mathbf{E})$          | 43 |
| 44 | $\boldsymbol{L}_{i}$ | $= \{ (v_j, v_k) \mid (v_j, v_k) \in E \}$                   | 44 |
| 45 | $E_{ii}$             | $= \{ (v_k, v_m) \mid (v_k^{l_i}, v_m^{l_j}) \in E \}$       | 45 |
| 46 | *J                   | $\langle \langle m, m \rangle + \langle \chi, m \rangle = J$ | 46 |

The set  $V = \bigcup_{i \in L} V_i$  and  $E = \bigcup_{i \in L} E_i$ . Each of the graphs in a particular layer in x is homogeneous (Definition 2.1) but different layers may have different types of nodes. The functions  $R_{VT}$  and  $R_{ET}$  map all vertices and edges of a single layer to one value in the set  $T_V$  and  $T_E$  respectively. The presence of such a y using which we can create an x contradicts with our assumption. Thus we show that the set of all multi-layered networks is a subset of the set of all heterogeneous multi-layered networks.  $\Box$ 

**Corollary 4.1.1.** A multiplex network is a special case of an HMN.

**Proof.** A multiplex network is a multilayered network where every layer has the same vertex set so there is no need for interconnections between the layers. In a multiplex network  $M = (Y, G_{intra}, G_{inter})$ ,  $G_{intra}$  is  $(G_1, G_2, \dots, G_k)$  and  $G_{inter} = \{G_{ij}\}$  where  $G_i = (V_i, E_i)$  and  $G_{ij} = (V_i, V_j, E_{ij})$  with  $V_1 =$  $V_2 = V_3 = \cdots = V_{|Y|} = V$  and  $E_{ij} = \emptyset \ \forall G_{ij}$ . In this case  $T_V = \{T_1\}$  and  $T_E = \{T'_1, \cdots, T'_{|I|}\}$ . Thus a multiplex network is a special case of a multi-layered network making it a special case of an HMN.  $\Box$ 

**Lemma 4.2.** The set of all heterogeneous networks  $\mathcal{H}$  is a subset of the set of all heterogeneous multi-layered networks  $\mathcal{H}_m$ . 

**Proof.** We will prove this by contradiction. Let us assume that  $\exists x = (V_{het}, E_{het}, \{A, B\}, \{f_1, f_2\}) \in \mathcal{H}$ such that  $x \notin \mathcal{H}_m$ . Now,  $y = (V, E, L, T, \mathcal{R})$  with the following values for the parameters is in  $\mathcal{H}_m$ .

$$(V, E) = (V_{het}, E_{het}) \quad L = \{1\}$$
  
$$T_V = A \qquad T_E = B$$

Note that  $R_{VT} \equiv f_1$  and  $R_{ET} \equiv f_2$  based on the definition of heterogeneous networks. The function  $R_{VL}$  maps to default set as there is a single layer. Considering all the parameters of y are generated from the parameters of x, it is proved that for every  $x \in \mathcal{H}$  there exists a corresponding  $y \in \mathcal{H}_m$  such that  $x \equiv y$ . Thus,  $x \in \mathcal{H} \implies y \in \mathcal{H}_m$  where  $x \equiv y$  which shows that  $\mathcal{H} \subset \mathcal{H}_m$ . We use the notation  $\subset$ instead of  $\subseteq$  as  $\mathcal{H}$  can never be equal to  $\mathcal{H}_m$  due to the presence of layers in  $\mathcal{H}_m$ .  $\Box$ 

**Lemma 4.3.** The set of all homogeneous networks S is a subset of the set of all heterogeneous multilayered networks  $\mathcal{H}_m$ . 

**Proof.** We will prove this by contradiction. Let us assume that  $\exists x = (V_{homo}, E_{homo}) \in S$  such that  $x \notin \mathcal{H}_m$ . Now,  $y = (V, E, L, T, \mathcal{R})$  with the following values for the parameters is in  $\mathcal{H}_m$ . 

$$(V, E) = (V_{homo}, E_{homo}) \quad L = \{1\}$$
  
$$T_V = \{\bot\} \qquad T_E = \{\bot\}$$

Note that  $R_{VT}$  maps to  $T_V$  and  $R_{ET}$  maps to  $T_E$ . The function  $R_{VL}$  maps to default set as there is a single layer. Considering all the parameters of y are generated from the parameters of x, it is proved that for every  $x \in S$  there exists a corresponding  $y \in \mathcal{H}_m$  such that  $x \equiv y$ . Thus,  $x \in S \implies y \in \mathcal{H}_m$  where  $x \equiv y$  which shows that  $S \subset \mathcal{H}_m$ .  $\Box$ 

Chatterjee and Kundu / HMN



2.0

Fig. 2. An example twitter network with each rectangle representing a layer. The first layer (represented by circles) contains tweets and the second layer (represented by triangles) contains users.

It must be noted that the definition of  $\mathcal{R}$  can contain additional functions. For example, all the nodes in a layer *L* can be returned by a function say  $R_{LV}$ , and all nodes of type *T* in a layer *L* can be returned by a function say  $R_{TL}$ . When we want all node types in a layer we can represent  $R_{TL}$  as  $R_L$ . In other words, we can add other functions to  $\mathcal{R}$  as required. This makes the definition of HMN extendable for different contexts. The addition of the functions  $R_L$  and  $R_{TL}$  do not alter the definitions and proofs as mentioned earlier.

## 19 4.1. Advantages of HMN through Examples

Let us consider the network shown in the Figure 2. The network represents a real life twitter network which is heterogeneous and multi-layered at the same time. The first layer contains tweets (represented 2.2 2.2 by circles). There is a connection between two tweets using the same hashtag. The second layer (rep-resented by triangles) contains users with links between two users indicating one follows the other. In addition to that a user or tweet can be aggressive or non aggressive represented using the color. The inter-layer links represent a user liking a tweet. The above network is represented as a HMN in Figure 2. We cannot represent this information using the definitions of [10, 41, 99, 103] as there are multiple types of relations in a layer and the same node is not be present in all the layers. One may argue, that the same information can be represented as a heterogeneous network [1, 91] as shown in Figure 3, however, the complexity will increase in many folds as described here. In Figure 3 we can see that the types of nodes doubled, *i.e.*, a node can be of two types (user, tweet) where each type can have two subtypes (aggressive, non-aggressive). Now let us consider a case where a user can be mildly aggressive, moder-ately aggressive, severely aggressive and non-aggressive. In that case a heterogeneous network will have 2 \* 4 = 8 types of nodes and 3 types of edges making a total of 11 types to substitute 2 layers with 4 types in a HMN. It must be noted that two layers can intrinsically mean 3 types of edges (2 intra and 1 inter) without explicit markup. Similarly, increasing one layer will require 3 \* 4 = 12 node types and 3(intra) + 3(inter) = 6 edge types in a heterogeneous network increasing the total number of types to 18 from 11. In contrast, a HMN will require 3 layers with 4 types to represent the same. In fact, a HMN intrinsically stores  $|L|C_2$  edge types which require explicit definitions in a heterogeneous network. This in-turn increases the computational complexity of certain tasks (example in the following paragraph) in a heterogeneous representation of the network. In other words, the proposed HMN model's advantage is at the abstraction level, which simplifies the data structure for complex graphs. When we compare our representation with existing representations like [80] we find that our model can store as many repre-sentations as necessary in a layer whereas existing models like MultiVERSE requires one layer for each type of node. 

Chatterjee and Kundu / HMN



Let us consider the application of HMN through the lens of link prediction in the given Twitter net-work. We consider the Jaccard Co-efficient for scoring a possible edge (x, y) which can be defined as  $JC(x,y) = \frac{N(x) \cap N(y)}{N(x) \cup N(y)}$  where N(x) defines the neighbors of node x. In a heterogeneous setting we may need to consider the neighbors of a particular type. Considering the network in Figure 3 if we need to find neighbors N(x) of a particular node x of type (say tweet) we need O(V) time for each node x in the worst case as shown in snippet 1 below. In the same setting, we need O(k) time in our HMN with the help of function  $R_{TL}$  which returns all k vertices of a particular type in a given layer, as shown in the snippet 2. In a real Twitter network,  $k \ll V$ . We use the function  $R_{VL}$  to obtain the layer information for node x. 

```
<sup>21</sup> 1. for n in N(x):

<sup>22</sup> if n.type == x.type:

<sup>23</sup> N<sub>T</sub>(x).add(n)

<sup>24</sup> 2. for n in N(x) U R_{TL}(x.type, R_{VL}(x)):

N<sub>T</sub>(x).add(n)
```

#### 4.1.1. Using layers improves existing tasks

The use of layers helps reduce types and query complexity as explained above. Now we show that layers can add additional domain knowledge to an existing heterogeneous network. In fact, we can say that a layer is meta-information about a heterogeneous network that is inherently present but not apparently visible. HMN provides a systematic way of managing this meta-information starting from the definitions to the data structure. We use the link prediction task with and without layer information on the MovieLens [45] dataset to prove our claim. MovieLens is a heterogeneous dataset with two types of nodes namely movie and user with on type of node between them namely user rates movie. There are 9742 user nodes, 610 movie nodes and 100836 edges. In the link prediction task we divide the edges in the dataset into two parts training, validation and testing. We train 2 layers GNN models like [12– 14, 29, 42, 61, 72, 92, 102, 111] on the training dataset and try to predict the links on the validation and test dataset. We create two versions of the MovieLens dataset with and without layer numbers. In the version with layer numbers we encoded the domain knowledge that people who like at least one sci-fi movie rate movies differently when compared to people who like other genres of movies. We have moved sci-fi movies and users who have seen and rated at least one of them to layer 1 and other users and movies to layer 2. We encode the layer information into the feature vector by adding a bit where 0 represents layer 1 and 1 represents layer 2. In the unlayered version we use the actual feature vector which indicates all nodes belong to a single layer. We try to predict links on such a network to see what movie a user will watch (and rate) next. For the link prediction task, we use state-of-the-art GNN 

2.0

2.2



Fig. 4. Figures a and b show the t-SNE plot of the feature vector for the movie and user nodes without layer information. Figures
 c and d show the feature vectors after adding layer information. We can clearly see that the feature vectors have condensed after adding layer information bringing structurally similar nodes closer to one another thus increasing the result of link prediction. Features are obtained from GraphSAGE model.

architectures available. We run the GNN models on two different feature sets of the same network, the first being the feature set of the original heterogeneous network and the second with a layer dimension added to the feature vector of each movie and user. The results in Table 1 show an increase in the area under the curve for all models when we use layers. We use t-SNE (with perplexity = 30.0, learning rate of 86.26 and other parameter set to default as in the sklearn library) for reducing the dimensionality of the node features generated by our model to 2-dimensions. The t-SNE plot shown in Figure 4 shows that the embedding of movies belonging to the sci-fi genre is closer as is the embedding for the users watching that genre clearly showing the relevance of adding layers.



## 5. Synthetic HMN Generation

It is difficult to obtain heterogeneous multi-layered network datasets despite a lot of real-world net works being HMN. We have addressed this problem by proposing a novel parameterized algorithm
 for generating a heterogeneous multi-layered network. The proposed algorithm can generate a multi layered, heterogeneous, and homogeneous network using different values of the parameters as described
 in the Lemmas 4.1, 4.2, and 4.3 respectively.

#### 1 5.1. Algorithm

The Algorithms of 1 and 2 generate an HMN. The algorithms work as follows. At time step t a new node n is added to the initially empty network G. The number of nodes that can be added to the network is limited by the parameter N. The node u is assigned to a layer l of L uniformly randomly. The type of u is assigned uniformly randomly from  $R_L(l)$  where  $R_L(i) = \{T_i\}_{i \in L}$  and  $T_i \subseteq T_V$ . Since different real-world datasets have different type distributions, we can assign node types based on any other distribution without changing any other part of the algorithm. The added node u connects with other nodes in the same layer and other layers using preferential attachment. The preference of a node is decided based on its own degree and the degree of its neighbours (Algorithm 2, Lines 6-7). This makes the algorithm capable of generating power law and other types of networks. The parameters  $\alpha$  and  $\beta$  decide the weightage to be given to a node's own degree and the degree of its neighbours, respectively. The minimum number of connections a node makes with other nodes (in the same and different layers) is decided by the parameter M, a  $L \times L$  matrix. For making intra-layer connections, the function *connection1* takes an induced graph  $G_{ii}$  from the HMN G where  $G_{ij} = I(G, V_i \cup V_j)$ . The induced graph can also be called a subHMN. An induced graph comes with all the types of nodes and edges associated with vertex set  $V_i$  in layer i and  $V_j$  in layer j. For the inter-layer connections with the node *u*, the function *connection2* takes three induced graphs  $G_{ii}$ ,  $G_{jj}$  and  $G_{ij}$  where i = l and  $j \in L \setminus l$ . Let us consider a situation where no nodes are in the inter-layer subHMN  $G_{12}$  and a new node (u) is assigned to the layer 1. In making a cross-layer connection with layer 2, if there are sufficient nodes  $(> m_{12})$  in the layer 2, then  $m_{12}$  nodes are selected at random from layer 2 and connected with u. If the number of nodes in layer  $2 < m_{12}$ , then we store the current node in a list so that the edges with u can be 2.2 created once there are sufficient nodes in layer 2. 

Remark 5.1. The above algorithm assigns a node to a single layer, making it incapable of generating a
 multiplex network without certain modifications.

#### 5.2. Complexity Analysis and Scalability

Adding a new node in layer *l* triggers two functions, *conn1* and *conn2*, for intra layer and inter layer link generation. The algorithm establishes the intra layer links in O(m) time where  $m = M_{ll}$ . Here  $M_{ll}$ denotes the minimum number of connections a node makes in its layer. Following the intra layer links, we make inter layer connections for the node with all other layers in O(|L|m') considering the worst case. where |L| denotes the number of layers and  $m' = \max_{j \in L} (M_{lj})$ . It must be noted that the worst case will arise when the node needs to connect to every other node in every layer.

#### 6. Structural Measures of HMN

In this section, we define some of the structural measures of HMN. By definition HMN uses direction for an edge  $e \in E$ . However, many network measures consider the in-links and out-links together. When applicable, notations related to in-links and out-links are superscripted with *IN* and *OUT* respectively in the following text.

<sup>43</sup> **Definition 6.1** (Out/In-Neighborhood in HMN). The Out/In-neighborhood of a node  $v^l$  is defined by the <sup>44</sup> connected nodes from/to the node  $v^l$  to all the nodes situated in any layer in a set of layers  $\mathcal{L}$  and having <sup>45</sup> a type  $t \in \mathcal{T}$ . That is,

Chatterjee and Kundu / HMN

Algorithm 1: Generating an HMN **Input:**  $N, L, R_L, M, \alpha, \beta$ Output: Return HMN G 1 node  $\leftarrow 1, R_{VL} \leftarrow \{\}$ G = Empty HMN3 while *node* < N do i = uniformRandom(L) $R_{VL}(node) = i$  $t = uniformRandom(R_L(i))$  $G_{ii}$ .addNode(node)  $G_{ii} = connection1(G_{ii}, node, M_{ii}, \alpha, \beta)$ while  $j \in L$  do if  $i \neq j$  then  $G_{ij} = connection2(G_{ii}, G_{jj}, G_{ij}, node, M_{ij}, \alpha, \beta)$ node = node + 1;

$$N^{IN}(v^l, \mathcal{L}, \mathcal{T}) = \{u^k | (u^k, v^l) \in E, k \in \mathcal{L}, R_{VT}(u) \in \mathcal{T}\}$$

$$N^{OUT}(v^l, \mathcal{L}, \mathcal{T}) = \{u^k | (v^l, u^k) \in E, k \in \mathcal{L}, R_{VT}(u) \in \mathcal{T}\}$$
(5)

**Remark 6.1.** The definition of neighborhood is flexible to include as many types of nodes and layers we wish to take. To get all types of neighbors in all the layers we set  $\mathcal{T} = T_V$  and  $\mathcal{L} = L$  where  $T_V$  and L denote all vertices and layers respectively.

Remark 6.2. A node can be present in more than one layers. One should note that the definition of neighborhood presented here does not contain the neighbors that the same node v in layer k may have where  $k \neq l$ .

Definition 6.2 (Neighborhood in HMN). The neighborhood of a node  $v^l$  is defined by  $N(v^l, \mathcal{L}, \mathcal{T}) = N^{IN}(v^l, \mathcal{L}, \mathcal{T}) \cup N^{OUT}(v^l, \mathcal{L}, \mathcal{T}).$ 

<sup>34</sup> <sup>35</sup> **Definition 6.3** (HMN Degree Centrality). Given  $\mathcal{L}$  and  $\mathcal{T}$  the degree centrality (*DC*) of a node  $v^l$  in an <sup>36</sup> HMN is the ratio of the number of neighboring nodes of  $v^l$  having type in  $\mathcal{T}$  and belonging to a layer in <sup>37</sup>  $\mathcal{L}$  to the count of all nodes of type in  $\mathcal{T}$  and any layer in  $\mathcal{L}$ . That is,

$$DC(v^{l}, \mathcal{L}, \mathcal{T}) = \frac{|N(v^{l}, \mathcal{L}, \mathcal{T})|}{|\{u^{k}|k \in \mathcal{L}, u \in V, u^{k} \neq v^{l}, R_{VT}(u) \in \mathcal{T}\}|}$$
(6)

<sup>43</sup> **Definition 6.4** (Shortest Path in HMN). Given  $\mathcal{L}$  and  $\mathcal{T}$  the shortest path between two nodes  $v^l$  and  $w^k$  in <sup>44</sup> an HMN is a path through the nodes of any layer in  $\mathcal{L}$  and type in  $\mathcal{T}$  such that the sum of the weights (in <sup>45</sup> case of a unweighted HMN the weights of all edges are 1) of the edges in the path is minimized. There

Algorithm 2: connection1() for intra layer and connection2() for inter layer connections **Input:**  $g_1, g_2(optional), g_3(optional), node, m, \alpha, \beta$ G = emptyGraph()**2** Function nodeDistribution  $(G, \alpha, \beta)$ nodesDist = []for  $i \in G$ .nodes do j=0 $c = int(\alpha * f_{deg}(i) + \beta * f_{neighbor\_deg}(i))$ while j < c do nodesDist.add(i)**9** Function connection1  $(g_1, node, m, \alpha, \beta)$ if  $count(g_1.nodes) < m$  then *return*  $G = g_1$ if  $count(g_1.nodes) = m$  then  $G = starGraph(g_1.nodes)$ if  $g_1$ .nodes > m then  $G.edges = g_1.edges$  $nodesDist = nodeDistribution(G, \alpha, \beta)$ targets = uniformRandom(nodesDist, m)2.2 2.2  $newEdges = [(node, i) | i \in targets]$ G.addEdges(newEdges) **Output:** return intra graph G **20 Function** connection2  $(g_1, g_2, g_3, node, m, \alpha, \beta)$ if  $count(g_3.edges) = 0$  and  $count(g_2.nodes) < m$  then  $g_3.add(node)$ *return* g<sub>3</sub> if  $count(g_3.edges) = 0$  then  $targets = uniformRandom(g_2.nodes, m)$ for *vertex*  $\in$  *g*<sub>3</sub>*.nodes* do for each item in targets do *g*<sub>3</sub>.*addEdge*((*vertex*, *item*))  $a = g_2.edges$  $b = g_3.edges$ a = a.add(b)G.addEdges(a) $nodesDist = nodesDistribution(G, \alpha, \beta)$  $nodesDist = [i | i \in nodesDist \& i \notin g_1.nodes]$ targets = uniformRandom(nodesDist, m)for each item in targets do  $g_3.addEdge((node, item))$ **Output:** return inter graph  $g_3$ 

can be more than one shortest path between two nodes and the set of all such shortest paths is denoted by  $sp(v^l, w^k)$ . The quantity  $d(v^l, w^k)$  is the sum of the weights on the edges of a shortest path between  $v^l$ and  $w^k$ . When there is no path between  $v^l$  and  $w^k$  the  $d(v^l, w^k)$  is  $\infty$ .

**Definition 6.5** (HMN Betweeness Centrality). Given  $\mathcal{L}$  and  $\mathcal{T}$  the betweeness centrality of a node  $v^l$  in a heterogeneous multi-layered network is the fraction of shortest paths between any two nodes  $x^k$  and  $y^j$  (where  $R_{VT}(x), R_{VT}(y) \in \mathcal{T}, k, j \in \mathcal{L}$ ) passing through node  $v^l$  among all the shortest paths between  $x^k$  and  $y^j$ . If there is no path between  $x^k$  and  $y^j$  then  $\frac{|sp(x^k,y^j|v^l)|}{|sp(x^k,y^j)|}$  is considered to be 0. That is,

 $BC(v^{l}, \mathcal{L}, \mathcal{T}) = \sum_{x^{k}, y^{j} \in V'} \frac{|sp(x^{k}, y^{j}|v^{l})|}{|sp(x^{k}, y^{j})|}$ (7)

where 
$$V' = \{u^i | i \in \mathcal{L}, R_{VT}(u) \in \mathcal{T}, u \in V, u^i \neq v^l\}$$

If we are considering only cross layered connections then we can set the *layers* variable to  $L - R_{VL}(v^l)$ . The cross layered betweeness will indicate the importance of a node outside its own layer.

**Definition 6.6** (HMN Closeness Centrality). Given  $\mathcal{L}$  and  $\mathcal{T}$  the closeness centrality of a node  $v^l$  in a heterogeneous multi-layered network is the average shortest path length from  $v^l$  to all other nodes of a layer in  $\mathcal{L}$  and type in  $\mathcal{T}$  in the network.

$$CC(v^l, \mathcal{L}, \mathcal{T}) = \sum_{u^k \in V'} \frac{1}{d(v^l, u^k)}$$
(8)

where  $V' = \{u^k | u \in V, u^k \neq v^l, k \in \mathcal{L}, R_{VT}(u) \in \mathcal{T}\}$ 

**Lemma 6.1.** Given an HMN  $G = (V, E, T, \mathcal{R})$  with |L| = 1 and  $T_V, T_E = \{\bot\}$ , i.e., when an HMN is a homogeneous network (Lemma 4.3), the neighborhood of a node  $v^l \in V$  is equivalent to the neighborhood of v in a homogeneous network.

Proof. Given HMN *G* is nothing but a homogeneous network as per Lemma 4.3. The Definition 6.2 considers all types of neighbors of a node  $v^l$  in all the layers when  $|L| = 1, T_V, T_E = \{\bot\}$  which is nothing but the degree of the node  $v^1$ ; making the neighborhood of HMN equivalent to the neighborhood of the homogeneous network (Definition 2.2) it represents.  $\Box$ 

Corollary 6.1.1. Given an HMN which is a homogeneous network (Lemma 6.1),  $DC(v^l, \mathcal{L}, \mathcal{T})$ (Equation 6)  $\equiv DC(v)$  (Equation 2).

Proof. The neighborhood of an HMN with parameters according to Lemma 6.1 is equivalent to the neighborhood of a homogeneous network. Thus, the numerator in Equation 6 is equivalent to the number of neighbors of a node (making numerator in Equation 6 = Equation 2). The denominator in Equation 6 contains all the nodes of the network (an HMN equivalent to a homogeneous network) except  $v^l$  (the node whose centrality we are trying to find). So, the denominator in Equation 6 is equivalent to the denominator in Equation 2. Thus, it is proved that  $DC(v^l, \mathcal{L}, \mathcal{T}) \equiv DC(v)$ .

**Corollary 6.1.2.** The shortest path between two nodes of an HMN with parameters  $|L| = 1, T_V, T_E = \{\bot\}$  is equivalent to the shortest path between the same nodes in a homogeneous network.

**Proof.** When we have only a single layer, i.e., |L| = 1 and a single type of vertex and edge, i.e.,  $T_V, T_E = \{\bot\}$  then we consider nodes belonging to all the layers and node types in the shortest path by default (as an HMN is a homogeneous network with the given parameters as per Lemma 4.3) making the shortest path in an HMN equivalent to the shortest path in a homogeneous network.  $\Box$ 

**Corollary 6.1.3.** Given an HMN which is a homogeneous network (Lemma 6.1),  $BC(v^l, \mathcal{L}, \mathcal{T})$ (Equation 7)  $\equiv BC(v)$  (Equation 3).

**Proof.** The shortest path between two nodes of an HMN with parameters as in Corollary 6.1.2 is equivalent to the shortest path between the same nodes of a homogeneous network. Thus the numerator and denominator in Equation 7 is equivalent to the numerator and denominator in Equation 3.  $\Box$ 

**Corollary 6.1.4.** *Given an HMN which is a homogeneous network (Lemma 6.1),*  $CC(v^l, \mathcal{L}, \mathcal{T})$  (Equation 8)  $\equiv CC(v)$  (Equation 4).

**Proof.** The Distance between two nodes of an HMN with parameters as in Corollary 6.1.2 is equivalent to the distance between the same nodes of a homogeneous network. Thus the numerator and denominator in Equation 8 is equivalent to the numerator and denominator in Equation 4.  $\Box$ 

**Definition 6.7** (HMN Clustering Co-efficient). Given  $\mathcal{L}$  and  $\mathcal{T}$ , the clustering coefficient (CCo) of a node,  $v^l$ , in a heterogeneous multi-layered network is defined as the fraction of triangles that the node  $v^l$  participates in, out of the total number of triangles possible through that node. That is,

$$CCo(v^l, \mathcal{L}, \mathcal{T}) = \frac{2 * |Triangles(x^k, y^l, v^l)|}{|N(v^l, \mathcal{L}, \mathcal{T})| * (|N(v^l, \mathcal{L}, \mathcal{T})| - 1)}$$

$$\tag{9}$$

where  $k, j \in \mathcal{L}, R_{VT}(x^k) \in \mathcal{T}, R_{VT}(y^j) \in \mathcal{T}$ 

. .

We can prove all the Lemmas and Corollary for clustering co-efficient in a similar manner as shown in the previous definitions.

#### 7. Experiment and Results

Experiments have been performed to show the ability of the proposed algorithm to generate heterogeneous multilayered networks with structural properties close to real-world networks. We try to generate a Twitter network and an European air transportation network by changing certain parameters of our algorithm. We consider a twitter dataset as it was an example of a real life network that can be better modeled as a HMN with heterogeneity in its layers. We choose the air transportation network as it is a popular multilayer network. Further experiments are performed to compare the degree distributions and centrality measures of the generated synthetic network with their real counterparts. We report only the

| Table | 2 |
|-------|---|
|-------|---|

Centrality measure and clustering co-efficient of EATN when compared to BINBALL and generated HMN Nodes Avg Triangles/Node Dataset Edges Degree Betweenness Avg CC Triangles EATN 0.02592 2 22683 62.62162 0.06027 0.45824

0.06147

0.00388

0.02093

0.0004

0.43264

0.00989

3.59262

0.01286

| 5 |
|---|
| 6 |
| 7 |
| 8 |
| 9 |

BINBALL

Generated HMN ( $\alpha = 1, \beta = 0, M = 2$ )

|                                                         | Table 3 |          |          |            |                    |           |                    |        |               |
|---------------------------------------------------------|---------|----------|----------|------------|--------------------|-----------|--------------------|--------|---------------|
|                                                         | Comp    | arison o | of Gener | ated netwo | rk with <b>Che</b> | mical net | works              |        |               |
| Datasets                                                | Nodes   | Edges    | Density  | Avg Degree | Assortativity      | Triangles | Avg Triangles/Node | Avg CC | Clique Number |
| ENZYMES-g272                                            | 44      | 156      | 0.165    | 3.55       | -0.05              | 47        | 1.07               | 0.23   | 2             |
| ENZYMES-g366                                            | 42      | 152      | 0.176    | 3.62       | -0.03              | 48        | 1.14               | 0.23   | 1             |
| Generated HMN ( $\alpha$ = 0.6, $\beta$ = 0.6, $M$ = 2) | 54      | 155      | 0.108    | 4.74       | -0.06              | 48        | 1.67               | 0.14   | 4             |
| ENZYMES-g392                                            | 48      | 178      | 0.158    | 3.71       | -0.02              | 74        | 1.54               | 0.26   | 1             |
| ENZYMES-g117                                            | 46      | 180      | 0.174    | 3.91       | -0.03              | 59        | 1.28               | 0.19   | 2             |
| Generated HMN ( $\alpha$ = 0.7, $\beta$ = 0.7, $M$ = 2) | 60      | 173      | 0.098    | 4.77       | -0.05              | 65        | 2.25               | 0.17   | 4             |
| ENZYMES-g526                                            | 58      | 220      | 0.133    | 3.79       | -0.02              | 66        | 1.14               | 0.21   | 1             |
| ENZYMES-g527                                            | 57      | 214      | 0.134    | 3.75       | -0.03              | 80        | 1.4                | 0.27   | 2             |
| Generated HMN ( $\alpha$ = 0.8, $\beta$ = 0.8, $M$ = 2) | 74      | 215      | 0.080    | 4.81       | -0.028             | 70        | 2.84               | 0.16   | 4             |
| ENZYMES-g349                                            | 64      | 236      | 0.117    | 3.69       | 0.00               | 78        | 1.22               | 0.24   | 2             |
| ENZYMES-g103                                            | 59      | 230      | 0.134    | 3.9        | -0.03              | 73        | 1.24               | 0.22   | 2             |
| Generated HMN ( $\alpha$ = 0.9, $\beta$ = 0.9, $M$ = 2) | 80      | 233      | 0.074    | 4.82       | -0.109             | 82        | 3.07               | 0.17   | 4             |
| ENZYMES-g295                                            | 123     | 278      | 0.037    | 2.26       | 0.00               | 6         | 0.05               | 0.01   | 1             |
| ENZYMES-g296                                            | 125     | 282      | 0.036    | 2.26       | 0.00               | 2         | 0.02               | 0.01   | 1             |
| Generated HMN ( $\alpha$ = 1.0, $\beta$ = 1.0, $M$ = 2) | 124     | 258      | 0.034    | 4.16       | -0.436             | 0         | 0.00               | 0.00   | 2             |

| Table 4                                    |                 |
|--------------------------------------------|-----------------|
| Comparison of Generated network with Biolo | ogical networks |

TT 1 1 4

| Datasets                                                | Nodes | Edges | Density | Avg Degree | Assortativity | Triangles | Avg Triangles/Node | Avg CC | Clique N |
|---------------------------------------------------------|-------|-------|---------|------------|---------------|-----------|--------------------|--------|----------|
| Bio-yeast-protein-inter                                 | 1846  | 4406  | 0.003   | 4.000      | -0.160        | 72        | 0.110              | 0.050  | 6        |
| Generated HMN ( $\alpha$ = 0.7, $\beta$ = 0.7, $M$ = 2) | 1978  | 5927  | 0.003   | 4.993      | -0.800        | 60        | 0.091              | 0.024  | 4        |
| bio-DM-HT                                               | 2989  | 4660  | 0.001   | 3.118      | -0.090        | 59        | 0.059              | 0.010  | 3        |
| Generated HMN ( $\alpha$ = 0.8, $\beta$ = 0.5, $M$ = 2) | 1508  | 4517  | 0.004   | 4.991      | -0.120        | 68        | 0.135              | 0.019  | 4        |
| bio-grid-mouse                                          | 1450  | 3272  | 0.003   | 4.000      | -0.150        | 120       | 0.248              | 0.030  | 7        |
| Generated HMN ( $\alpha$ = 0.9, $\beta$ = 0.7, $M$ = 3) | 1488  | 5939  | 0.005   | 6.983      | -0.190        | 110       | 0.222              | 0.028  | 5        |

degree distribution of the nodes of both the real and synthetic network in the case of a large graph like Twitter. For the smaller air transportation network we present a comparison of the degree distributions along with other structural properties like centrality measures and clustering co-efficients. In both the cases we include comparisons with existing generation algorithms.

It must be noted that we generated an HMN with two layers for representing the real Twitter network with parameter values  $L = \{1, 2\}, R_L(1) = R_L(2) = \{t_1, t_2\}$ . The HMN for modelling air transportation was generated using parameter values  $L = \{1, 2, ..., 37\}, R_L(i) = \{t_1\}$ . We can also generate homo-geneous, heterogeneous as well as multilayered networks using our proposed algorithm. In order to generate homogeneous networks we can set the values of  $L = \{1\}$  and  $R_L(1) = \{t_1\}$ . The heteroge-neous networks can be generated with  $L = \{1\}, R_L(1) = \{t_1, t_2, ..., t_k\}$  and multi-layered networks can be generated with  $L = \{1, 2, 3, ..., k\}, R_L(i) = \{t_1\}$  parameters. The *m* values for all the networks are positive samples generated from a normal distribution with a mean of 2 and a standard deviation of 1. The use of *m* values in this range generated degree distributions with a scale free property. 

91.1111

0.45455

Chatterjee and Kundu / HMN

| Datasets                                                                                  | Nodes                 | Edges                                   | Density                          | Avg Degree                            | Assortativity                                    | Triangles                    | Avg Triangles/Node                                                     | Avg CC                               | Clique I |
|-------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------|----------------------------------|---------------------------------------|--------------------------------------------------|------------------------------|------------------------------------------------------------------------|--------------------------------------|----------|
| cryg2500                                                                                  | 2500                  | 9849                                    | 0.003                            | 7.000                                 | 0.600                                            | 400                          | 0.400                                                                  | 0.010                                | 4        |
| Watt-2                                                                                    | 1856                  | 9694                                    | 0.006                            | 10.000                                | -0.070                                           | 838                          | 0.930                                                                  | 0.020                                | 4        |
| Generated HMN ( $\alpha$ = 1.0, $\beta$ = 0.9, $M$ = 3)                                   | 2441                  | 9751                                    | 0.003                            | 7.989                                 | 0.020                                            | 708                          | 0.870                                                                  | 0.015                                | 4        |
| PTC-MR                                                                                    | 4915                  | 10108                                   | 0.001                            | 4.000                                 | -0.300                                           | 180                          | 0.109                                                                  | 0.000                                | 3        |
| PTC-FM                                                                                    | 4925                  | 10110                                   | 0.001                            | 4.000                                 | -0.300                                           | 168                          | 0.102                                                                  | 0.000                                | 3        |
| Generated HMN ( $\alpha$ = 1.0, $\beta$ = 0.9, $M$ = 3)                                   | 4059                  | 10236                                   | 0.001                            | 5.044                                 | -0.252                                           | 203                          | 0.150                                                                  | 0.000                                | 2        |
| M80PI-n1                                                                                  | 4028                  | 8066                                    | 0.001                            | 4.000                                 | -0.140                                           | 0                            | 0.000                                                                  | 0.000                                | 2        |
| S80PI-n1                                                                                  | 4028                  | 8066                                    | 0.001                            | 4.000                                 | -0.140                                           | 0                            | 0.000                                                                  | 0.000                                | 2        |
| Generated HMN ( $\alpha$ = 0.5, $\beta$ = 0.5, M = 2)                                     | 3909                  | 7662                                    | 0.001                            | 3.920                                 | -0.168                                           | 0                            | 0.000                                                                  | 0.000                                | 2        |
| Mutag                                                                                     | 3371                  | 7442                                    | 0.001                            | 4.000                                 | -0.260                                           | 0                            | 0.000                                                                  | 0.000                                | 2        |
| Generated HMN ( $\alpha$ = 0.5, $\beta$ = 0.5, $M$ = 2)                                   | 3822                  | 7338                                    | 0.001                            | 3.840                                 | -0.154                                           | 0                            | 0.000                                                                  | 0.000                                | 2        |
| bn-mouse-kasthuri-graph-v4                                                                | 1029                  | 1700                                    | 0.003                            | 3.000                                 | -0.220                                           | 0                            | 0.000                                                                  | 0.000                                | 7        |
| Generated HMN ( $\alpha$ = 0.8, $\beta$ = 0.5, M = 2)                                     | 807                   | 1578                                    | 0.005                            | 3.911                                 | -0.259                                           | 0                            | 0.000                                                                  | 0.000                                | 2        |
| bibd-15-3                                                                                 | 455                   | 1364                                    | 0.013                            | 5.000                                 | -0.630                                           | 166                          | 1.094                                                                  | 0.010                                | 4        |
| Generated HMN ( $\alpha$ = 1.0, $\beta$ = 0.0, $M$ = 3)                                   | 481                   | 1436                                    | 0.012                            | 5.971                                 | -0.632                                           | 180                          | 1.123                                                                  | 0.047                                | 4        |
| lpi-bgdbg1                                                                                | 629                   | 1579                                    | 0.008                            | 5.000                                 | -0.040                                           | 159                          | 0.658                                                                  | 0.010                                | 3        |
| Generated HMN ( $\alpha$ = 1.0, $\beta$ = 0.0, $M$ = 3)                                   | 519                   | 1550                                    | 0.012                            | 5.973                                 | -0.015                                           | 143                          | 0.827                                                                  | 0.027                                | 4        |
| la-crime-moreno                                                                           | 829                   | 1474                                    | 0.004                            | 3.000                                 | -0.160                                           | 57                           | 0.106                                                                  | 0.010                                | 3        |
| Generated HMN ( $\alpha$ = 1.0, $\beta$ = 0.0, M = 2)                                     | 763                   | 1443                                    | 0.005                            | 3.782                                 | -0.230                                           | 0                            | 0.000                                                                  | 0.010                                | 2        |
| Combod<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                        |                       | be be been been been been been been bee | 16                               | bý<br>Degree                          | 34° 36                                           | 19-<br>5000000<br>19-<br>19- | U Dyre                                                                 | 35                                   | 12*      |
| Barabási-Albert HMNG     Erdős-Rényi - tweet-tweet (l     G(n,m) Random - Internet as a G | _ayer 1) TWI<br>Graph | п                                       | Barabási<br>Erdős-Re<br>G(n,m) F | -Albert HM<br>ényi use<br>tandom Inte | NG<br>er-user (Layer 2) TWIT<br>ernet as a Graph | T E                          | Barabási-Albert — HMNG<br>irdős-Rényi user-t<br>G(n,m) Random — Intern | i<br>weet (Layer 12<br>et as a Graph | 2) TWITT |

Fig. 5. Comparing the smoothed (using regression) degree distribution of the different layers of the TWITT network with our synthetic network and other standard networks on a logarithmic scale.

#### 7.1. A real world dataset

We have used a Twitter dataset [40] (referred to here as TWITT) and represented it in the format as shown in Figure 2. We consider a twitter dataset as it was an example of a real life network that can be better modelled as a HMN with heterogenity in its layers. A tweet can be easily classified as aggressive or non-aggressive based on a standard language classification model. The Twitter network has 20125 nodes and 3938046 edges in the tweet layer (layer 1), 35936 nodes and 60824 edges in the user layer (layer 2) and 93123 edges in the user-tweet layer (interlayer connection). 

#### 7.2. Modelling TWITT with existing generation models

In our literature survey we have not found existing methods for generating a generic heterogeneous and multi-layered network so we compare the structural properties of the HMN generated by Algorithms 1 and 2 (referred to as HMNG here) with the existing homogeneous models. The homogeneous models used are the Barabási–Albert (BA) model [3], Erdos–Rènyi (ER) model [33], Internet as a graph [32], 

2.2

and G(n,m) Random graph. In each of the Figures 5a, 5b, 5c, we have compared the degree distribution of the largest component of different layers of the TWITT network with graphs generated from the afore-mentioned models as well as proposed synthetic network. We have generated each of these networks with number of nodes ranging from 10000 all the way to 40000 and reported the degree distribution which is most comparable to the TWITT network. For the ER model we use a p value of 0.1 - 0.9 and report the best results. For the BA model we vary m from 2-5 and report the best results (we donot use a higher *m* value as it does not produce comparable results). As we can see from the Figures 5a, 5b and 5c our HMNG is very close in replicating the degree distribution of the actual TWITT dataset in all the layers when compared to other modelling algorithms. For modelling the tweet-tweet and user-user layer with our HMNG we use 20000 nodes with  $\alpha = \beta = 0.5$  and m = 3, we use m = 4 for the user tweet layer. The plots we use in Figure 5 are regression plots with log scale to clearly distinguish between the degree distribution of each model. It must be noted our proposed network does not have any node having a degree less than the thresholds defined in M, similar to a BA network. When we compare our results with other models we see that our model is consistent across the layers which shed light on the generic nature of our model. We have considered the interlayer as well as the intralayer degree of a node for preferential attachment, and from the Figures 5a - 5c it is evident that it well describes a real-world network. 

2.0

#### 19 7.3. Generating existing networks

We have successfully shown the generation capabilities of Algorithm 1 (referred to here as HMNG) for generating large heterogeneous networks with more than 10000 nodes. To demonstrate the capabilities 2.2 2.2 of our proposed algorithm for generating smaller networks we have tried to model the smaller European air transportation network [15] abbreviated as EATN. The air transportation network is also a multiplex network having 37 different layers with each one of the layer representing a different airlines of Europe. To compare our results with existing models we have taken the BINBALL [5] generative model designed especially for modelling the multiplex air transportation network. We have generated 10 layers of the air transportation network using both BINBALL and our proposed algorithm and compared the average centrality measures of the air transportation network with both the generated networks. We generate our network with  $\alpha$  value of 1.0, a  $\beta$  value of 0.0, M = 2 and L = 10 with an average of 67 nodes in a layer. For BINBALL we use the parameters as mentioned in the paper. The results are shown in Table 2. It must be noted that the results presented in Table 2 are averaged over the nodes of each of the layers in the multiplex network. The column Triangles/node denotes the average number of triangles any node participates in averaged over all the layers. In addition to the centrality measures, we compare the degree distribution of 2 layers sampled randomly from the EATN with randomly sampled layers generated from BINBALL and HMNG as shown in Figure 6 (our proposed network is referred to as HMNG). In Figure 6(a) we compare the 2nd and 5th layers of the air transportation network with the networks generated from BINBALL and our network. In Figure 6(a) we compare the 6th and and 24th layers of the air transportation network with the networks generated from BINBALL and our network. We compare the 27th and and 13th layers of the air transportation network with the generated networks in Figure 6(c). Finally, in Figure 6(d) we compare the 2nd and 6th layers of the air transportation network with the networks generated from BINBALL and our network. The parameters of our generated networks are according to Table 2. 

The air transportation and Twitter networks alone do not represent the existing breadth of networks in the literature. To show the generalization capability of our proposed algorithm, we have tried to

generate networks belonging to different domains like small molecule datasets (PTC-MR, PTC-FM), biological networks (bio-DM-HT, bio-grid-mouse, Bio-yeast-protein-inter), networks of nitroaromatic compounds (Mutag), crystal growth eigenmode graphs (cryg2500), combinatorial problems (bibd-15-3), computational fluid dynamics graph (Watt-2), linear programming problems (lpi-bgdbg1), eigenvalue model reduction problems (M80PI-n1, S80PI-n1), chemical datasets (ENZYMES-g272, g366, g392, g117, g526, g527, g349, g103, g295, g296), brain networks (bn-mouse-kasthuri-graph-v4) and even crime dataset (Ia-crime-moreno). We have collected the networks from [83]. Networks belonging to different domains have different structural properties such as degree, density, centrality measure, number of triangles and assortativity, etc. We have compared our generated network with the existing networks on such structural parameters. The results are shown in Table 3, 4, 5. We have considered other structural measures apart from centrality measures. This includes density, average degree, assortativity, triangle counts, clustering co-efficient, and the number of max cliques. It must be noted that in all the tables, CC denotes clustering coefficient.

Table 3 models Chemical Networks using Algorithm 1 with varying parameters. Except ENZYMES-295 and g296 all other networks are single layer and hence the value of *L* for them are kept 1. For ENZYMES-g272 and g366, we use  $\alpha = \beta = 0.6$ , and M = 2. ENZYMES-g392 and g117 use  $\alpha = \beta =$ 0.7, while ENZYMES-526 and g527 use  $\alpha = \beta = 0.8$ , both with M = 2. For ENZYMES-349 and g103,  $\alpha = \beta = 0.9$  is used. All single-layer networks have arbitrary  $R_L$  values. ENZYMES-295 and g296 are modeled with  $\alpha = \beta = 1.0$ , M = 2, and L = 2, incorporating inter-layer connections, which inherently have zero triangles. In this case  $R_L$  is a function that assigns nodes to a layer uniformly randomly.

In Table 4, we model biological networks with varying parameters. For the Bio-yeast-protein-inter network, we use  $\alpha = \beta = 0.7$  and M = 2. The bio-grid-mouse network is modeled with  $\alpha = 0.9, \beta = 0.7$ and M = 3. For the bio-DM-HT network, we use  $\alpha = 0.8, \beta = 0.5$ , and M = 2. All networks have L = 1with arbitrary  $R_L$ . Increasing M by 1 increases edge count while maintaining other network properties.

Table 5 compares various network gneerated by our methods with the network from other domains. Computational graphs (cryg2500, Watt-2) and molecule datasets (PTC-MR, PTC-FM) are generated with  $\alpha = 1.0, \beta = 0.9, M = 3$ , and L = 1. Graphs used in eigenvalue model reduction problems (M80PI-n1, S80PI-n1) and nitroaromatic compound (Mutag) problem is obtained by using  $\alpha = \beta = 0.5$ , M = 2, and L = 2, incorporating inter layer connections. Brain networks (bn-mouse-kasthuri-graph-v4) are modeled with the same parameters, totaling 807 nodes across both layers. Combinatorial problem networks (bibd-15-3) and linear programming networks (lpi-bgdbg1) use  $\alpha = 1.0, \beta = 0.0, M = 3$ , and L = 1. Crime dataset networks (la-crime-moreno) are represented with  $\alpha = 1.0, \beta = 0.0, M = 2$ , and L = 1. The total node counts for all networks are reported in Table 5. In all these cases where the number of layers L = 2,  $R_L$  assigns nodes to a layer uniformly randomly. 

One may note that the network generation algorithm proposed in this paper is designed to have unknown node-correspondence (UNC) method [96] of generation that does not use the number of nodes and edges as identity of a network. The reason behind this is that we wanted to focus more on generating a network with same structural properties with a comparable number of nodes. It must also be noted that there is a randomness in the selection of neighbours of a node (i.e. we use a uniform distribution for selecting candidates with the same degree) which results in non-determinism, i.e. network properties may vary slightly even with the same parameter values.

2.0

2.2

2.2



Fig. 6. The figures compare the degree distributions of randomly selected layers from EATN with networks generated from BINBALL and HMNG.

#### 8. Discussion and Conclusion

In this paper, we introduced a new model Heterogeneous Multilayered Network (HMN), which is a generalized model of network capable of representing any complex networks of type homogeneous, het-erogeneous, multilayer and their combinations. We also defined different structural measures on HMN. We have proved that the set of all HMNs is a superset of the set of all homogeneous, heterogeneous, and multi-layered networks. In addition, a parameterized algorithm is presented to generate an HMN synthet-ically. We show that the algorithm is able to generate a homogeneous, heterogeneous, and multilayered network by changing parameter values. Through experiments, we show that all networks generated by this algorithm have scale-free properties.

Limitations: In this work we only provided the generalized definitions of certain structural measures like degree centrality, betweeness centrality and closeness centrality. However, in network science there are many different structural properties defined for homogeneous, heterogeneous and multilayer graphs. This would be a good study to develop corresponding definitions for HMN as well. Some of these mea-sure can be clustering co-efficient, triangles and cliques for HMN. Regarding the generation algorithm HMNG, it may not generate certain networks as it has limited number of parameters. Hence, it could only able to generate networks that is UNC with comparable node and edge counts. A better algorithm  leveraging the generative capabilities of new edge GNN can be used in the future to generate synthetic
 graphs which can simultaneously match the numbers of nodes and edges and other structural properties
 of the network. Furthermore, the intra layer networks generated by our algorithm follow a scale free
 property now. An extension can be made to generate specific degree distribution in the future. Finally, it

5 is of interest to find the theoretical bounds for the networks generated by our algorithm.

Despite the aforementioned limitations, the network generated by the algorithm is generalized and can be tweaked by changing the parameter values for applications in certain areas where networks largely follow a scale-free property. These synthetic networks will open the opportunity to research with HMNs that is otherwise difficult to conduct due to the unavailability of the data set. With the availability of the services (e.g., Fediverse) on ActivityPub protocol, we expect the real-world HMN data will be available in near future. Although heterogeneous network data sets are available for research, to the best of our knowledge, there is no algorithm for generating a heterogeneous network and the proposed algorithm would encourage research with heterogeneous networks as well. Note that the proposed algorithm can only be used to generate an undirected HMN. However, we believe that with minor changes, we can generate directed HMNs as well. An important future research is to show that our proposed definition of HMN holds for a dynamic network or a signed network. 

Finally, with this work, we tried to open a new avenue of research with complex networks. While the theories developed will help further theoretical analysis and provide the basis of application, the

## synthetic network generation algorithm will provide the opportunity to develop applications with HMN.

#### References

- H.T. Ali, S. Liu, Y. Yilmaz, R. Couillet, I. Rajapakse and A. Hero, Latent Heterogeneous Multilayer Community Detection, in: *ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, 2019, pp. 8142–8146. doi:10.1109/ICASSP.2019.8683574.
- [2] F. An, X. Gao, N. Liu, Z. Wang, Y. Li, J. Gao and H.E. Stanley, Cluster-based topological features of nodes in a multiplex network—from a network of networks perspective, *New Journal of Physics* 21(10) (2019), 103014. doi:10.1088/1367-2630/ab461c.
- [3] A.-L. Barabási and R. Albert, Emergence of Scaling in Random Networks, *Science* 286(5439) (1999), 509–512. doi:10.1126/science.286.5439.509.
- [4] M. Barigozzi, G. Fagiolo and D. Garlaschelli, Multinetwork of international trade: A commodity-specific analysis, *Phys. Rev. E* 81 (2010), 046104. doi:10.1103/PhysRevE.81.046104.
- [5] P. Basu, R. Sundaram and M. Dippel, Multiplex Networks: A Generative Model and Algorithmic Complexity, in: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, ASONAM '15, ACM, New York, 2015, pp. 456–463–. ISBN 9781450338547. doi:10.1145/2808797.2808900.
- [6] M. Bazzi, L.G.S. Jeub, A. Arenas, S.D. Howison and M.A. Porter, A framework for the construction of generative models for mesoscale structure in multilayer networks, *Phys. Rev. Research* 2(2) (2020), 023100.
   <sup>35</sup> doi:10.1103/PhysRevResearch.2.023100.
- [7] M. Berlingerio, M. Coscia and F. Giannotti, Finding and Characterizing Communities in Multidimensional Networks, in: 2011 International Conference on Advances in Social Networks Analysis and Mining, Kaohsiung, Taiwan, 2011, pp. 490–494. doi:10.1109/ASONAM.2011.104.
   [8] M. D. Lie, J. E. C. Lie, J. D. C. Lie, J. M. C. Lie, J. Li
- [8] M. Berlingerio, F. Pinelli and F. Calabrese, ABACUS: frequent pAttern mining-BAsed Community discovery in mUltidi mensional networkS, *Data Mining and Knowledge Discovery* 27(3) (2013), 294–320. doi:10.1007/s10618-013-0331-0.
  - [9] G. Bianconi, Epidemic spreading and bond percolation on multilayer networks, *Journal of Statistical Mechanics: Theory and Experiment* **2017**(3) (2017), 034001. doi:10.1088/1742-5468/aa5fd8.
- 41
   [10] G. Bianconi, *Multilayer Networks: Structure and Function*, Oxford University Press, Oxford, 2018, p. 416. ISBN 9780198753919. doi:10.1093/oso/9780198753919.001.0001.
- [11] S. Boccaletti, G. Bianconi, R. Criado, C.I. del Genio, J. Gómez-Gardeñes, M. Romance, I. Sendiña-Nadal, Z. Wang and
   M. Zanin, The structure and dynamics of multilayer networks, *Physics Reports* 544(1) (2014), 1–122, The structure and dynamics of multilayer networks. doi:https://doi.org/10.1016/j.physrep.2014.07.001.
- [12] X. Bresson and T. Laurent, Residual Gated Graph ConvNets, 2018. https://openreview.net/forum?id=HyXBcYg0b.

2.0

2.2

| <ol> <li>[13] M. Brockschmidt, GNN-FiLM: Graph Neural Networks with Feature-Wise Linear Modulation, in: <i>Proceedings of the</i> 37th International Conference on Machine Learning, ICML'20, MLR Oce, 2020.</li> <li>[24] S. Brody, U. Alon and E. Yahaw, How Attentive are Graph Attention Networks?, in: <i>International Conference on Learning Representations</i>, 2022. https://pearnetwice.uk/fumm/full=172xinxy7C1.</li> <li>[35] A. Cardillo, J. Gómez-Gandeles, M. Zamin, M. Romance, D. Papo, Ed. Pava and S. Boccaletti, Morgene of network features from multiplexity. <i>Scientife Report</i>, 31() 2013, 1344. doi:10.1088/rspD134.</li> <li>[36] A. Cardillo, M. Zanin, J. Gomez-Gandeles, M. Romance, A.J. García del Anto and S. Boccaletti, Modeling the multi-layer nature of the European At Transport Network. <i>Exciling: and passenges res</i>. Scholaring under random failures. <i>The European Physical Journal Special Topics</i>, 218(1) (2013), 23–3. doi:10.1146/09548213103 (2019), 035006.</li> <li>[36] G. Coutons and F. Fu, Co-contagion diffusion on multilayer networks, <i>Applied Network Science</i> 4(1) (2019), 78. doi:10.1007/s4110903).1148. doi:10.0106/8000-1153000000-2.</li> <li>[37] HC.H. Chang and F. Fu, Co-contagion diffusion on multilayer networks, <i>Applied Network Science</i> 4(1) (2019), 78. doi:10.1007/s4110903).1148. doi:10.0106/8010-01350000002.</li> <li>[38] HC.H. Chang, M.C. Cheng and TW. Chan, EduXs: multilayer relevacium al spectral Properties, in: <i>Thereonetical Networks</i>, <i>Acaras, et al.</i>, Springer International Physics 17(7) (2015), 073029, doi:10.1088/1367-12630177/073029.</li> <li>[39] E. Cozzo, G. E. d'Arnula, F.A. Cadrigues and Y. Moreno, Multilayer Networks: Merics and Spectral Properties, in: <i>Interconnectal Networks</i>, <i>Appl. Sci. Sci. Networks</i>, <i>Appl. 74</i>, doi:10.10188/1367-12630177/03029.</li> <li>[31] G. Cozzo, G. E. d'Arnula, F.A. Cadrigues and Y. Moreno, A. Multilayer Networks: <i>Phys. Rev. E</i> 89 (2011). 1031/978/844-89.002817.</li> <li>[32] F. Darabi Sahnch and C. Scoglio, Compet</li></ol>                                                                                                                                         |    |       |                                                                                                                                                                                                                                                   |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| <ul> <li>[14] S. Brody, U. Anon B. Yaku, Hungzhopenceview antiform Rich 2 Jamins. <i>J Nature</i> 30, 101 (2014).</li> <li>[15] A. Carati, and E. Yaku, Hungzhopenceview antiform Rich 2 Jamins V (1).</li> <li>[16] A. Caratillo, M. Zanin, J. Kowa Mantikwa et Graph Attentition Networks 7, In: International Conference on Learning Representations, 2022. https://openceview.net/form/Rich 2 Jamins. J. Garchi and S. Baccaletti, Emergence of network 4.</li> <li>[16] A. Caratillo, M. Zanin, J. Komano, K. Mamano, A. J. Garchi del Arno and S. Baccaletti, Emergence of network 4.</li> <li>[16] A. Caratillo, M. Zanin, J. Gorner-Cardeñes, M. Romanoc, A.J. Garchi del Arno and S. Baccaletti, Modeling the multi-<br/>greg nature of the European Air Transport Networks: Resiliance and passengers re-scheduling under random failures, <i>The European Physical Logical Equips</i> 215(1) (2013), 23–33. doi:10.1140/epjst/22013.01712.8.</li> <li>[17] G. Carcetti and F. Fu, Co-contagion diffusion on multilayer networks, <i>Applied Network Science</i> 4(1) (2019), 78. doi:10.1007/s1109-019-0176-6.</li> <li>[19] LJ. Chang, JC. Deng and TW. Chan, EduXx: multilayer educational services platforms. <i>Computers &amp; Education</i> 41(1) (2003), 1–18. doi:https://doi.org/10.1016/S00460-1315(03)00022.</li> <li>[20] E. Cozzo, M. Kivelk, M.D. Domenicio, A. Sole-Ribalta, A. Arenas, S. Gómez, M.A. Porter and Y. Moreno, Structure of triadic relations in multiplex networks. <i>New Journal of Physics</i> 17(7) (2015). 073029. doi:10.1088/1367-263040717/073029.</li> <li>[21] E. Cozzo, G.F. de Arruda, F.A. Rodrigues and Y. Moreno, <i>Multilayer Networks: Metrics and Spectral Properties</i>, in: 11. <i>Interconnected Networks</i>, <i>A. A.</i> Rodrigues and Y. Moreno, <i>Multilayer Networks: Metrics and Spectral Properties</i>, in: 11. <i>Interconnected Networks</i>, <i>Phys. Rev. E</i> 89 (2017), 042217. doi:10.1103/PhysRevES.50.042317.</li> <li>[22] G. Carati, K. K. Kodrigues and Y. Moreno, <i>Multilayer Networks: Metrics and Spectral Properties</i>, in: 11. <i>Interconnected Netwo</i></li></ul>                                                                                                                                | 1  | [13]  | M. Brockschmidt, GNN-FiLM: Graph Neural Networks with Feature-Wise Linear Modulation, in: <i>Proceedings of the</i>                                                                                                                               | 1  |
| <ul> <li>[14] J. B. K. J. S. Akada, and S. K. K.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2  | [1/]  | 5/In International Conference on Machine Learning, ICML 20, JMLK.01g, 2020.<br>S. Brody, U. Alon and F. Vahay, How Attentive are Graph Attention Networks? in: International Conference on Learn                                                  | 2  |
| <ol> <li>A. Cardillo, J. Gomez-Gardeñes, M. Zanin, M. Romanee, D. Papo, Ed. Poro and S. Boccaletti, Energence of network features from multiplexity. <i>Scientific Reports</i> 31 (2013), 1344. doi:10.1038/srep10144.</li> <li>A. Cardillo, M. Zanin, J. Gönez-Gardeñes, M. Romanee, A.J. García del Amor and S. Boccaletti, Energence ar Transport Network: Resilience and passengers: res-scheduling under random fulnese, <i>The European Physical Longics</i> 215(1) (2013), 23-33. doi:10.1140/epjst/c2013.01712.8.</li> <li>G. Cancetti and F. Fu, Cos-contagion diffusion on multilayer networks, <i>New Journal of Physics</i> 21(3) (2019), 035006. doi:10.1088/1367-2650040606.</li> <li>H. C.H. Chang and F. Fu, Cos-contagion diffusion on multilayer networks, <i>Applied Network Science</i> 4(1) (2019), 78. doi:10.1007/s11109-019-0176-6.</li> <li>L. Chang, JC. Deng and TW. Chan, EddXs: multilayer educational services platforms, <i>Computers &amp; Echocstine</i> 4(1) (2003), 1–18. doi:https://doi.org/10.1016/S0160-1315(03)00002.</li> <li>E. Corzo, M. Kreel, M.D. Domenio, A. Solef Rubala, A. Arenas, S. Gómez, M.A. Porter and Y. Moreno, Struetor and V. Moreno, Multilayer Networks, <i>Merica and Systemal Properites</i>, in: 17. Interconvected Networks, A.R. Reifficies randology and plant services platforms, <i>Computers</i>, 46 (2017)0703029.</li> <li>F. Corzo, G.F. de Arruka, F.A. Rubirgues and Y. Moreno, Multilayer Networks, <i>Merica and Systemal Properites</i>, in: 17. Interconvected Networks, <i>Appl. Computities</i>, epistics parading over arbitrary multilayer networks, <i>Phys. Rev. E</i> 89 (2014).002317. doi:10.1109/ThysRevE.8002817.</li> <li>G. G. de Arruka, F.A. Rubirgues and Y. Moreno, Disease Localization in Multilayer Networks, <i>Phys. Rev. E</i> 70 (7), 01014, doi:10.0109/ThysRevE.7010144. doi:10.1081/1547572600.ad817.</li> <li>G. F. de Arruka, P. Corzo, T.A. Robirgues and Y. Moreno, Disease Localization in Multilayer Networks, <i>Phys. Rev. E</i> 70 (7), 70104, 40101007/PhysRevE.7010104. (2013).0140217. doi:10.101697984evE.3040422.</li> <l< td=""><td>3</td><td>[14]</td><td>ing Representations 2022 https://openreview.pet/forum?id=F72ximsx7C1</td><td>3</td></l<></ol>                  | 3  | [14]  | ing Representations 2022 https://openreview.pet/forum?id=F72ximsx7C1                                                                                                                                                                              | 3  |
| <ul> <li>featnes from multiplexity. <i>Scientific Reports</i> 3(1) (2013), 1344. doi:10.1038/sep01344.</li> <li>Gaurdillo, M. Zamin, J. Gómez-Gardenés, M. Romane, A.J. Carci, del Anno and S. Boccaletti, Modeling the multiplex networks and the European Air Transport Network: Resilience and passengers re-scheduling under random failures. <i>The European Physical Journal Societal Topics</i> 23(1) (2013), 23–33. doi:10.1104/pcjik2013-01712-8.</li> <li>G. Cencetti and F. Battiston, Diffusive behavior of multiplex networks, <i>Nev Journal of Physics</i> 21(3) (2019), 035006.</li> <li>G. Cencetti and F. Battiston, Diffusive behavior of multiplex networks, <i>Applied Network Science</i> 4(1) (2019), 78.</li> <li>G. Cancetti and F. Battiston, Diffusive behavior of multiplex networks, <i>Applied Network Science</i> 4(1) (2019), 78.</li> <li>L. J. Chang, JC. Yang, YC. Deng and TW. Chan, FaltXs: multilayer educational services platforms, <i>Computers</i> 4. <i>Education</i> 41(1) (2003), 1–18. doi:10.1068/3061-115(300)0002-2.</li> <li>E. Cozzo, M. Kivell, M.D. Domenico, A. Solé-Ribatta, A. Arenas, S. Gómez, M.A. Porter and Y. Moreno, Strueture of tradic relations in multiplex networks, <i>New Journal of Physics</i> 17(7) (2015), 073020. doi:10.1088/1367-2630017/1073029.</li> <li>F. Cozzo, G. F. de Arnada, F.A. Rodrigues and Y. Moreno, <i>Multipleyr Networks: Metrics and Spectral Properties</i>, in: <i>Interconnected Networks</i>, A. Garas, ed., Springer International Publishing, Cham, 2016, pp. 17–35. ISBN 978-5-319. 23947-7. doi:10.1013/9718948e-E.8906217.</li> <li>G. G. F. de Arnada, F.C. Ozzo, G. P. Beixoto, F.A. Rodrigues and Y. Moreno, Disease Localization in Multilayer Networks, <i>Phys. Rev. E</i> 89 (2014), 062217. doi:10.1103/PhysRevE.8906217.</li> <li>G. F. de Arnada, F. Cozzo, T.P. Peixoto, F.A. Rodrigues and Y. Moreno, Disease Localization in Multilayer Networks, <i>Phys. Rev. S</i> 70 (2017), 061101. doi:10.10399/189462-5030ad017.</li> <li>G. C. De Bacco, E.A. Power, D.B. Larenore and C. Moore, Community detection, link</li></ul>                                                                                                                                                  | 4  | [15]  | A. Cardillo, J. Gómez-Gardeñes, M. Zanin, M. Romance, D. Papo, F.d. Pozo and S. Boccaletti, Emergence of network                                                                                                                                  | 4  |
| <ul> <li>[16] A. Cardillo, M. Zanin, J. Gómez-Gardeñes, M. Rorrance, A. J. García del Amo and S. Boccatelli, Modeling the multi-dyne nature of the European Air Transport Network: Resilicen can passengers re-scheduling under random failures. <i>The European Physical Journal Special Topics</i> 215(1) (2013), 23–33. doi:10.1140/epis/e2013.0712.8.</li> <li>[17] G. Cancetti and F. Battiston, Diffusive behavior of multiplex networks, <i>New Journal of Physics</i> 21(3) (2019), 035006. doi:10.1008/1367-2630/ab060e.</li> <li>[18] HC.H. Chang and F. Fu, Co-contagion diffusion on multilayer networks, <i>Applied Network Science</i> 4(1) (2019), 78. doi:10.1007/s41109-019-0176-6.</li> <li>[19] LJ. Chang, JC. Yang, YC. Deng and TW. Chan, FduXs: multilayer educational services platforms, <i>Computers &amp; Education</i> 41(1) (2003), 1–18. doi:https://doi.org/10.1016/S0360-1315(03)00002-2.</li> <li>[20] F. Cozzo, M. Kivela, M.D. Domenico, A. Solf-Kinalta, A. Arensa, S. Gómez, M.A. Porter and Y. Moreno, Structure of traidic relations in multiplex networks, <i>New Journal of Physics</i> 17(7) (2015), 073029. doi:10.1088/1367-10209/001/71073029.</li> <li>[21] E. Cozzo, G. H. de Arnda, F.A. Rodrigues and Y. Moreno, <i>Multilayer Networks: Meetics and Spectral Properties</i>, in: <i>International Publishing</i>, Cham, 2016, pp. 17–35. ISBN 978-3-319-230477-40:10.1007/978-37-319-230477. doi:10.1007/978-37-319-230477. doi:10.1007/978-37-319-230477. doi:10.1007/978-37-83/9062817.</li> <li>[22] G. F. de Arnda, E. Cozzo, T. P. Rodrigues and Y. Moreno, Disease Localization in Multilayer Networks, <i>Phys. Rev. E</i> 89 (2014), 062817. doi:10.1103/PhysRevt.89/062817.</li> <li>[23] G. F. de Arnda, E. Cozzo, T. R. Arodrigues and Y. Moreno, Disparse Localization in Multilayer Networks, <i>Phys. Rev. X</i> 70(2017), 01014. doi:10.1103/PhysRevt.75.010144.</li> <li>[24] G. F. de Arnda, L. Cozzo, N. R. Arodrigues and Y. Moreno, Disparse Localization in Multilayer Networks, <i>Phys. Rev. X</i> 3 (2013), 04102. doi:10.1108/PhysRevt.8002317.</li> <li< td=""><td>5</td><td>[]</td><td>features from multiplexity, <i>Scientific Reports</i> <b>3</b>(1) (2013), 1344. doi:10.1038/srep01344.</td><td>5</td></li<></ul> | 5  | []    | features from multiplexity, <i>Scientific Reports</i> <b>3</b> (1) (2013), 1344. doi:10.1038/srep01344.                                                                                                                                           | 5  |
| <ul> <li>layer nature of the European Air Transport Network: Resilience and passengers re-scheduling under random failures, <i>The European Physical Journal Stepcial</i> Topics 21(3) (2013), 23–33. doi:10.1106/s1057-6300/ab060.</li> <li>G. Cencetti and F. Battiston, Diffusive behavior of multiplex networks, <i>New Journal of Physics</i> 21(3) (2019), 035006. doi:10.1008/s1109-019-0176-6.</li> <li>HC.H. Chang and F. Fu. Co-contagion diffusion on multilayer networks, <i>Applied Network Science</i> 4(1) (2019), 78. doi:10.1007/s110/0019-0119-011010105/03160-1351(03)00002-2.</li> <li>LJ. Chang, JC. Yang, YC. Deng and TW. Chan, EduXs: multilayer educational services platforms, <i>Computers &amp; Education</i> 41(1) (2003). 1-18. doi:https://doi.org/10.1016/93160-1351(03)00002-2.</li> <li>E. Cozzo, M. Kivelä, M.D. Domenico, A. Solé-Ribalta, A. Arenas, S. Gómez, M.A. Potret and Y. Moreno, Structure of triadic relations in multiplex networks, <i>New Journal of Physics</i> 17(7) (2015), 073029. doi:10.1088/1367-12009/17/0073029.</li> <li>E. Cozzo, C. &amp; Arnda, F.A. Rodrigues and Y. Moreno, <i>Multilayer Networks: Merics and Spectral Properties</i>, in: 12. <i>Direconnected Networks</i>. A. Gaas, ed., Springer International Publishing, Cham, 2016, pp. 17–35. ISBN 978-3-319-23947-7 (2014), 062817. doi:10.1100/PhysRevE.89.002817.</li> <li>Cal G. J. &amp; Arnda, E. Cozzo, P.A. Patevots, F.A. Rodrigues and Y. Moreno, Disease Localization in Multilayer Networks, <i>Phys. Rev. E</i> 89 (2014), 062817. doi:10.1103/PhysRevE.89.002817.</li> <li>Ca Bacco, E.A. Cozzo, F.A. Arodrigues and Y. Moreno, A polynomial eigenvalue approach for multiplex networks, <i>Phys. Rev. E</i> 89 (2017), 042317. doi:10.1103/PhysRevE.89.002817.</li> <li>C. De Bacco, E.A. Powetr, D.B. Larermore and C. Moreno, Maytonnial eigenvalue approach for multiplex networks, <i>Phys. Rev. E</i> 95 (2017), 042317. doi:10.1103/PhysRevE.89.002817.</li> <li>D. De Domenico, A. Sole-Ribalta, E. Cozzo, N. Kuvela, Y. Moreno, A. Potynonial eigenvalue approach for multiplex networks,</li></ul>                                                                                                                                                | 6  | [16]  | A. Cardillo, M. Zanin, J. Gómez-Gardeñes, M. Romance, A.J. García del Amo and S. Boccaletti, Modeling the multi-                                                                                                                                  | 6  |
| <ul> <li>The European Physical Journal Special Topics 215(1) (2013), 25–33. doi:10.1140/epis/ec.0130712-8.</li> <li>[17] G. Cencetti and F. Battiston, Diffusive behavior of multiplex networks, New Journal of Physics 21(3) (2019), 035006.</li> <li>[18] HC.H. Chang and F. Fu, Co-contagion diffusion on multilayer networks, Applied Network Science 4(1) (2019), 78.</li> <li>[19] LJ. Chang, JC. Wang, YC. Deng and TW. Chan, EduXs: multilayer educational services platforms, Computers &amp; Education 41(1) (2003), 1–18. doi:https://doi.org/10.1016/S0360-1315(03)00002-2.</li> <li>[20] E. Cozzo, M. Kivela, M.D. Domenico, A. Solé Rhalta, A. Arenas, S. Gómez, M.A. Porter and Y. Moreno, Struer of rindic relations in multiplex networks, New Journal of Physics 17(7) (2015), 073029. doi:10.1088/1367-1203017/1707029.</li> <li>[21] E. Cozzo, G.F. de Arnuda, F.A. Rodrigues and Y. Moreno, Multilayer Networks: Metrics and Spectral Properties, in: Interconnected Networks, A. Garas, ed., Springer International Publishing, Cham. 2016, pp. 17–35. ISBN 978-319-23947-7, doi:10.1007/978-3 - 3019 - 23947-7, doi:10.1007/978-4 - 3019, 20047-7, doi:10.1007/978-4 - 3019, 20047-1, doi:10.1007/978-4024, d</li></ul>                                                                                                                                                                                          | 7  |       | layer nature of the European Air Transport Network: Resilience and passengers re-scheduling under random failures,                                                                                                                                |    |
| <ol> <li>[17] G. Cencetti and F. Bartiston, Diffusive behavior of multiplex networks, <i>New Journal of Physics</i> 21(3) (2019), 033006.</li> <li>[18] HC.H. Chang and F. Fu, Co-contagion diffusion on multilayer networks, <i>Applied Network Science</i> 4(1) (2019), 78.</li> <li>[19] LJ. Chang, JC. Yang, YC. Deng and TW. Chan, EduXs: multilayer calcuational services platforms, <i>Computers &amp; Education</i> 41(1) (2003), 1-18, doi:https://doi.org/10.1016/S3306-1315(03)0000-2.</li> <li>[20] E. Cozzo, M. Kivelä, M.D. Domenico, A. Solé-Ribalta, A. Arenas, S. Gómez, M.A. Porter and Y. Moreno, Structure of triadic relations in multiplex networks, <i>New Journal of Physics</i> 17(7) (2015), 073029. doi:10.1088/1367-165301/71/073029.</li> <li>[21] E. Cozzo, G.F. de Arnda, F.A. Rodrigues and Y. Moreno, <i>Multilayer Networks: Metrics and Spectral Properties</i>, in: 24. 2014/10. doi:10.1007/978-43-319-23947-7. doi:10.1007/978-43-319-23947-7.</li> <li>[22] F. Darabi Sahneh and C. Soglio, Competitive epidemic spreading over arbitrary multilayer networks, <i>Phys. Rev. E</i> 89 (2014), 06317. doi:10.1103/PhysRevE.89.006217.</li> <li>[23] G.F. de Arnda, E. Cozzo, T.P. Peixote, F.A. Rodrigues and Y. Moreno, Disease Localization in Multilayer Networks, <i>New Ramal of Physics</i> 2009 (2018), 095004. doi:10.1038/1367-26304a015.</li> <li>[24] C. De Bacco, E.A. Rodrigues and Y. Moreno, A polynomial eigenvalue approach for multiplex networks, <i>New Narmal of Physics</i> 2009 (2018), 085004. doi:10.1038/1367-26304a015.</li> <li>[25] C. De Bacco, E.A. Rodrigues and Y. Moreno, A. Potrer, S. Gómez and A. Arenas, Mathematical Pormulation of Multilayer Networks, <i>Phys. Rev. X</i> 3 (2013), 04102.</li> <li>[26] M. do Zhang, E. Cozzo, F.A. Rodrigues and Y. Moreno, A. Potrer, S. Gómez and A. Arenas, Mathematical Pormulation of Multilayer Networks, <i>Phys. Rev. X</i> 3 (2013), 04102.</li> <li>[27] H.A. Deylami and M. Asadyou, Link prediction in social networks using hierarchical community detection, interdependence in multilayer net</li></ol>                                                                                                                                                            | /  |       | The European Physical Journal Special Topics 215(1) (2013), 23–33. doi:10.1140/epjst/e2013-01712-8.                                                                                                                                               | /  |
| <ul> <li>doi:10.1088/1367-2630ab060c.</li> <li>[18] HC.H. Chang and F. Fu, Co-contagion diffusion on multilayer networks, <i>Applied Network Science</i> 4(1) (2019), 78. doi:10.1007/Ai1109-0176-6.</li> <li>[19] L.J. Chang, JC. Yang, YC. Deng and TW. Chan, EduXs: multilayer educational services platforms, <i>Computers &amp; Education</i> 41(1) (2003), 1–18. doi:https://doi.org/10.1016/S0360-1315(03)00002-2.</li> <li>[20] E. Cozzo, M. Kivella, M.D. Domenico, A. Solf-Ribulta, A. Arenas, S. Gómez, M.A. Porter and Y. Moreno, Structure of triadic relations in multiplex networks, <i>New Journal of Physics</i> 17(7) (2015), 073029. doi:10.1088/1367-2303077/073029.</li> <li>[21] E. Cozzo, G. F. de Arruda, F.A. Rodrigues and Y. Moreno, <i>Multilayer Networks: Metrics and Spectral Properties</i>, in: <i>Interconnected Networks</i>, A. Grass, ed., Springer International Publishing, Cham, 2016, pp. 17–35. ISBN 978-3-319-239477. doi:10.1007/978 – 3 – 319 – 23947 – 75.</li> <li>[22] F. Darabi Shanch and C. Scoglio, Competitive egidemic spreading over arbitrary multilayer networks, <i>Phys. Rev. E</i> 89 (2014), 062817, doi:10.1007/PhysRevX.89062817.</li> <li>[23] G.F. de Arruda, E. Cozzo, F.A. Rodrigues and Y. Moreno, Disease Localization in Multilayer Networks, <i>Phys. Rev. E</i> 70(217), 010141. doi:10.1103/PhysRevX.73(10104.</li> <li>[24] G.F. de Arruda, E. Cozzo, F.A. Rodrigues and Y. Moreno, A. Polynomia eigenvalue approach for multiplex networks, <i>Phys. Rev. E</i> 70(218), 095004. doi:10.1088/1367-2630/ad172.</li> <li>[25] C. De Bacco, E.A. Power, D.B. Larremore and C. Moore, Community detection, link prediction, and layer interdependeric in multilayer networks, <i>Phys. Rev. S</i> 23 (2013), 04102, 2 doi:10.1013/PhysRevX.3.04102.</li> <li>[26] M. De Domenico, A. Solé-Ribulta, E. Cozzo, M. Kivelä, Y. Moreno, M.A. Porter, S. Gómez and A. Arenas, Mathematical Portunita and McMaloyar Networks, <i>Phys. Rev. S</i> 23 (2017), 04122.</li> <li>[27] H.A. Deylami and M. Asadopur, Link prediction in social networks using hierarc</li></ul>                                                                                                                                                          | 8  | [17]  | G. Cencetti and F. Battiston, Diffusive behavior of multiplex networks, <i>New Journal of Physics</i> <b>21</b> (3) (2019), 035006.                                                                                                               | 8  |
| <ul> <li>[18] HC.H. Chang and F. Fu, Co-contagion diffusion on multilayer networks. <i>Applied Network Science</i> 4(1) (2019), 78.</li> <li>[19] LJ. Chang, JC. Yang, YC. Deng and TW. Chan, EduXs: multilayer educational services platforms, <i>Computers &amp; Education</i> 4(1) (2003), 1–18. doi:https://doi.org/10.1016/S0360-1315(03)00002-2.</li> <li>[20] E. Cozzo, M. Kivelä, M.D. Domenico, A. Solé-Ribalta, A. Arenas, S. Gómez, M.A. Porter and Y. Moreno, Structure of triadic relations in multiplex networks. <i>New Journal of Physics</i> 17(7) (2015), 073029. doi:10.1088/1367-263017/1073029.</li> <li>[21] E. Cozzo, G. F. de Arruda, F.A. Rodrigues and Y. Moreno, Multilayer Networks: <i>Metrics and Spectral Properties</i>, in: <i>Interconnected Networks</i>, A. Garas, ed., Springer International Publishing, Cham, 2016, pp. 17–35. ISBN 978-3-319-23947-7, doi:10.1007/978-3 – 310 – 23047 – 7_2.</li> <li>[22] E. Darabi Sahneh and C. Scoglio, Competitive epidemic spreading over arbitrary multilayer networks, <i>Phys. Rev. E</i> 89 (2014), 062817. doi:10.103/PhysRevE.89062817.</li> <li>[23] G.F. de Arruda, E. Cozzo, T.P. Peixoto, F.A. Rodrigues and Y. Moreno, Disease Localization in Multilayer Networks, <i>Phys. Rev. X</i> 70(2015), 011014. doi:10.1103/PhysRevE.30062417.</li> <li>[24] G.F. de Arruda, E. Cozzo, N. K. Modrigues and Y. Moreno, A polynomial eigenvalue approach for multiplex networks, <i>Phys. Rev. X</i> 7(2017), 011014. doi:10.1103/PhysRevE.55.60042317.</li> <li>[25] C. De Bacco, E.A. Power, D.B. Larremore and C. Moore, Community detection, link prediction, and layer interdependence in multilayer Networks, <i>Phys. Rev. S</i> 25(2017), 042317. doi:10.1103/PhysRevE.30.401022.</li> <li>[26] H.A. Deylami and M. Asadpour, Link prediction in Social networks using hierarchical community detection, in: <i>2015 7th Conference on Information and Knowledge Technology (IKT)</i>, Urmia, Iran, 2015, pp. 1–5. doi:10.1109/MrX20429.</li> <li>[27] H.A. Deylami and M. Asadpour, Link prediction in Social networks using hierarchica</li></ul>                                                                                                                                                        | 9  | 54.03 | doi:10.1088/1367-2630/ab060c.                                                                                                                                                                                                                     | 9  |
| <ul> <li>1001.1.0.101/441 (D-914/1-66.</li> <li>1101. J., Chang, J., C., Yang, YC. Deng and TW. Chan, EduXx: multilayer educational services platforms, <i>Computers &amp; Education</i> 41(1) (2003), 1–18. doi:https://doi.org/10.1016/S0360-1315(03)00002-2.</li> <li>1201. E. Cozzo, M. Kivelä, M.D. Domenico, A. Solf-Ribalta, A. Arenas, S. Gömez, M.A. Porter and Y. Moreno, Structure of triadic relations in multiplex networks, <i>New Journal of Physics</i> 17(7) (2015), 073029. doi:10.1088/1367-2630177/073029.</li> <li>1211. E. Cozzo, G. F. de Arruda, F.A. Rodrigues and Y. Moreno, <i>Multilayer Networks: Metrics and Spectral Properties</i>, in: <i>Interconnected Networks</i>, <i>A. Garas</i>, ed., Springer International Publishing, Cham, 2016, pp. 17–35. ISBN 978-3-319-23947-7. doi:10.1007/978 – 3 – 319 – 23947 – 72.</li> <li>1223. G.F. de Arruda, E. Cozzo, T.P. Peixoto, F.A. Rodrigues and Y. Moreno, Disease Localization in Multilayer Networks, <i>Phys. Rev. E</i> 89 (2014), 062817. doi:10.1103/PhysRevE.99.062817.</li> <li>123 G.F. de Arruda, E. Cozzo, T.P. Rodrigues and Y. Moreno, Apolynomial eigenvalue approach for multiplex networks, <i>Phys. Rev. E</i> 89 (2017), 042317. doi:10.1037/PhysRevE.90.062817.</li> <li>124 G.F. de Arruda, E. Cozzo, T.P. Rodrigues and Y. Moreno, Apolynomial eigenvalue approach for multiplex networks, <i>Phys. Rev. X</i> 82 (2013), doi:10.1108/PhysRevE.95.042317.</li> <li>125 C. De Bacco, E.A. Power, D.B. Larremore and C. Mozen, Community detection, link prediction, and layer interdependence in multilayer networks, <i>Phys. Rev. X</i> 3 (2013), doi:10.11013/PhysRevE3.50.40232.</li> <li>126 M. De Domenico, A. Solé-Ribalta, E. Cozzo, N. Kivelä, Y. Moreno, M. Porter, S. Gömez and A. Arenas, Mathematical Formulation of Multilayer Networks, Phys. Rev. X 3 (2013), doi:10.1103/PhysRevE3.50.40237.</li> <li>125 M. De Domenico, A. Solé-Ribalta, E. Cozzo, N. Kivelä, Y. Moreno, M. Porter, S. Gömez and A. Arenas, Mathematical Portex and A. Arenas, Mathematical Portex and A. Arenas, Mathematical Portex and</li></ul>                                                                                                                                                        | 10 | [18]  | HC.H. Chang and F. Fu, Co-contagion diffusion on multilayer networks, <i>Applied Network Science</i> 4(1) (2019), 78.                                                                                                                             | 10 |
| <ul> <li>[19] E.S. Chang, J. C., Edward, J. C., Stole, K. Steles, J. Stoles, J. Stol</li></ul>                                                                                                                                                                | 11 | [10]  | doi:10.100//541109-019-01/0-0.<br>LI. Chang, L.C. Yang, Y.C. Deng and T.W. Chan, EduXe: multilayer educational services platforms. <i>Computers &amp;</i>                                                                                         | 11 |
| <ul> <li>[20] E. Cozzo, M. Kivella, M.D. Domenico, A. Solé-Ribalta, A. Arenas, S. Gónez, M.A. Porter and Y. Moreno, Structure of triadic relations in multiplex networks, <i>New Journal of Physics</i> 17(7) (2015), 073029. doi:10.1088/1367-12630177/073029.</li> <li>[21] E. Cozzo, G.F. de Artuda, F.A. Rodrigues and Y. Moreno, <i>Multilayer Networks: Metrics and Spectral Properties</i>, in: <i>Interconnected Networks</i>, A. Garas, ed., Springer International Publishing, Cham, 2016, pp. 17–35. ISBN 978-3-319-23947-7, doi:10.1007/978-3-319-23947-7, doi:10.1007/978-3-319-23947. 7, doi:10.1007/978-3-319-23947. 7, doi:10.1007/bysRevE.89.062817.</li> <li>[22] G.F. de Artuda, E. Cozzo, T.P. Peixoto, F.A. Rodrigues and Y. Moreno, Disease Localization in Multilayer Networks, <i>Phys. Rev. F</i> 89 (2014), 062817, doi:10.1103/PhysRevE.89.062817.</li> <li>[23] G.F. de Artuda, E. Cozzo, T.P. Peixoto, F.A. Rodrigues and Y. Moreno, Disease Localization in Multilayer Networks, <i>Phys. Rev. X</i> 7 (2017), 011014. doi:10.1103/PhysRevX.7011014.</li> <li>[24] G.F. de Artuda, E. Cozzo, N.A. Rodrigues and Y. Moreno, A polynomial eigenvalue approach for multiplex networks, <i>Phys. Rev. S Phys. Rev. E</i> 7 (2017), 021014, doi:10.1038/1670-2630/aadf9.</li> <li>[25] C. De Bacco, E.A. Power, D.B. Larremore and C. Moore, Community detection, link prediction, and layer interdependence in multilayer networks, <i>Phys. Rev. X</i> 3 (2013), 041022. doi:10.1103/PhysRevE.3040122.</li> <li>[26] M. De Domenico, A. Solé-Ribalta, E. Cozzo, M. Kivelia, Y. Moreno, M.A. Porter, S. Gómez and A. Arenas, Mathematical Formulation of Multilayer Networks, <i>Phys. Rev. X</i> 3 (2013), 041022. doi:10.1103/PhysRevE.3040122.</li> <li>[27] H.A. Deylami and M. Asadpour, Link prediction in social networks using hierarchical community detection, in: <i>2015 7th Conference on Information and Knowledge Technology (IKT)</i>, Urmia, Iran, 2015, pp. 1–5. doi:10.1109/IKT2015.7288742.</li> <li>[28] J. Doe, <i>The Book without Title</i>, Dummy Publisher, 2100.</li> <li>[29] D. D</li></ul>                                                                                                                                                  | 12 | [19]  | <i>EJ.</i> Chang, JC. Tang, 1C. Deng and 1w. Chan, Eduxs. Indinayer educational services platforms, <i>Computers &amp; Education</i> $41(1)$ (2003) 1–18. doi:https://doi.org/10.1016/S0360-1315(03)00002-2                                       | 12 |
| <ul> <li>Inre of tradic relations in multiplex networks, <i>New Journal of Physics</i> 17(7) (2015), 073029. doi:10.1088/1367-26300117/1073029.</li> <li>E. Cozzo, G.F. de Arnda, F.A. Rodrigues and Y. Moreno, <i>Multilayer Networks: Metrics and Spectral Properties</i>, in: <i>Interconnected Networks</i>, A. Garas, ed., Springer International Publishing, Cham, 2016, pp. 17–35. ISBN 978-3-319-23947-7, doi:10.1007/978-3-319-23947-7, doi:10.1007/978-3-319-23947-7, doi:10.1007/978-3-319-23947-7, doi:10.1007/978-3-319-23947-7, doi:10.1007/978-3-319-23947-7, doi:10.1007/978-3-319-23947-7, doi:10.1007/978-20062817.</li> <li>G.F. de Arnda, E. Cozzo, T.P. Peixoto, F.A. Rodrigues and Y. Moreno, Disease Localization in Multilayer Networks, <i>Phys. Rev. T</i> (2017), 011014, doi:10.1103/PhysRevE.250.005217.</li> <li>G. De de Arnda, E. Cozzo, F.A. Rodrigues and Y. Moreno, A polynomial eigenvalue approach for multiplex networks, <i>New Journal of Physics</i> 20(9) (2018), 095044, doi:10.1088/1637-2630aad97.</li> <li>G. De Bacco, E.A. Power, D.B. Larremore and C. Moore, Community detection, link prediction, and layer interdependence in multilayer networks. <i>Phys. Rev. X</i> 5 (2017), 042317. doi:10.1103/PhysRevX.3041022.</li> <li>H.A. Deylami and M. Asadpour, Link prediction in social networks using hierarchical community detection, in: 2015 7th Conference on Information and Knowledge Technology (IKT), Urmia, Iran, 2015, pp. 1-5. doi:10.1109/IN1878/EX250.02317.</li> <li>J. Doe, <i>The Book without Title</i>, Dummy Publisher, 2100.</li> <li>D. Duvenado, D. Maclauri, J. Aguilera-Iparaguire, R. Gómez-Bombarelli, T. Hirzel, A. Aspuru-Guzik and R.P. Adams, Convolutional Networks on Graphs for Learning Molecular Eingerprints, in: <i>Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume</i> 2, NIPS 15, MIT Press, Cambridge, MA, USA, 2015, pp. 2242-223</li> <li>J. Duce, The Book without Title, Dummy 104191/The Learning Molecular Eingerprints, in: <i>Proceedings of the 28th International Confe</i></li></ul>                                                                                                                                                    | 10 | [20]  | E. Cozzo, M. Kivelä, M.D. Domenico, A. Solé-Ribalta, A. Arenas, S. Gómez, M.A. Porter and Y. Moreno, Struc-                                                                                                                                       | 10 |
| <ol> <li>2630(17/1073029.</li> <li>[21] E. Cozzo, G.F. de Arruda, F.A. Rodrigues and Y. Moreno, Multilayer Networks: Metrics and Spectral Properties, in:<br/>Interconnected Networks, A. Garas, ed., Springer International Publishing, Cham, 2016, pp. 17–35. ISBN 978-3-319-<br/>23947-7. doi:10.1007/978-3-319-23947-72.</li> <li>[22] E. Darabi Sahneh and C. Scoglio, Competitive epidenic spreading over arbitrary multilayer networks, Phys. Rev. E <b>89</b><br/>(2014), 062817. doi:10.1103/PhysRevE.89.062817.</li> <li>[23] G.F. de Arruda, E. Cozzo, P.P. Peixoto, F.A. Rodrigues and Y. Moreno, Disease Localization in Multilayer Networks,<br/>Phys. Rev. X7 (2017), 011014. doi:10.1103/PhysRevX.7.011014.</li> <li>[24] G.F. de Arruda, E. Cozzo, F.A. Rodrigues and Y. Moreno, A polynomial eigenvalue approach for multiplex networks,<br/>New Journal of Physics <b>20</b>(9) (2018), 095004. doi:10.1088/1367-2630/aadf9f.</li> <li>[25] C. De Bacco, E.A. Power, D.B. Larremore and C. Moore, Community detection, link prediction, and layer interdepen-<br/>dence in multilayer networks, Phys. Rev. <b>5</b> 95 (2017), 042317. doi:10.1103/PhysRevE.95.042317.</li> <li>[26] M. De Domenico, A. Solé-Ribalta, E. Cozzo, M. Kivelä, Y. Moreno, M.A. Porter, S. Gómez and A. Arenas, Mathematical<br/>Formulation of Multilayer networks, Phys. Rev. <b>8</b> 2 (2013), 041022. doi:10.1103/PhysRevE.95.042317.</li> <li>[27] H.A. Deylami and M. Asadpour, Link prediction in social networks using hierarchical community detec-<br/>tion, in: 2015 7th Conference on Information and Knowledge Technology (IKT), Urmia, Iran, 2015, pp. 1–5.<br/>doi:10.1109/IKT.2015.7288742.</li> <li>[28] J. Doe, The Book without Title, Dummy Publisher, 2100.</li> <li>[29] D. Davenaud, D. Maclaurin, J. Aguilera-Iparaguirre, R. Gómez-Bombarelli, T. Hirzel, A. Aspuru-Guzik and<br/>R.P. Adams, Convolutional Networks on Graphs for Learning Molecular Fingerprinks, in: Proceedings of the 28th In-<br/>ternational Conference on Neural Information Processing Systems - Volume 2, NIPS '15, MIT Press, Cambridge, MA,<br/>USSA,</li></ol>                                                                                                                                 | 10 | [=0]  | ture of triadic relations in multiplex networks, <i>New Journal of Physics</i> <b>17</b> (7) (2015), 073029. doi:10.1088/1367-                                                                                                                    | 13 |
| <ol> <li>[21] E. Cozzo, G.F. de Arruda, F.A. Rodrigues and Y. Moreno, <i>Multilayer Networks: Merics and Spectral Properties</i>, in: Interconnected Networks, A. Garas, ed., Springer International Publishing, Cham, 2016, pp. 17–35, ISBN 978-3-319-23947-7, doi:10.1007/978-3-319-23947-72.</li> <li>[22] F. Darabi Sahneh and C. Scoglio, Competitive epidemic spreading over arbitrary multilayer networks, <i>Phys. Rev. E</i> 89 (2014), 062817, doi:10.1103/PhysRevE.20062817.</li> <li>[23] G.F. de Arruda, E. Cozzo, T.P. Peixoto, F.A. Rodrigues and Y. Moreno, Disease Localization in Multilayer Networks, <i>New Journal of Physics</i> 20(9) (2018), 095004. doi:10.1088/1367-2630/aadf9f.</li> <li>[24] G.F. de Arruda, E. Cozzo, F.A. Rodrigues and Y. Moreno, A polynomial eigenvalue approach for multiplex networks, <i>New Journal of Physics</i> 20(9) (2018), 095004. doi:10.1088/1367-2630/aadf9f.</li> <li>[25] C. De Bacco, E.A. Power, D.B. Larremore and C. Moore, Community detection, link prediction, and layer interdependence in multilayer networks, <i>Phys. Rev. E</i> 95 (2017), 042317. doi:10.1103/PhysRevX.3.041022.</li> <li>[27] H.A. Deylami and M. Asadpour, Link prediction in social networks using hierarchical community detection, in: 2015 7th Conference on Information and Knowledge Technology (IKT), Urmia, Iran, 2015, pp. 1–5. doi:10.1109/KT.2015.7288742.</li> <li>[28] J. Doe, <i>The Book without Title</i>, Dummy Publisher, 2100.</li> <li>[29] D. Duvenaud, D. Maclaurin, J. Aguilera-Iparraguirre, R. Gómez-Bombarelli, T. Hirzel, A. Aspura-Guzik and R.P. Adams, Convolutional Networks on Graphs for Learning Molecular Fingerprints, in: <i>Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume</i> 2, NIFS'15, MIT Press, Cambridge, MA, USA, 2015, pp. 2224–2232–.</li> <li>[30] I. Echegoyen, D. López-Sanz, F. Maesti and J.M. Buldú, From single layer to multilayer networks in mild cognitive impairment and Alzheimer's disease. <i>Journal of Physics: Complexity</i> 2(4) (2021), 0450201 doi:10.108</li></ol>                                                                                                                                                        | 14 |       | 2630/17/7/073029.                                                                                                                                                                                                                                 | 14 |
| <ul> <li><i>Interconnected Networks,</i> A. Garas, ed., Springer International Publishing, Cham, 2016, pp. 17–35. ISBN 978-3-319-<br/>20147. doi:10.1007/978-8 – 3 - 319 - 23947 - 73.</li> <li>F. Darabi Sahneh and C. Scoglio, Competitive epidemic spreading over arbitrary multilayer networks, <i>Phys. Rev. E</i> 89 (2014), 062817. doi:10.1103/PhysRevE.89.062817.</li> <li>G.F. de Arruda, E. Cozzo, T.P. Peixoto, F.A. Rodrigues and Y. Moreno, Disease Localization in Multilayer Networks, <i>Phys. Rev. X</i> 7 (2017), 011014. doi:10.1103/PhysRevX.7.011014.</li> <li>G.F. de Arruda, E. Cozzo, F.A. Rodrigues and Y. Moreno, A polynomial eigenvalue approach for multiplex networks, <i>New Journal of Physics</i> 20(9) (2018), 095004. doi:10.1088/1367-2630/aadf9f.</li> <li>C. De Bacco, E.A. Power, D.B. Larremore and C. Moore, Community detection, link prediction, and layer interdependence in multilayer networks, <i>Phys. Rev.</i> 85 (2017), 042317. doi:10.1103/PhysRevE.95.042317.</li> <li>M. De Domenico, A. Solé-Ribalta, E. Cozzo, M. Kivelä, Y. Moreno, M.A. Porter, S. Gómez and A. Arenas, Mathematical Formulation of Multilayer networks, <i>Phys. Rev.</i> 82 (2013), 041022, doi:10.1103/PhysRevX.3.041022.</li> <li>H.A. Deylami and M. Asadpour, Link prediction in social networks using hierarchical community detection, in: 2015 7th Conference on Information and Knowledge Technology (<i>IKT</i>), Urmia, Iran, 2015, pp. 1–5.</li> <li>J. Doe, <i>The Book without Title</i>, Dummy Publisher, 2100.</li> <li>D. Duvenaud, D. Maclauri, J. Aguiler-Iparaguirre, R. Gómez-Bombarelli, T. Hirzel, A. Aspuru-Guzik and R.P. Adams, Convolutional Networks on Graphs for Learning Molecular Fingerprints, in: <i>Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume</i> 2, NIPS'15, MIT Press, Cambridge, MA, 408A, 2015, pp. 2224–232</li> <li>Golt, L. Enckgayen, D. López-Sanz, F. Maestí and J.M. Buldi, From single layer to multilayer networks in mild cognitive impairment and Alzheimer's fiselese, Journal of Physics: Co</li></ul>                                                                                                                                                     | 15 | [21]  | E. Cozzo, G.F. de Arruda, F.A. Rodrigues and Y. Moreno, Multilayer Networks: Metrics and Spectral Properties, in:                                                                                                                                 | 15 |
| <ul> <li>23947-7. doi:10.1007/978 - 3 - 319 - 23947 - 72.</li> <li>[22] F. Darabi Sahneh and C. Scoglio, Competitive epidemic spreading over arbitrary multilayer networks, <i>Phys. Rev. E</i> 89 (2014), 062817. doi:10.1103/PhysRevE.89.062817.</li> <li>[23] G.F. de Arruda, E. Cozzo, F.A. Rodrigues and Y. Moreno, Disease Localization in Multilayer Networks, <i>Phys. Rev. X</i> 7 (2017), 011014. doi:10.1103/PhysRevX.7.011014.</li> <li>[24] G.F. de Arruda, E. Cozzo, F.A. Rodrigues and Y. Moreno, A polynomial eigenvalue approach for multiplex networks, <i>Phys. Rev. X</i> 7 (2017), 011014. doi:10.1103/PhysRevX.7.011014.</li> <li>[25] C. De Bacco, E.A. Power, D.B. Larremore and C. Moore, Community detection, link prediction, and layer interdependence in multilayer networks, <i>Phys. Rev. X</i> 9 (2013), 042317. doi:10.1103/PhysRevZ.9042317.</li> <li>[26] M. De Domenico, A. Solé-Ribalta, E. Cozzo, M. Kivelä, Y. Moreno, M.A. Porter, S. Gómez and A. Arenas, Mathematical Formulation of Multilayer Networks, <i>Phys. Rev. X</i> 3 (2013), 041022. doi:10.1103/PhysRevZ.3041022.</li> <li>[27] H.A. Deylami and M. Asadpour, Link prediction in social networks using hierarchical community detection, in: 2015 7th Conference on Information and Knowledge Technology (IKT), Urmia, Iran, 2015, pp. 1-5. doi:10.1109/RIX2105.7288742.</li> <li>[28] J. Doe, <i>The Book without Title</i>, Dummy Publisher, 2100.</li> <li>[29] D. Duvenaud, D. Maclaurin, J. Aguilera-Iparaguirre, R. Gómez-Bombarelli, T. Hirzel, A. Aspuru-Guzik and R.P. Adams, Convolutional Networks on Graphs for Learning Molecular Fingerprints, in: <i>Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 2</i>, NIPS'15, MIT Press, Cambridge, MA, USA, 2015, pp. 2224-2232.</li> <li>[30] I. Echegoyen, D. López-Sanz, F. Maestú and J.M. Buldő, From single layer to multilayer networks in mild cognitive impairment and Alzheimer's disease, <i>Journal of Physics: Complexity</i> 2(4) (2021), 045020, doi:10.1088/2632-072x/ac3ddd.</li> <li>[31</li></ul>                                                                                                                                                                | 16 |       | Interconnected Networks, A. Garas, ed., Springer International Publishing, Cham, 2016, pp. 17–35. ISBN 978-3-319-                                                                                                                                 | 16 |
| <ul> <li>[22] F. Darabi Sahneh and C. Scoglio, Competitive epidemic spreading over arbitrary multilayer networks, <i>Phys. Rev. E</i> 89 (2014), 062817. doi:10.1103/PhysRevE.39.062817.</li> <li>[23] G.F. de Arruda, E. Cozzo, T.P. Peixoto, F.A. Rodrigues and Y. Moreno, Disease Localization in Multilayer Networks, <i>Phys. Rev. X</i> 7 (2017), 011014. doi:10.1103/PhysRevX.70.11014.</li> <li>[24] G.F. de Arruda, E. Cozzo, T.P. Peixoto, F.A. Rodrigues and Y. Moreno, A polynomial eigenvalue approach for multiplex networks, <i>New Journal of Physics</i> 20(9) (2018), 095004. doi:10.1088/1367-2630aad9ff.</li> <li>[25] C. De Bacco, E.A. Power, D.B. Larremore and C. Moore, Community detection, link prediction, and layer interdependence in multilayer networks, <i>Phys. Rev. X</i> 5 (2017), 042317. doi:10.1103/PhysRevZ.50.042317.</li> <li>[26] M. De Domenico, A. Solé-Ribalta, E. Cozzo, M. Kivelä, Y. Moreno, M.A. Porter, S. Gómez and A. Arenas, Mathematical Formulation of Multilayer Networks, <i>Phys. Rev. X</i> 3 (2013), 041022. doi:10.1103/PhysRevX.3.041022.</li> <li>[27] H.A. Deylami and M. Asadpour, Link prediction in social networks using hierarchical community detection, in: 2015 7th Conference on Information and Knowledge Technology (IKT), Urmia, Iran, 2015, pp. 1–5. doi:10.1109/IKT2015.7288742.</li> <li>[28] J. Doe, <i>The Book without Title</i>, Dummy Publisher, 2100.</li> <li>[29] D. Duvenaud, D. Maclaurin, J. Aguilera-Iparaguire, R. Gómez-Bombarelli, T. Hirzel, A. Aspuru-Guzik and R.P. Adams, Convolutional Networks on Graphs for Learning Molecular Fingerprints, in: <i>Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume</i> 2, NIPS'15, MIT Press, Cambridge, MA, USA, 2015, pp. 2224–2323–.</li> <li>[30] I. Echegoyen, D. López-Sanz, F. Maestú and J.M. Buldú, From single layer to multilayer networks in mild cognitive imminy detection: Approaches and applications, <i>Proceedia Computer Science</i> 151 (2019), 295–302, The 10th International Conference on Ambien Systems, Netwo</li></ul>                                                                                                                                                        | 17 |       | 23947-7. doi: $10.1007/978 - 3 - 319 - 23947 - 7_2$ .                                                                                                                                                                                             | 17 |
| <ul> <li>(2014), 062817. doi:10.1103/PhysRevE.89.062817.</li> <li>[23] G.F. de Arruda, E. Cozzo, T.P. Peixoto, F.A. Rodrigues and Y. Moreno, Disease Localization in Multilayer Networks, <i>Phys. Rev. X</i> 7 (2017), 011014. doi:10.1103/PhysRevX.7.011014.</li> <li>[24] G.F. de Arruda, E. Cozzo, F.A. Rodrigues and Y. Moreno, A polynomial eigenvalue approach for multiplex networks, <i>New Journal of Physics</i> 20(9) (2018), 095004. doi:10.1088/1367-2630/aad19f.</li> <li>[25] C. De Bacco, E.A. Power, D.B. Larremore and C. Moore, Community detection, link prediction, and layer interdependence in multilayer networks, <i>Phys. Rev. X</i> 95 (2017), 042317. doi:10.1103/PhysRevX.3041022.</li> <li>[26] M. De Domenico, A. Solé-Ribalta, E. Cozzo, M. Kivelä, Y. Moreno, M.A. Porter, S. Gómez and A. Arenas, Mathematical Formulation of Multilayer Networks, <i>Phys. Rev. X</i> 3 (2013), 041022. doi:10.1103/PhysRevX.3041022.</li> <li>[27] H.A. Deylami and M. Asadpour, Link prediction in social networks using hierarchical community detection, in: 2015 7th Conference on Information and Knowledge Technology (IKT), Urmia, Iran, 2015, pp. 1–5. doi:10.1109/IKT.2015.7288742.</li> <li>[28] J. Doe, <i>The Book without Title</i>, Dummy Publisher, 2100.</li> <li>[29] D. Duvenaud, D. Maclaurin, J. Aguilera-Iparaguirre, R. Gómez-Bombarrelli, T. Hirzel, A. Aspuru-Guzik and R.P. Adams, Convolutional Networks on Graphs for Learning Molecular Fingerprints, in: Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 2, NIPS'15, MIT Press, Cambridge, MA, USA, 2015, pp. 2224–2232–.</li> <li>[30] I. Echegoye, D. López-Sanz, F. Maestú and J.M. Buldú, From single layer to multilayer networks in mild cognitive impairment and Alzheimer's disease, <i>Journal of Physics: Complexity</i> 24(4) (2017), 045020, doi:10.1088/2632-072x/ac3ddd.</li> <li>[31] M. EL-MOUSSAOUI, T. A. GOUTI, A. TIKNIOUINE and M.E. ADNANI, A comprehensive litertaure review on community detection: Approaches and applications, <i>Procedia Computer Science</i> 151 (2019), 295–30</li></ul>                                                                                                                         | 18 | [22]  | F. Darabi Sahneh and C. Scoglio, Competitive epidemic spreading over arbitrary multilayer networks, <i>Phys. Rev. E</i> 89                                                                                                                        | 18 |
| <ul> <li>[25] G.F. de Arfuda, E. Cozzó, T.F. Perxolo, F.A. Rodrigues and Y. Moreno, Disease Locanzaiton in Multilayer Networks, Phys. Rev. J (2017), 1014. doi:10.1103/Phys.RevX.7.011014.</li> <li>[24] G.F. de Arruda, E. Cozzo, F.A. Rodrigues and Y. Moreno, A polynomial eigenvalue approach for multiplex networks, <i>New Journal of Physics</i> 2009) (2018), 095004. doi:10.1088/1367-2630/aad79f.</li> <li>[25] C. De Bacco, E.A. Power, D.B. Larremore and C. Moore, Community detection, link prediction, and layer interdependence in multilayer networks, <i>Phys. Rev. E</i> 95 (2017), 042317. doi:10.1103/PhysRevE.95.042317.</li> <li>[26] M. De Domenico, A. Sofé-Ribalta, E. Cozzo, M. Kivelik, Y. Moreno, M.A. Porter, S. Gómez and A. Arenas, Mathematical Formulation of Multilayer Networks, <i>Phys. Rev. X</i> 3 (2013), 041022. doi:10.1103/PhysRevX.3.041022.</li> <li>[27] H.A. Deylami and M. Asadpour, Link prediction in social networks using hierarchical community detection, in: 2015 7th Conference on Information and Knowledge Technology (IKT), Urmia, Iran, 2015, pp. 1–5. doi:10.1109/IKT.2015.7288742.</li> <li>[28] D. Duvenaud, D. Maclaurin, J. Aguilera-Iparraguirre, R. Gómez-Bombarelli, T. Hirzel, A. Aspuru-Guzik and R.P. Adams, Convolutional Networks on Graphs for Learning Molecular Fingerprints, in: <i>Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume</i> 2, NIPS'15, MIT Press, Cambridge, MA, USA, 2015, pp. 224–2322</li> <li>[30] I. Echeogove, D. López-Sanz, F. Maestú and J.M. Buldd, From single layer to multilayer networks in mild cognitive impairment and Alzheimer's disease, <i>Journal of Physics: Complexity</i> 2(4) (2021), 045020. doi:10.1088/2632-072x/ac3ddd.</li> <li>[31] M. EL-MOUSSAOUI, T. AGOUTI, A. TIKNIOUINE and M.E. ADNANI, A comprehensive literature review on community detection: Approaches and applications, <i>Proceedia Computer Science</i> 151 (2019), 295–302. The 10th International Conference on Ambient Systems, Networks and Technologies (ANT 2019), 295</li></ul>                                                                                                                                                                | 19 | [22]  | (2014), 062817. doi:10.1103/PhysRevE.89.062817.                                                                                                                                                                                                   | 19 |
| <ul> <li>[24] G.F. de Arruda, E. Cozzo, F.A. Rodrigues and Y. Moreno, A polynomial eigenvalue approach for multiplex networks, <i>New Journal of Physics</i> 20(9) (2018), 095004. doi:10.1088/1367-2630/aadeff.</li> <li>[25] C. De Bacco, E.A. Power, D.B. Larremore and C. Moore, Community detection, link prediction, and layer interdependence in multilayer networks, <i>Phys. Rev. E</i> 95 (2017), 042317. doi:10.1103/PhysRevE.95.042317.</li> <li>[26] M. De Domenico, A. Solé-Ribalta, E. Cozzo, M. Kivelä, Y. Moreno, M.A. Porter, S. Gómez and A. Arenas, Mathematical Formulation of Multilayer Networks, <i>Phys. Rev. S</i> 3 (2013), 041022. doi:10.1103/PhysRevX.3041022.</li> <li>[27] H.A. Deylami and M. Asadpour, Link prediction in social networks using hierarchical community detection, in: 2015 <i>Th Conference on Information and Knowledge Technology (IKT)</i>. Urmia, Iran, 2015, pp. 1–5. doi:10.1109/IKT.2015.7288742.</li> <li>[28] J. Doe, <i>The Book without Title</i>, Dummy Publisher, 2100.</li> <li>[29] D. Duvenaud, D. Maclaurin, J. Aguilera-Iparaguire, R. Gómez-Bombarelli, T. Hirzel, A. Aspuru-Guzik and R.P. Adams, Convolutional Networks on Graphs for Learning Molecular Fingerprints, in: <i>Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 2</i>, NIPS'15, MIT Press, Cambridge, MA, USA, 2015, pp. 2224-2232</li> <li>[30] I. Echegoyen, D. López-Sanz, F. Maestú and J.M. Buldú, From single layer to multilayer networks in mild cognitive impairment and Alzheimer's disease, <i>Journal of Physics: Complexity</i> 2(4) (2021), 04502.0451.010.0892/632-072Aac3ddd.</li> <li>[31] M. EL-MOUSSAOUI, T. AGOUTI, A. TIKNIOUINE and M.E. ADNANI, A colino.10.0887/632-072Aac3ddd.</li> <li>[32] A. Elmokashfi, A. Kvalbein and C. Dovrolis, On the Scalability of BGP: The Sole of Topology Growth, <i>IEEE Journal on Selected Areas in Communications, Proceedia Computer Science</i> 151 (2019), 295–302, The 10th International Conference on Ambient Systems, Networks and Technologies (ANT 2019) / The 2nd</li></ul>                                                                                                                                                           | 20 | [23]  | G.F. de Afruda, E. Cozzo, I.P. Peixolo, F.A. Rodrigues and Y. Moreno, Disease Localization in Multilayer Networks,<br><i>Phys. Rev. Y</i> 7 (2017), 011014. doi:10.1103/PhysRevY 7.011014                                                         | 20 |
| <ol> <li>[21] G. Y. Go T. New Journal of Physics 20(9) (2018), 095004. doi:10.1088/1367-2630/aadPf.</li> <li>[23] C. De Bacco, E.A. Power, D.B. Larremore and C. Moore, Community detection, link prediction, and layer interdependence in multilayer networks. <i>Phys. Rev E</i> 95 (2017), 042317. doi:10.1103/PhysRevE.95.042317.</li> <li>[26] M. De Domenico, A. Solé-Ribalta, E. Cozzo, M. Kivelä, Y. Moreno, M.A. Porter, S. Gómez and A. Arenas, Mathematical Formulation of Multilayer Networks. <i>Phys. Rev. E</i> 95 (2017), 042317. doi:10.1103/PhysRevX.3.041022.</li> <li>[27] H.A. Deylami and M. Asadpour, Link prediction in social networks using hierarchical community detection, in: 2015 7th Conference on Information and Knowledge Technology (<i>IKT</i>). Urmia, Iran, 2015, pp. 1–5. doi:10.1109/IKT.2015.7288742.</li> <li>[28] J. Doe, <i>The Book without Title</i>. Dummy Publisher, 2100.</li> <li>[29] D. Duvenaud, D. Maclaurin, J. Aguilera-Iparraguirre, R. Gómez-Bombarelli, T. Hirzel, A. Aspuru-Guzik and R.P. Adams, Convolutional Networks on Graphs for Learning Molecular Fingerprints, in: <i>Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume</i> 2, NIPS'15, MIT Press, Cambridge, MA, USA, 2015, pp. 2224–2232–</li> <li>[30] I. Echegoyen, D. López-Sanz, F. Maestú and J.M. Buldú, From single layer to multilayer networks in mild cognitive impairment and Alzheimer's disease, <i>Journal of Physics: Complexity</i> 2(4) (2021), 045020. doi:10.1088/2632-072Xac3ddd.</li> <li>[31] M. EL-MOUSSAOUI, T. AGOUTI, A. TIKNIOUINE and M.E. ADNANI, A comprehensive literature review on community detection: Approaches and aplications, <i>Procedia Computer</i> 5(10.1016), prosc.2019.04.042.</li> <li>[32] A. Elmokashi, A. Kvalbein and C. Dovrolis, On the Scalability of BGP: The Role of Topology Growth, <i>IEEE Journal on Selected Areas in Communications</i> 28(8) (2010), 1250–1261. doi:10.1109/JNAC.2010.101003.</li> <li>[33] P. Erdös and A. Rényi, On Random Graphs J. <i>Publicationes Mathematicae beb</i></li></ol>                                                                                                                                                      | 20 | [24]  | G E de Arruda E Cozzo E A Rodrigues and Y Moreno. A polynomial eigenvalue approach for multiplex networks                                                                                                                                         | 20 |
| <ul> <li>[25] C. De Bacco, E.A. Power, D.B. Larremore and C. Moore, Community detection, link prediction, and layer interdependence in multilayer networks, <i>Phys. Rev. E</i> 95 (2017), 042317. doi:10.1103/PhysRevE.95.042317.</li> <li>[26] M. De Domenico, A. Solé-Ribalta, E. Cozzo, M. Kivelä, Y. Moreno, M.A. Porter, S. Gómez and A. Arenas, Mathematical Formulation of Multilayer Networks, <i>Phys. Rev. X</i> 3 (2013), 041022. doi:10.1103/PhysRevX.3.041022.</li> <li>[27] H.A. Deylami and M. Asadpour, Link prediction in social networks using hierarchical community detection, in: 2015 <i>7th Conference on Information and Knowledge Technology (IKT)</i>, Urmia, Iran, 2015, pp. 1–5. doi:10.1109/IKT.2015.7288742.</li> <li>[28] J. Doe, <i>The Book without Title</i>, Dummy Publisher, 2100.</li> <li>[29] D. Duvenaud, D. Maclaurin, J. Aguilera-Iparaguirre, R. Gómez-Bombarelli, T. Hirzel, A. Aspuru-Guzik and R.P. Adams, Convolutional Networks on Graphs for Learning Molecular Fingerprints, in: <i>Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 2</i>, NIPS'15, MIT Press, Cambridge, MA, USA, 2015, pp. 2224–2232–.</li> <li>[30] I. Echegoyen, D. López-Sanz, F. Maestú and J.M. Buldú, From single layer to multilayer networks in mild cognitive impairment and Alzheimer's disease, <i>Journal of Physics: Complexity</i> 2(4) (2021), 04502. doi:10.1088/2632-072Xa/a3dd.</li> <li>[31] M. EL-MOUSSAOUI, T. AGOUTI, A. TIKNIOUINE and M.E. ADNANI, A comprehensive literature review on community detection: Approaches and applications, <i>Procedia Computer Science</i> 151 (2019), 295–302, The 10th International Conference on <i>Emerging Data and Industry</i> 4.0 (EDI40 2019) / Affiliated Workshops. doi:https://doi.org/10.1016/j.procs.2019.04.042.</li> <li>[31] A. Elmokashi, A. Kvalbein and C. Dovrolis, On the Scalability of BGP: The Role of Topology Growth, <i>IEEE Journal on Selected Areas in Communications</i> 28(8) (2010), 1250–1261. doi:10.1100/JISAC.2010.10103.</li> <li>[33] P. Erdös and A. Rényi, O</li></ul>                                                                                                                                                   | 21 | [2]   | New Journal of Physics <b>20</b> (9) (2018), 095004, doi:10.1088/1367-2630/aadf9f                                                                                                                                                                 | 21 |
| <ul> <li>dence in multilayer networks, <i>Phys. Rev. E</i> 95 (2017), 042317. doi:10.1103/PhysRevE.95.042317.</li> <li>[26] M. De Domenico, A. Solé-Ribalta, E. Cozzo, M. Kivelä, Y. Moreno, M.A. Porter, S. Gómez and A. Arenas, Mathematical<br/>Formulation of Multilayer Networks, <i>Phys. Rev. X</i> 3 (2013), 041022. doi:10.1103/PhysRevX.3.041022.</li> <li>[27] H.A. Deylami and M. Asadpour, Link prediction in social networks using hierarchical community detection, in: 2015 <i>Th Conference on Information and Knowledge Technology (IKT)</i>, Urmia, Iran, 2015, pp. 1–5. doi:10.1109/IKT.2015.7288742.</li> <li>[28] J. Doe, <i>The Book without Title</i>, Dummy Publisher, 2100.</li> <li>[29] D. Duvenaud, D. Maclaurin, J. Aguilera-Iparaguirre, R. Gómez-Bombarelli, T. Hirzel, A. Aspuru-Guzik and<br/>R.P. Adams, Convolutional Networks on Graphs for Learning Molecular Fingerprints, in: <i>Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 2</i>, NIPS'15, MIT Press, Cambridge, MA, USA, 2015, pp. 2224–2232</li> <li>[30] I. Echegoyen, D. López-Sanz, F. Maestú and J.M. Buldú, From single layer to multilayer networks in mild cognitive im-<br/>pairment and Alzheimer's disease, <i>Journal of Physics: Complexity</i> 2(4) (2021), 045020. doi:10.1088/2632-072x/ac3ddd.</li> <li>[31] M. EL-MOUSSAOUI, T. AGOUTI, A. TIKNIOUINE and M.E. ADNANI, A comprehensive literature review on com-<br/>munity detection: Approaches and applications, <i>Procedia Computer Science</i> 151 (2019), 295-302, The 10th Interna-<br/>tional Conference on Ambient Systems, Networks and Technologies (ANT 2019) / The 2nd International Conference on<br/>Emerging Data and Industry 4.0 (ED140 2019) / Affiliated Workshops. doi:https://doi.org/10.1016/j.procs.2019.04.042.</li> <li>[32] A. Elmokashfi, A. Kvalbein and C. Dovrolis, On the Scalability of BGP: The Role of Topology Growth, <i>IEEE Journal</i><br/><i>on Selected Areas in Communications</i> 28(8) (2010), 1250–1261. doi:10.1109/JSAC.2010.101003.</li> <li>[33] P. Erdiasand, A. Kenyi, On Random Graphs</li></ul>                                                                                                                          | 22 | [25]  | C. De Bacco, E.A. Power, D.B. Larremore and C. Moore, Community detection, link prediction, and layer interdepen-                                                                                                                                 | 22 |
| <ul> <li>[26] M. De Domenico, A. Solé-Ribalta, E. Cozzo, M. Kivelä, Y. Moreno, M.A. Porter, S. Gómez and A. Arenas, Mathematical<br/>Formulation of Multilayer Networks, <i>Phys. Rev. X</i> 3 (2013), 041022. doi:10.1103/PhysRevX.3.041022.</li> <li>[27] H.A. Deylami and M. Asadpour, Link prediction in social networks using hierarchical community detec-<br/>tion, in: 2015 7th Conference on Information and Knowledge Technology (IKT), Urmia, Iran, 2015, pp. 1–5.<br/>doi:10.1109/IKT.2015.7288742.</li> <li>[28] J. Doe, <i>The Book without Title</i>, Dummy Publisher, 2100.</li> <li>[29] D. Duvenaud, D. Maclaurin, J. Aguilera-Iparraguirre, R. Gómez-Bombarelli, T. Hirzel, A. Aspuru-Guzik and<br/>R.P. Adams, Convolutional Networks on Graphs for Learning Molecular Fingerprints, in: <i>Proceedings of the 28th In-</i><br/><i>ternational Conference on Neural Information Processing Systems - Volume</i> 2, NIPS'15, MIT Press, Cambridge, MA,<br/>USA, 2015, pp. 2224–2232</li> <li>[30] I. Echegoyen, D. López-Sanz, F. Maestú and J.M. Buldú, From single layer to multilayer networks in mild cognitive im-<br/>pairment and Alzheimer's disease, <i>Journal of Physics: Complexity</i> 2(4) (2021), 045020. doi:10.1088/2632-072x/ac3ddd.</li> <li>[31] M. EL-MOUSSAOUI, T. AGOUTI, A. TIKNIOUINE and M.E. ADNANI, A comprehensive literature review on com-<br/>munity detection: Approaches and applications, <i>Procedia Computer Science</i> 151 (2019), 295–302, The 10th Interna-<br/>tional Conference on Ambient Systems, Networks and Technologies (ANT 2019) / The 2nd International Conference on<br/><i>Science and Ambient Systems</i>, Networks and Technologies (ANT 2019) / The 2nd International Conference on<br/><i>Science and Analysis</i>, On Randon Graphs I, <i>Publicationes Mathematicae Devece</i> 6 (1959), 290–297.</li> <li>[34] F. Erlandsson, P. Bródka and A. Borg, Seed Selection for Information Cascade in Multilayer Networks, in: <i>Complex Networks &amp; Their Applications</i> VI, C. Cherifi, H. Cherifi, M. Karsai and M. Musolesi, eds, Springer International Publishing,<br/><i>Cham</i>, 2018, pp. 426–436. ISBN 978-3-319-</li></ul>                                                                               | 23 |       | dence in multilayer networks, Phys. Rev. E 95 (2017), 042317. doi:10.1103/PhysRevE.95.042317.                                                                                                                                                     | 23 |
| <ul> <li>Formulation of Multilayer Networks, <i>Phys. Rev. X</i> 3 (2013), 041022. doi:10.1103/PhysRevX.3.041022.</li> <li>H.A. Deylami and M. Asadpour, Link prediction in social networks using hierarchical community detection, in: 2015 7th Conference on Information and Knowledge Technology (IKT), Urmia, Iran, 2015, pp. 1–5. doi:10.1109/IKT.2015.7288742.</li> <li>J. Doe, <i>The Book without Title</i>, Dummy Publisher, 2100.</li> <li>D. Duvenaud, D. Maclaurin, J. Aguilera-Iparraguirre, R. Gómez-Bombarelli, T. Hirzel, A. Aspuru-Guzik and R.P. Adams, Convolutional Networks on Graphs for Learning Molecular Fingerprints, in: <i>Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume</i> 2, NIPS'15, MIT Press, Cambridge, MA, USA, 2015, pp. 2224–2232</li> <li>I. Echegoyen, D. López-Sanz, F. Maestú and J.M. Buldú, From single layer to multilayer networks in mild cognitive impairment and Alzheimer's disease, <i>Journal of Physics: Complexity</i> 2(4) (2021), 045020. doi:10.1088/2632-072x/ac3ddd.</li> <li>M. EL-MOUSSAOUL, T. AGOUTI, A. TIKNIOUINE and M.E. ADNANI, A comprehensive literature review on community detection: Approaches and applications, <i>Procedia Computer Science</i> 151 (2019), 295–302, The 10th International Conference on Ambient Systems, Networks and Technologies (ANT 2019) / The 2nd International Conference on 30 Emerging Data and Industry 4.0 (ED140 2019), 404rkshops, doi:https://doi.org/10.1016/j.procs.2019.04.042.</li> <li>A. Elmokashfi, A. Kvalbein and C. Dovrolis, On the Scalability of BGP: The Role of Topology Growth, <i>IEEE Journal on Selected Areas in Communications</i> 28(8) (2010), 1250–1261. doi:10.109/JSAC.2010.101003.</li> <li>P. Erdös and A. Rényi, On Random Graphs I, <i>Publicationes Mathematicae Debrecen</i> 6 (1959), 290–297.</li> <li>K. Handsson, P. Bródka and A. Borg, Seed Selection for Information Cascade in Multilayer Networks, in: <i>Complex Networks &amp; Their Applications</i> VI, C. Cherifi, H. Cherifi, M. Karsai and M. Musolesi, eds, Spring</li></ul>                                                                                                                                                      | 24 | [26]  | M. De Domenico, A. Solé-Ribalta, E. Cozzo, M. Kivelä, Y. Moreno, M.A. Porter, S. Gómez and A. Arenas, Mathematical                                                                                                                                | 24 |
| <ul> <li>[27] H.A. Deylami and M. Asadpour, Link prediction in social networks using hierarchical community detection, in: 2015 7th Conference on Information and Knowledge Technology (IKT), Urmia, Iran, 2015, pp. 1–5. doi:10.1109/IKT.2015.7288742.</li> <li>[28] J. Doe, The Book without Title, Dummy Publisher, 2100.</li> <li>[29] D. Duvenaud, D. Maclaurin, J. Aguilera-Iparaguirre, R. Gómez-Bombarelli, T. Hirzel, A. Aspuru-Guzik and R.P. Adams, Convolutional Networks on Graphs for Learning Molecular Fingerprints, in: Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 2, NIPS'15, MIT Press, Cambridge, MA, USA, 2015, pp. 2224–2232–.</li> <li>[30] I. Echegoyen, D. López-Sanz, F. Maestú and J.M. Buldú, From single layer to multilayer networks in mild cognitive impairment and Alzheimer's disease, Journal of Physics: Complexity 2(4) (2021), 045020. doi:10.1088/2632-072x/ac3ddd.</li> <li>[31] M. EL-MOUSSAOUI, T. AGOUTI, A. TIKNIOUINE and M.E. ADNANI, A comprehensive literature review on community detection: Approaches and applications, Procedia Computer Science 151 (2019), 295–302, The 10th International Conference on Ambient Systems, Networks and Technologies (ANT 2019) / The 2nd International Conference on Semerging Data and Industry 4.0 (ED140 2019) / Affiliated Workshops. doi:https://doi.org/10.1016/j.procs.2019.04.042.</li> <li>[32] A. Elmokashfi, A. Kvalbein and C. Dovrolis, On the Scalability of BCP: The Role of Topology Growth, IEEE Journal on Selected Areas in Communications 28(8) (2010), 1250–1261. doi:10.1109/ISAC.2010.101003.</li> <li>[33] P. Erdös and A. Rényi, On Random Graphs 1, Publicationes Mathematicae Debrecen 6 (1959), 290–297.</li> <li>[34] F. Erlandsson, P. Bródka and A. Borg, Seed Selection for Information Cascade in Multilayer Networks, in: Complex Networks &amp; Their Applications VI, C. Cherifi, H. Cherifi, M. Karsai and M. Musolesi, eds, Springer International Publishing, Cham. 2018, pp. 426–436. ISBN 978-3-319-72150-7.</li> <li>[35] C. Gao and J. Li</li></ul>                                                                                                                                                        | 25 |       | Formulation of Multilayer Networks, Phys. Rev. X 3 (2013), 041022. doi:10.1103/PhysRevX.3.041022.                                                                                                                                                 | 25 |
| <ul> <li>tion, in: 2015 /th Conference on Information and Knowledge Technology (IKT), Urmia, Iran, 2015, pp. 1–5.</li> <li>doi:10.1109/IKT.2015.7288742.</li> <li>[28] J. Doe, <i>The Book without Title</i>, Dummy Publisher, 2100.</li> <li>[29] D. Duvenaud, D. Maclaurin, J. Aguilera-Iparaguirre, R. Gómez-Bombarelli, T. Hirzel, A. Aspuru-Guzik and R.P. Adams, Convolutional Networks on Graphs for Learning Molecular Fingerprints, in: <i>Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 2</i>, NIPS'15, MIT Press, Cambridge, MA, USA, 2015, pp. 2224–2323–.</li> <li>[30] I. Echegoyen, D. López-Sanz, F. Maestú and J.M. Buldú, From single layer to multilayer networks in mild cognitive impairment and Alzheimer's disease, <i>Journal of Physics: Complexity</i> 2(4) (2021), 045020, doi:10.1088/2632-072x/ac3ddd.</li> <li>[31] M. EL-MOUSSAOUI, T. AGOUTI, A. TIKNIOUINE and M.E. ADNANI, A comprehensive literature review on community detection: Approaches and applications, <i>Procedia Computer Science</i> 151 (2019), 295–302, The 10th International Conference on Ambient Systems, Networks and Technologies (ANT 2019)/The 2nd International Conference on Emerging Data and Industry 4.0 (EDI40 2019) / Affiliated Workshops, doi:https://doi.org/10.1016/j.procs.2019.04.042.</li> <li>[32] A. Elmokashfi, A. Kvalbein and C. Dovrolis, On the Scalability of BGP: The Role of Topology Growth, <i>IEEE Journal on Selected Areas in Communications</i> 28(8) (2010), 1250–1261. doi:10.1109/ISAC.2010.101003.</li> <li>[33] P. Erdös and A. Rényi, On Random Graphs I, <i>Publicationes Mathematicae Debrecen</i> 6 (1959), 290–297.</li> <li>[34] F. Erlandsson, P. Bródka and A. Borg, Seed Selection for Information Cascade in Multilayer Networks, in: <i>Complex Networks &amp; Their Applications VI, C.</i> Cherifi, H. Chargi and M. Musolesi, eds, Springer International Publishing, Cham, 2018, pp. 426–436. ISBN 978-3-319-72150-7.</li> <li>[35] C. Gao and J. Liu, Network-Based Modeling for Characterizing Human Colle</li></ul>                                                                                                                                                             | 26 | [27]  | H.A. Deylami and M. Asadpour, Link prediction in social networks using hierarchical community detec-                                                                                                                                              | 26 |
| <ul> <li>[28] J. Doe, <i>The Book without Title</i>, Dummy Publisher, 2100.</li> <li>[29] D. Duvenaud, D. Maclaurin, J. Aguilera-Iparraguirre, R. Gómez-Bombarelli, T. Hirzel, A. Aspuru-Guzik and<br/>R.P. Adams, Convolutional Networks on Graphs for Learning Molecular Fingerprints, in: <i>Proceedings of the 28th In-</i><br/><i>ternational Conference on Neural Information Processing Systems - Volume 2</i>, NIPS'15, MIT Press, Cambridge, MA,<br/>USA, 2015, pp. 2224–2232</li> <li>[30] I. Echegoyen, D. López-Sanz, F. Maestú and J.M. Buldú, From single layer to multilayer networks in mild cognitive im-<br/>pairment and Alzheimer's disease, <i>Journal of Physics: Complexity</i> 2(4) (2021), 045020. doi:10.1088/2632-072x/ac3ddd.</li> <li>[31] M. EL-MOUSSAOUI, T. AGOUTI, A. TIKNIOUINE and M.E. ADNANI, A comprehensive literature review on com-<br/>munity detection: Approaches and applications, <i>Procedia Computer Science</i> 151 (2019), 295–302, The 10th Interna-<br/>tional Conference on Ambient Systems, Networks and Technologies (ANT 2019) / The 2nd International Conference on<br/>Emerging Data and Industry 4.0 (EDI40 2019) / Affiliated Workshops. doi:10.1109/JSAC.2010.01003.</li> <li>[32] A. Elmokashfi, A. Kvalbein and C. Dovrolis, On the Scalability of BGP: The Role of Topology Growth, <i>IEEE Journal<br/>on Selected Areas in Communications</i> 28(8) (2010), 1250–1261. doi:10.1109/JSAC.2010.101003.</li> <li>[33] P. Erdös and A. Rényi, On Random Graphs I, <i>Publicationes Mathematicae Debrecen</i> 6 (1959), 290–297.</li> <li>[34] F. Erlandsson, P. Bródka and A. Borg, Seed Selection for Information Cascade in Multilayer Networks, in: <i>Complex Net-<br/>works &amp; Their Applications VI</i>, C. Cherifi, H. Cherifi, M. Karsai and M. Musolesi, eds, Springer International Publishing,<br/>Cham, 2018, pp. 426–436. ISBN 978-3-319-72150-7.</li> <li>[35] C. Gao and J. Liu, Network-Based Modeling for Characterizing Human Collective Behaviors During Extreme Events,<br/><i>IEEE Transactions on Systems, Man, and Cybernetics: Systems</i> 47(1) (2017), 171–183.</li> <li>[36] C. Gao, Y. Fan, S. Jiang, Y. Deng, J. Liu and X.</li></ul>                                                                 | 27 |       | tion, in: 2015 /th Conference on Information and Knowledge Technology (IKT), Urmia, Iran, 2015, pp. 1–5.                                                                                                                                          | 27 |
| <ul> <li>[26] J. Doc, <i>We hadow Thile</i>, Duffing Tubusker, 2100.</li> <li>[27] D. Duvenaud, D. Maclaurin, J. Aguilera-Iparraguirre, R. Gómez-Bombarelli, T. Hirzel, A. Aspuru-Guzik and<br/>R.P. Adams, Convolutional Networks on Graphs for Learning Molecular Fingerprints, in: <i>Proceedings of the 28th In-</i><br/><i>ternational Conference on Neural Information Processing Systems - Volume 2</i>, NIPS'15, MIT Press, Cambridge, MA,<br/>USA, 2015, pp. 2224–2232–.</li> <li>[30] I. Echegoyen, D. López-Sanz, F. Maestú and J.M. Buldú, From single layer to multilayer networks in mild cognitive im-<br/>pairment and Alzheimer's disease, <i>Journal of Physics: Complexity</i> 2(4) (2021), 045020. doi:10.1088/2632-072x/ac3ddd.</li> <li>[31] M. EL-MOUSSAOUI, T. AGOUTI, A. TIKNIOUINE and M.E. ADNANI, A comprehensive literature review on com-<br/>munity detection: Approaches and applications, <i>Procedia Computer Science</i> 151 (2019), 295–302, The 10th Interna-<br/>tional Conference on Ambient Systems, Networks and Technologies (ANT 2019) / The 2nd International Conference on<br/><i>Bemerging Data</i> and Industry 4.0 (EDI40 2019) / Affiliated Workshops. doi:https://doi.org/10.1016/j.procs.2019.04.042.</li> <li>[32] A. Elmokashfi, A. Kvalbein and C. Dovrolis, On the Scalability of BGP: The Role of Topology Growth, <i>IEEE Journal</i><br/><i>on Selected Areas in Communications</i> 28(8) (2010), 1250–1261. doi:10.1109/JSAC.2010.10103.</li> <li>[33] P. Erdös and A. Rényi, On Random Graphs I, <i>Publicationes Mathematicae Debrecen</i> 6 (1959), 290–297.</li> <li>[34] F. Erlandsson, P. Bródka and A. Borg, Seed Selection for Information Cascade in Multilayer Networks, in: <i>Complex Net-<br/>works &amp; Their Applications VI</i>, C. Cherifi, H. Cherifi, M. Karsai and M. Musolesi, eds, Springer International Publishing,<br/>Cham, 2018, pp. 426–436. ISBN 978-3-319-72150-7.</li> <li>[35] C. Gao and J. Liu, Network-Based Modeling for Characterizing Human Collective Behaviors During Extreme Events,<br/><i>IEEE Transactions on Systems, Man, and Cybernetics: Systems</i> 47(1) (2017), 171–183.</li> <li></li></ul>                                                                                         | 27 | [28]  | U01.10.1109/IK1.2015.7200742.<br>I. Doe. The Book without Title Dummy Publisher, 2100                                                                                                                                                             | 27 |
| <ul> <li>R.P. Adams, Convolutional Networks on Graphs for Learning Molecular Fingerprints, in: <i>Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 2</i>, NIPS'15, MIT Press, Cambridge, MA, USA, 2015, pp. 2224-2232</li> <li>I. Echegoyen, D. López-Sanz, F. Maestú and J.M. Buldú, From single layer to multilayer networks in mild cognitive impairment and Alzheimer's disease, <i>Journal of Physics: Complexity</i> 2(4) (2021), 045020. doi:10.1088/2632-072x/ac3ddd.</li> <li>M. EL-MOUSSAOUI, T. AGOUTI, A. TIKNIOUINE and M.E. ADNANI, A comprehensive literature review on community detection: Approaches and applications, <i>Proceedia Computer Science</i> 151 (2019), 295–302, The 10th International Conference on Ambient Systems, Networks and Technologies (ANT 2019) / The 2nd International Conference on a mounity 4.0 (EDI40 2019) / Affliated Workshops. doi:https://doi.org/10.1016/j.procs.2019.04.042.</li> <li>A. Elmokashfi, A. Kvalbein and C. Dovrolis, On the Scalability of BGP: The Role of Topology Growth, <i>IEEE Journal on Selected Areas in Communications</i> 28(8) (2010), 1250–1261. doi:10.1109/JSAC.2010.101003.</li> <li>P. Erdös and A. Rényi, On Random Graphs I, <i>Publicationes Mathematicae Debrecen</i> 6 (1959), 290–297.</li> <li>F. Fralandsson, P. Bródka and A. Borg, Seed Selection for Information Cascade in Multilayer Networks, in: <i>Complex Networks &amp; Their Applications VI</i>, C. Cherifi, H. Cherifi, M. Karsai and M. Musolesi, eds, Springer International Publishing, Cham, 2018, pp. 426–436. ISBN 978-3-319-72150-7.</li> <li>C. Gao and J. Liu, Network-Based Modeling for Characterizing Human Collective Behaviors During Extreme Events, <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems</i> 23(7) (2022), 6509–6524.</li> <li>J. Golbeck, Chapter 3 - Network Structure and Measures, in: <i>Analyzing the Social Web</i>, J. Golbeck, ed., Morgan Kaufmann, Boston, 2013, pp. 25–44. ISBN 978-0-12-405531-5. doi:htttps://doi.org/10.1016/B978-0-12-405531-5.00003-1.</li> </ul>                                                                                                                                                            | 28 | [20]  | D. Duvenaud D. Maclaurin I. Aguilera-Inarraguirre R. Gómez-Bombarelli T. Hirzel A. Aspuru-Guzik and                                                                                                                                               | 28 |
| <ul> <li>ternational Conference on Neural Information Processing Systems - Volume 2, NIPS 15, MIT Press, Cambridge, MA,<br/>USA, 2015, pp. 2224–2232–.</li> <li>[30] I. Echegoyen, D. López-Sanz, F. Maestú and J.M. Buldú, From single layer to multilayer networks in mild cognitive im-<br/>pairment and Alzheimer's disease, <i>Journal of Physics: Complexity</i> 2(4) (2021), 045020. doi:10.1088/2632-072x/ac3ddd.</li> <li>[31] M. EL-MOUSSAOUI, T. AGOUTI, A. TIKNIOUINE and M.E. ADNANI, A comprehensive literature review on com-<br/>munity detection: Approaches and applications, <i>Procedia Computer Science</i> 151 (2019), 295–302, The 10th Interna-<br/>tional Conference on Ambient Systems, Networks and Technologies (ANT 2019) / The 2nd International Conference on<br/>Emerging Data and Industry 4.0 (EDI40 2019) / Affiliated Workshops. doi:https://doi.org/10.1016/j.procs.2019.04.042.</li> <li>[32] A. Elmokashfi, A. Kvalbein and C. Dovrolis, On the Scalability of BGP: The Role of Topology Growth, <i>IEEE Journal<br/>on Selected Areas in Communications</i> 28(8) (2010), 1250–1261. doi:10.1109/ISAC.2010.101003.</li> <li>[33] P. Erdös and A. Rényi, On Random Graphs I, <i>Publicationes Mathematicae Debrecen</i> 6 (1959), 290–297.</li> <li>[34] F. Erlandsson, P. Bródka and A. Borg, Seed Selection for Information Cascade in Multilayer Networks, in: <i>Complex Networks &amp; Their Applications VI</i>, C. Cherifi, H. Cherifi, M. Karsai and M. Musolesi, eds, Springer International Publishing,<br/>Cham, 2018, pp. 426–436. ISBN 978-3-319-72150-7.</li> <li>[35] C. Gao, Y. Fan, S. Jiang, Y. Deng, J. Liu and X. Li, Dynamic Robustness Analysis of a Two-Layer Rail Transit Network<br/>Model, <i>IEEE Transactions on Intelligent Transportation Systems</i> 23(7) (2022), 6509–6524.</li> <li>[37] J. Golbeck, Chapter 3 - Network Structure and Measures, in: <i>Analyzing the Social Web</i>, J. Golbeck, ed., Morgan Kauf-<br/>mann, Boston, 2013, pp. 25–44. ISBN 978-0-12-405531-5. doi:https://doi.org/10.1016/B978-0-12-405531-5.00003-1.</li> </ul>                                                                                                                                                                          | 29 | [=>]  | R.P. Adams, Convolutional Networks on Graphs for Learning Molecular Fingerprints, in: <i>Proceedings of the 28th In-</i>                                                                                                                          | 29 |
| <ul> <li>USA, 2015, pp. 2224–2232–.</li> <li>[30] I. Echegoyen, D. López-Sanz, F. Maestú and J.M. Buldú, From single layer to multilayer networks in mild cognitive im-<br/>pairment and Alzheimer's disease, <i>Journal of Physics: Complexity</i> 2(4) (2021), 045020. doi:10.1088/2632-072x/ac3ddd.</li> <li>[31] M. EL-MOUSSAOUI, T. AGOUTI, A. TIKNIOUINE and M.E. ADNANI, A comprehensive literature review on com-<br/>munity detection: Approaches and applications, <i>Procedia Computer Science</i> 151 (2019), 295–302, The 10th Interna-<br/>tional Conference on Ambient Systems, Networks and Technologies (ANT 2019) / The 2nd International Conference on<br/>Emerging Data and Industry 4.0 (EDI40 2019) / Affiliated Workshops, doi:https://doi.org/10.1016/j.procs.2019.04.042.</li> <li>[32] A. Elmokashfi, A. Kvalbein and C. Dovrolis, On the Scalability of BGP: The Role of Topology Growth, <i>IEEE Journal<br/>on Selected Areas in Communications</i> 28(8) (2010), 1250–1261. doi:10.1109/JSAC.2010.101003.</li> <li>[33] P. Erdös and A. Rényi, On Random Graphs I, <i>Publicationes Mathematicae Debrecen</i> 6 (1959), 290–297.</li> <li>[34] F. Erlandsson, P. Bródka and A. Borg, Seed Selection for Information Cascade in Multilayer Networks, in: <i>Complex Net-<br/>works &amp; Their Applications VI</i>, C. Cherifi, H. Cherifi, M. Karsai and M. Musolesi, eds, Springer International Publishing,<br/>Cham, 2018, pp. 426–436. ISBN 978-3-319-72150-7.</li> <li>[35] C. Gao and J. Liu, Network-Based Modeling for Characterizing Human Collective Behaviors During Extreme Events,<br/><i>IEEE Transactions on Systems, Man, and Cybernetics: Systems</i> 47(1) (2017), 171–183.</li> <li>[36] C. Gao, Y. Fan, S. Jiang, Y. Deng, J. Liu and X. Li, Dynamic Robustness Analysis of a Two-Layer Rail Transit Network<br/>Model, <i>IEEE Transactions on Intelligent Transportation Systems</i> 23(7) (2022), 6509–6524.</li> <li>[37] J. Golbeck, Chapter 3 - Network Structure and Measures, in: <i>Analyzing the Social Web</i>, J. Golbeck, ed., Morgan Kauf-<br/>mann, Boston, 2013, pp. 25–44. ISBN 978-0-12-405531-5. doi:http</li></ul>                                                                                                            | 30 |       | ternational Conference on Neural Information Processing Systems - Volume 2, NIPS'15, MIT Press, Cambridge, MA,                                                                                                                                    | 30 |
| <ul> <li>[30] I. Echegoyen, D. López-Sanz, F. Maestú and J.M. Buldú, From single layer to multilayer networks in mild cognitive im-<br/>pairment and Alzheimer's disease, <i>Journal of Physics: Complexity</i> 2(4) (2021), 045020. doi:10.1088/2632-072x/ac3ddd.</li> <li>[31] M. EL-MOUSSAOUI, T. AGOUTI, A. TIKNIOUINE and M.E. ADNANI, A comprehensive literature review on com-<br/>munity detection: Approaches and applications, <i>Procedia Computer Science</i> 151 (2019), 295–302, The 10th Interna-<br/>tional Conference on Ambient Systems, Networks and Technologies (ANT 2019) / The 2nd International Conference on<br/>Emerging Data and Industry 4.0 (EDI40 2019) / Affiliated Workshops. doi:https://doi.org/10.1016/j.procs.2019.04.042.</li> <li>[32] A. Elmokashfi, A. Kvalbein and C. Dovrolis, On the Scalability of BGP: The Role of Topology Growth, <i>IEEE Journal<br/>on Selected Areas in Communications</i> 28(8) (2010), 1250–1261. doi:10.1109/JSAC.2010.101003.</li> <li>[33] P. Erdös and A. Rényi, On Random Graphs I, <i>Publicationes Mathematicae Debrecen</i> 6 (1959), 290–297.</li> <li>[34] F. Erlandsson, P. Bródka and A. Borg, Seed Selection for Information Cascade in Multilayer Networks, in: <i>Complex Net-<br/>works &amp; Their Applications VI</i>, C. Cherifi, H. Cherifi, M. Karsai and M. Musolesi, eds, Springer International Publishing,<br/>Cham, 2018, pp. 426–436. ISBN 978-3-319-72150-7.</li> <li>[35] C. Gao and J. Liu, Network-Based Modeling for Characterizing Human Collective Behaviors During Extreme Events,<br/><i>IEEE Transactions on Systems, Man, and Cybernetics: Systems</i> 47(1) (2017), 171–183.</li> <li>[36] C. Gao, Y. Fan, S. Jiang, Y. Deng, J. Liu and X. Li, Dynamic Robustness Analysis of a Two-Layer Rail Transit Network<br/>Model, <i>IEEE Transactions on Intelligent Transportation Systems</i> 23(7) (2022), 6509–6524.</li> <li>[37] J. Golbeck, Chapter 3 - Network Structure and Measures, in: <i>Analyzing the Social Web</i>, J. Golbeck, ed., Morgan Kauf-<br/>mann, Boston, 2013, pp. 25–44. ISBN 978-0-12-405531-5. doi:https://doi.org/10.1016/B978-0-12-405531-5.0</li></ul>                                                                                                        | 31 |       | USA, 2015, pp. 2224–2232–.                                                                                                                                                                                                                        | 31 |
| <ul> <li>pairment and Alzheimer's disease, Journal of Physics: Complexity 2(4) (2021), 045020. doi:10.1088/2632-072x/ac3ddd.</li> <li>[31] M. EL-MOUSSAOUI, T. AGOUTI, A. TIKNIOUINE and M.E. ADNANI, A comprehensive literature review on community detection: Approaches and applications, Procedia Computer Science 151 (2019), 295–302, The 10th International Conference on Ambient Systems, Networks and Technologies (ANT 2019) / The 2nd International Conference on Emerging Data and Industry 4.0 (EDI40 2019) / Affiliated Workshops. doi:https://doi.org/10.1016/j.procs.2019.04.042.</li> <li>[32] A. Elmokashfi, A. Kvalbein and C. Dovrolis, On the Scalability of BGP: The Role of Topology Growth, IEEE Journal on Selected Areas in Communications 28(8) (2010), 1250–1261. doi:10.1109/JSAC.2010.101003.</li> <li>[33] P. Erdös and A. Rényi, On Random Graphs I, Publicationes Mathematicae Debrecen 6 (1959), 290–297.</li> <li>[34] F. Erlandsson, P. Bródka and A. Borg, Seed Selection for Information Cascade in Multilayer Networks, in: Complex Networks &amp; Their Applications VI, C. Cherifi, H. Cherifi, M. Karsai and M. Musolesi, eds, Springer International Publishing, Cham, 2018, pp. 426–436. ISBN 978-3-319-72150-7.</li> <li>[35] C. Gao and J. Liu, Network-Based Modeling for Characterizing Human Collective Behaviors During Extreme Events, IEEE Transactions on Systems, Man, and Cybernetics: Systems 47(1) (2017), 171–183.</li> <li>[36] C. Gao, Y. Fan, S. Jiang, Y. Deng, J. Liu and X. Li, Dynamic Robustness Analysis of a Two-Layer Rail Transit Network Model, IEEE Transactions on Intelligent Transportation Systems 23(7) (2022), 6509–6524.</li> <li>[37] J. Golbeck, Chapter 3 - Network Structure and Measures, in: Analyzing the Social Web, J. Golbeck, ed., Morgan Kaufmann, Boston, 2013, pp. 25–44. ISBN 978-0-12-405531-5. doi:https://doi.org/10.1016/B978-0-12-405531-5.00003-1.</li> </ul>                                                                                                                                                                                                                                                                                                                                   | 32 | [30]  | I. Echegoyen, D. López-Sanz, F. Maestú and J.M. Buldú, From single layer to multilayer networks in mild cognitive im-                                                                                                                             | 32 |
| <ul> <li>[31] M. EL-MOUSSAOUI, T. AGOUTI, A. TIKNIOUINE and M.E. ADNANI, A comprehensive literature review on community detection: Approaches and applications, <i>Procedia Computer Science</i> 151 (2019), 295–302, The 10th International Conference on Ambient Systems, Networks and Technologies (ANT 2019) / The 2nd International Conference on Emerging Data and Industry 4.0 (EDI40 2019) / Affiliated Workshops. doi:https://doi.org/10.1016/j.procs.2019.04.042.</li> <li>[32] A. Elmokashfi, A. Kvalbein and C. Dovrolis, On the Scalability of BGP: The Role of Topology Growth, <i>IEEE Journal on Selected Areas in Communications</i> 28(8) (2010), 1250–1261. doi:10.1109/JSAC.2010.101003.</li> <li>[33] P. Erdös and A. Rényi, On Random Graphs I, <i>Publicationes Mathematicae Debrecen</i> 6 (1959), 290–297.</li> <li>[34] F. Erlandsson, P. Bródka and A. Borg, Seed Selection for Information Cascade in Multilayer Networks, in: <i>Complex Networks &amp; Their Applications VI</i>, C. Cherifi, H. Cherifi, M. Karsai and M. Musolesi, eds, Springer International Publishing, Cham, 2018, pp. 426–436. ISBN 978-3-319-72150-7.</li> <li>[35] C. Gao and J. Liu, Network-Based Modeling for Characterizing Human Collective Behaviors During Extreme Events, <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems</i> 47(1) (2017), 171–183.</li> <li>[36] C. Gao, Y. Fan, S. Jiang, Y. Deng, J. Liu and X. Li, Dynamic Robustness Analysis of a Two-Layer Rail Transit Network Model, <i>IEEE Transactions on Intelligent Transportation Systems</i> 23(7) (2022), 6509–6524.</li> <li>[37] J. Golbeck, Chapter 3 - Network Structure and Measures, in: <i>Analyzing the Social Web</i>, J. Golbeck, ed., Morgan Kaufmann, Boston, 2013, pp. 25–44. ISBN 978-0-12-405531-5. doi:https://doi.org/10.1016/B978-0-12-405531-5.00003-1.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                               | 33 |       | pairment and Alzheimer's disease, <i>Journal of Physics: Complexity</i> $2(4)$ (2021), 045020. doi:10.1088/2632-072x/ac3ddd.                                                                                                                      | 33 |
| <ul> <li>munity detection: Approaches and applications, <i>Procedia Computer Science</i> <b>151</b> (2019), 295–302, The 10th International Conference on Ambient Systems, Networks and Technologies (ANT 2019) / The 2nd International Conference on Emerging Data and Industry 4.0 (EDI40 2019) / Affiliated Workshops, doi:https://doi.org/10.1016/j.procs.2019.04.042.</li> <li>[32] A. Elmokashfi, A. Kvalbein and C. Dovrolis, On the Scalability of BGP: The Role of Topology Growth, <i>IEEE Journal on Selected Areas in Communications</i> <b>28</b>(8) (2010), 1250–1261. doi:10.1109/JSAC.2010.101003.</li> <li>[33] P. Erdös and A. Rényi, On Random Graphs I, <i>Publicationes Mathematicae Debrecen</i> <b>6</b> (1959), 290–297.</li> <li>[34] F. Erlandsson, P. Bródka and A. Borg, Seed Selection for Information Cascade in Multilayer Networks, in: <i>Complex Networks &amp; Their Applications VI</i>, C. Cherifi, H. Cherifi, M. Karsai and M. Musolesi, eds, Springer International Publishing, Cham, 2018, pp. 426–436. ISBN 978-3-319-72150-7.</li> <li>[35] C. Gao and J. Liu, Network-Based Modeling for Characterizing Human Collective Behaviors During Extreme Events, <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems</i> <b>47</b>(1) (2017), 171–183.</li> <li>[36] C. Gao, Y. Fan, S. Jiang, Y. Deng, J. Liu and X. Li, Dynamic Robustness Analysis of a Two-Layer Rail Transit Network Model, <i>IEEE Transactions on Intelligent Transportation Systems</i> <b>23</b>(7) (2022), 6509–6524.</li> <li>[37] J. Golbeck, Chapter 3 - Network Structure and Measures, in: <i>Analyzing the Social Web</i>, J. Golbeck, ed., Morgan Kaufmann, Boston, 2013, pp. 25–44. ISBN 978-0-12-405531-5. doi:https://doi.org/10.1016/B978-0-12-405531-5.00003-1.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 34 | [31]  | M. EL-MOUSSAOUI, T. AGOUTI, A. TIKNIOUINE and M.E. ADNANI, A comprehensive literature review on com-                                                                                                                                              | 34 |
| <ul> <li><sup>355</sup> Interference of Ambrehr Systems, Networks and rechnologies (ANT 2019) / He 2nd international Conference of Emerging Data and Industry 4.0 (EDI40 2019) / Affiliated Workshops. doi:https://doi.org/10.1016/j.procs.2019.04.042.</li> <li><sup>366</sup> [32] A. Elmokashfi, A. Kvalbein and C. Dovrolis, On the Scalability of BGP: The Role of Topology Growth, <i>IEEE Journal on Selected Areas in Communications</i> 28(8) (2010), 1250–1261. doi:10.1109/JSAC.2010.101003.</li> <li><sup>377</sup> [33] P. Erdös and A. Rényi, On Random Graphs I, <i>Publicationes Mathematicae Debrecen</i> 6 (1959), 290–297.</li> <li><sup>388</sup> [34] F. Erlandsson, P. Bródka and A. Borg, Seed Selection for Information Cascade in Multilayer Networks, in: <i>Complex Networks &amp; Their Applications VI</i>, C. Cherifi, H. Cherifi, M. Karsai and M. Musolesi, eds, Springer International Publishing, Cham, 2018, pp. 426–436. ISBN 978-3-319-72150-7.</li> <li><sup>391</sup> [35] C. Gao and J. Liu, Network-Based Modeling for Characterizing Human Collective Behaviors During Extreme Events, <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems</i> 47(1) (2017), 171–183.</li> <li><sup>392</sup> [36] C. Gao, Y. Fan, S. Jiang, Y. Deng, J. Liu and X. Li, Dynamic Robustness Analysis of a Two-Layer Rail Transit Network Model, <i>IEEE Transactions on Intelligent Transportation Systems</i> 23(7) (2022), 6509–6524.</li> <li><sup>394</sup> [397] J. Golbeck, Chapter 3 - Network Structure and Measures, in: <i>Analyzing the Social Web</i>, J. Golbeck, ed., Morgan Kaufmann, Boston, 2013, pp. 25–44. ISBN 978-0-12-405531-5. doi:https://doi.org/10.1016/B978-0-12-405531-5.00003-1.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25 |       | munity detection: Approaches and applications, <i>Procedia Computer Science</i> <b>151</b> (2019), 295–302, The 10th Interna-<br>tional Conference on Ambient Systems, Naturals, and Tachnologies (ANT 2010) (The 2nd International Conference on | 25 |
| <ul> <li>[36] Endersteing Data and marker in the intervention of the second state in the stat</li></ul>                                                                                                                                                            | 55 |       | Emerging Data and Industry 4.0 (EDI40 2019) / Affiliated Workshops, doi:https://doi.org/10.1016/i.procs.2019.04.042                                                                                                                               | 50 |
| <ul> <li>an Selected Areas in Communications 28(8) (2010), 1250–1261. doi:10.1109/JSAC.2010.101003.</li> <li>[33] P. Erdös and A. Rényi, On Random Graphs I, <i>Publicationes Mathematicae Debrecen</i> 6 (1959), 290–297.</li> <li>[34] F. Erlandsson, P. Bródka and A. Borg, Seed Selection for Information Cascade in Multilayer Networks, in: <i>Complex Networks &amp; Their Applications VI</i>, C. Cherifi, H. Cherifi, M. Karsai and M. Musolesi, eds, Springer International Publishing, Cham, 2018, pp. 426–436. ISBN 978-3-319-72150-7.</li> <li>[35] C. Gao and J. Liu, Network-Based Modeling for Characterizing Human Collective Behaviors During Extreme Events, <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems</i> 47(1) (2017), 171–183.</li> <li>[36] C. Gao, Y. Fan, S. Jiang, Y. Deng, J. Liu and X. Li, Dynamic Robustness Analysis of a Two-Layer Rail Transit Network Model, <i>IEEE Transactions on Intelligent Transportation Systems</i> 23(7) (2022), 6509–6524.</li> <li>[37] J. Golbeck, Chapter 3 - Network Structure and Measures, in: <i>Analyzing the Social Web</i>, J. Golbeck, ed., Morgan Kaufmann, Boston, 2013, pp. 25–44. ISBN 978-0-12-405531-5. doi:https://doi.org/10.1016/B978-0-12-405531-5.00003-1.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 36 | [32]  | A. Elmokashfi, A. Kvalbein and C. Dovrolis. On the Scalability of BGP: The Role of Topology Growth. <i>IEEE Journal</i>                                                                                                                           | 36 |
| <ul> <li>[33] P. Erdös and A. Rényi, On Random Graphs I, <i>Publicationes Mathematicae Debrecen</i> 6 (1959), 290–297.</li> <li>[34] F. Erlandsson, P. Bródka and A. Borg, Seed Selection for Information Cascade in Multilayer Networks, in: <i>Complex Networks &amp; Their Applications VI</i>, C. Cherifi, H. Cherifi, M. Karsai and M. Musolesi, eds, Springer International Publishing, Cham, 2018, pp. 426–436. ISBN 978-3-319-72150-7.</li> <li>[35] C. Gao and J. Liu, Network-Based Modeling for Characterizing Human Collective Behaviors During Extreme Events, <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems</i> 47(1) (2017), 171–183.</li> <li>[36] C. Gao, Y. Fan, S. Jiang, Y. Deng, J. Liu and X. Li, Dynamic Robustness Analysis of a Two-Layer Rail Transit Network Model, <i>IEEE Transactions on Intelligent Transportation Systems</i> 23(7) (2022), 6509–6524.</li> <li>[37] J. Golbeck, Chapter 3 - Network Structure and Measures, in: <i>Analyzing the Social Web</i>, J. Golbeck, ed., Morgan Kaufmann, Boston, 2013, pp. 25–44. ISBN 978-0-12-405531-5. doi:https://doi.org/10.1016/B978-0-12-405531-5.00003-1.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 37 | [0-]  | on Selected Areas in Communications 28(8) (2010), 1250–1261. doi:10.1109/JSAC.2010.101003.                                                                                                                                                        | 37 |
| <ul> <li>[34] F. Erlandsson, P. Bródka and A. Borg, Seed Selection for Information Cascade in Multilayer Networks, in: <i>Complex Networks &amp; Their Applications VI</i>, C. Cherifi, H. Cherifi, M. Karsai and M. Musolesi, eds, Springer International Publishing, Cham, 2018, pp. 426–436. ISBN 978-3-319-72150-7.</li> <li>[35] C. Gao and J. Liu, Network-Based Modeling for Characterizing Human Collective Behaviors During Extreme Events, <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems</i> 47(1) (2017), 171–183.</li> <li>[36] C. Gao, Y. Fan, S. Jiang, Y. Deng, J. Liu and X. Li, Dynamic Robustness Analysis of a Two-Layer Rail Transit Network Model, <i>IEEE Transactions on Intelligent Transportation Systems</i> 23(7) (2022), 6509–6524.</li> <li>[37] J. Golbeck, Chapter 3 - Network Structure and Measures, in: <i>Analyzing the Social Web</i>, J. Golbeck, ed., Morgan Kaufmann, Boston, 2013, pp. 25–44. ISBN 978-0-12-405531-5. doi:https://doi.org/10.1016/B978-0-12-405531-5.00003-1.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 38 | [33]  | P. Erdös and A. Rényi, On Random Graphs I, Publicationes Mathematicae Debrecen 6 (1959), 290–297.                                                                                                                                                 | 38 |
| <ul> <li>works &amp; Their Applications VI, C. Cherifi, H. Cherifi, M. Karsai and M. Musolesi, eds, Springer International Publishing,<br/>Cham, 2018, pp. 426–436. ISBN 978-3-319-72150-7.</li> <li>[35] C. Gao and J. Liu, Network-Based Modeling for Characterizing Human Collective Behaviors During Extreme Events,<br/><i>IEEE Transactions on Systems, Man, and Cybernetics: Systems</i> 47(1) (2017), 171–183.</li> <li>[36] C. Gao, Y. Fan, S. Jiang, Y. Deng, J. Liu and X. Li, Dynamic Robustness Analysis of a Two-Layer Rail Transit Network<br/>Model, <i>IEEE Transactions on Intelligent Transportation Systems</i> 23(7) (2022), 6509–6524.</li> <li>[37] J. Golbeck, Chapter 3 - Network Structure and Measures, in: <i>Analyzing the Social Web</i>, J. Golbeck, ed., Morgan Kauf-<br/>mann, Boston, 2013, pp. 25–44. ISBN 978-0-12-405531-5. doi:https://doi.org/10.1016/B978-0-12-405531-5.00003-1.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 39 | [34]  | F. Erlandsson, P. Bródka and A. Borg, Seed Selection for Information Cascade in Multilayer Networks, in: Complex Net-                                                                                                                             | 39 |
| <ul> <li>Cham, 2018, pp. 426–436. ISBN 978-3-319-72150-7.</li> <li>[35] C. Gao and J. Liu, Network-Based Modeling for Characterizing Human Collective Behaviors During Extreme Events,<br/><i>IEEE Transactions on Systems, Man, and Cybernetics: Systems</i> 47(1) (2017), 171–183.</li> <li>[36] C. Gao, Y. Fan, S. Jiang, Y. Deng, J. Liu and X. Li, Dynamic Robustness Analysis of a Two-Layer Rail Transit Network<br/>Model, <i>IEEE Transactions on Intelligent Transportation Systems</i> 23(7) (2022), 6509–6524.</li> <li>[37] J. Golbeck, Chapter 3 - Network Structure and Measures, in: <i>Analyzing the Social Web</i>, J. Golbeck, ed., Morgan Kauf-<br/>mann, Boston, 2013, pp. 25–44. ISBN 978-0-12-405531-5. doi:https://doi.org/10.1016/B978-0-12-405531-5.00003-1.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40 |       | works & Their Applications VI, C. Cherifi, H. Cherifi, M. Karsai and M. Musolesi, eds, Springer International Publishing,                                                                                                                         | 40 |
| <ul> <li>[35] C. Gao and J. Liu, Network-Based Modeling for Characterizing Human Collective Behaviors During Extreme Events, <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems</i> 47(1) (2017), 171–183.</li> <li>[36] C. Gao, Y. Fan, S. Jiang, Y. Deng, J. Liu and X. Li, Dynamic Robustness Analysis of a Two-Layer Rail Transit Network Model, <i>IEEE Transactions on Intelligent Transportation Systems</i> 23(7) (2022), 6509–6524.</li> <li>[37] J. Golbeck, Chapter 3 - Network Structure and Measures, in: <i>Analyzing the Social Web</i>, J. Golbeck, ed., Morgan Kaufmann, Boston, 2013, pp. 25–44. ISBN 978-0-12-405531-5. doi:https://doi.org/10.1016/B978-0-12-405531-5.00003-1.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 41 | 50.53 | Cham, 2018, pp. 426–436. ISBN 978-3-319-72150-7.                                                                                                                                                                                                  | 41 |
| <ul> <li>[36] C. Gao, Y. Fan, S. Jiang, Y. Deng, J. Liu and X. Li, Dynamic Robustness Analysis of a Two-Layer Rail Transit Network<br/>Model, <i>IEEE Transactions on Intelligent Transportation Systems</i> 23(7) (2022), 6509–6524.</li> <li>[37] J. Golbeck, Chapter 3 - Network Structure and Measures, in: <i>Analyzing the Social Web</i>, J. Golbeck, ed., Morgan Kaufmann, Boston, 2013, pp. 25–44. ISBN 978-0-12-405531-5. doi:https://doi.org/10.1016/B978-0-12-405531-5.00003-1.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 42 | [35]  | U. Gao and J. Liu, Network-Based Modeling for Characterizing Human Collective Behaviors During Extreme Events,<br>IEEE Transactions on Systems Man, and Cybernetical Systems 47(1) (2017), 171–182                                                | 10 |
| <ul> <li>Model, <i>IEEE Transactions on Intelligent Transportation Systems</i> 23(7) (2022), 6509–6524.</li> <li>[37] J. Golbeck, Chapter 3 - Network Structure and Measures, in: <i>Analyzing the Social Web</i>, J. Golbeck, ed., Morgan Kaufmann, Boston, 2013, pp. 25–44. ISBN 978-0-12-405531-5. doi:https://doi.org/10.1016/B978-0-12-405531-5.00003-1.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12 | [26]  | IEEE ITANSACTIONS ON SYSTEMS, MAIN, AND CYDEMETICS: SYSTEMS 47(1) (2017), 1/1-185.                                                                                                                                                                | 42 |
| <ul> <li>Inoted, <i>IEEE Transactions on Intelligent Transportation Systems</i> 26(7) (2022), 0505-0524.</li> <li>[37] J. Golbeck, Chapter 3 - Network Structure and Measures, in: <i>Analyzing the Social Web</i>, J. Golbeck, ed., Morgan Kaufmann, Boston, 2013, pp. 25–44. ISBN 978-0-12-405531-5. doi:https://doi.org/10.1016/B978-0-12-405531-5.00003-1.</li> <li>46</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 43 | [30]  | Model IEEE Transactions on Intelligent Transportation Systems 23(7) (2022) 6500-6524                                                                                                                                                              | 43 |
| 45 mann, Boston, 2013, pp. 25–44. ISBN 978-0-12-405531-5. doi:https://doi.org/10.1016/B978-0-12-405531-5.00003-1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 44 | [371  | J. Golbeck, Chapter 3 - Network Structure and Measures, in: Analyzing the Social Web. J. Golbeck, ed. Morgan Kauf-                                                                                                                                | 44 |
| 46 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 45 | [0,1] | mann, Boston, 2013, pp. 25–44. ISBN 978-0-12-405531-5. doi:https://doi.org/10.1016/B978-0-12-405531-5.00003-1.                                                                                                                                    | 45 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 46 |       |                                                                                                                                                                                                                                                   | 46 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |       |                                                                                                                                                                                                                                                   |    |

- [38] J. Golbeck, Chapter 21 Analyzing networks, in: *Introduction to Social Media Investigation*, J. Golbeck, ed., Syngress, Boston, 2015, pp. 221–235. ISBN 978-0-12-801656-5. doi:https://doi.org/10.1016/B978-0-12-801656-5.00021-4.
   [39] G. Guccione, T. Darras, H.L. Jeannic, V.B. Verma, S.W. Nam, A. Cavaillès and J. Laurat, Connecting heterogeneous quantum networks by hybrid entanglement swapping, *Science Advances* 6(22) (2020), 4508. doi:10.1126/sciadv.aba4508.
   [40] S. Gupta and S. Kundu, Interaction graph, topical communities, and efficient event detection from social streams, *Submitted in Information Processing & Management* (2022).
   [41] L. Gyanendro Singh, A. Mitra and S. Ranbir Singh, Sentiment Analysis of Tweets using Heterogeneous Multi-layer Network Representation and Embedding in: *Proceedings of the 2020 Conference on Empirical Methods in Natural*
  - Network Representation and Embedding, in: *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, ACL, Online, 2020, pp. 8932–8946. doi:10.18653/v1/2020.emnlp-main.718.
    [42] W.L. Hamilton, R. Ying and J. Leskovec, Inductive Representation Learning on Large Graphs, in: *Proceedings of the*

8

9

10

24

- [42] W.L. Hammon, R. Hing and J. Leskovec, inductive Representation Learning on Large Graphs, in: *Proceedings of the 31st International Conference on Neural Information Processing Systems*, NIPS'17, Curran Associates Inc., Red Hook, NY, USA, 2017, pp. 1025–1035–. ISBN 9781510860964.
- 11[43] Z. Hammoud and F. Kramer, Multilayer networks: aspects, implementations, and application in biomedicine, *Big Data*12Analytics 5(1) (2020), 2. doi:10.1186/s41044-020-00046-0.
- [44] J. Han, Mining Heterogeneous Information Networks by Exploring the Power of Links, in: *Discovery Science*, J. Gama, V.S. Costa, A.M. Jorge and P.B. Brazdil, eds, Springer Berlin Heidelberg, Berlin, Heidelberg, 2009, pp. 13–30. ISBN 978-3-642-04747-3.
- [45] F.M. Harper and J.A. Konstan, The MovieLens Datasets: History and Context, ACM Trans. Interact. Intell. Syst. 5(4)
   (2015). doi:10.1145/2827872.
- [46] D. Hristova, A. Noulas, C. Brown, M. Musolesi and C. Mascolo, A multilayer approach to multiplexity and link prediction in online geo-social networks, *EPJ Data Science* 5(1) (2016), 24. doi:10.1140/epjds/s13688-016-0087-z.
- [47] X. Huang, D. Chen, T. Ren and D. Wang, A survey of community detection methods in multilayer networks, *Data Mining and Knowledge Discovery* 35(1) (2021), 1–45. doi:10.1007/s10618-020-00716-6.
- [48] M. Imran, H. Yin, T. Chen, Z. Huang and K. Zheng, DeHIN: A Decentralized Framework for Embedding Large-scale Heterogeneous Information Networks, *IEEE Transactions on Knowledge and Data Engineering* (2022), 1–1. doi:10.1109/TKDE.2022.3141951.
- [49] R. Interdonato, A. Tagarelli, D. Ienco, A. Sallaberry and P. Poncelet, Local community detection in multilayer networks, Data Mining and Knowledge Discovery **31**(5) (2017), 1444–1479. doi:10.1007/s10618-017-0525-y.
  - [50] S. Jalan and P. Pradhan, Localization of multilayer networks by optimized single-layer rewiring, *Phys. Rev. E* 97(4) (2018), 042314. doi:10.1103/PhysRevE.97.042314.
- [51] J. Jiang, R. Zhang, L. Guo, W. Li and X. Cai, Network Aggregation Process in Multilayer Air Transportation Networks, *Chinese Physics Letters* 33(10) (2016), 108901. doi:10.1088/0256-307x/33/10/108901.
- [52] Z. Jin, X. Zhao and Y. Liu, Heterogeneous Graph Network Embedding for Sentiment Analysis on Social Media, Cognitive Computation 13(1) (2021), 81–95. doi:10.1007/s12559-020-09793-7.
- [53] V.R. K, M. Katukuri and M. Jagarapu, CIM: clique-based heuristic for finding influential nodes in multilayer networks,
   *Applied Intelligence* 52(5) (2022), 5173–5184. doi:10.1007/s10489-021-02656-0.
- [54] V. Katiyar, N. Chand and S. Soni, Efficient Multilevel Clustering for Large-Scale Heterogeneous Wireless Sensor Networks, in: *Proceedings of the 2011 International Conference on Communication, Computing and Security*, ICCCS '11, ACM, New York, 2011, pp. 1–6–. ISBN 9781450304641. doi:10.1145/1947940.1947942.
- [55] J.Y. Kim and K.-I. Goh, Coevolution and Correlated Multiplexity in Multiplex Networks, *Phys. Rev. Lett.* 111 (2013),
   058702. doi:10.1103/PhysRevLett.111.058702.
- <sup>34</sup> [56] M. Kivela, A. Arenas, M. Barthelemy, J.P. Gleeson, Y. Moreno and M.A. Porter, Multilayer networks, *Journal of Complex Networks* **2**(3) (2014), 203–271. doi:10.1093/comnet/cnu016.
- [57] Z. Kuncheva and G. Montana, Community Detection in Multiplex Networks Using Locally Adaptive Random Walks,
   in: *Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining* 2015, ASONAM '15, ACM, New York, 2015, pp. 1308–1315–. ISBN 9781450338547. doi:10.1145/2808797.2808852.
- [58] A. Lancichinetti, S. Fortunato and F. Radicchi, Benchmark graphs for testing community detection algorithms, *Phys. Rev. E* 78(4) (2008), 046110. doi:10.1103/PhysRevE.78.046110.
- [59] J. Leskovec, J. Kleinberg and C. Faloutsos, Graph Evolution: Densification and Shrinking Diameters, *ACM Trans. Knowl. Discov. Data* 1(1) (2007), 2–es. doi:10.1145/1217299.1217301.
- [60] K. Lewis, J. Kaufman, M. Gonzalez, A. Wimmer and N. Christakis, Tastes, ties, and time: A new social network dataset using Facebook.com, *Social Networks* **30**(4) (2008), 330–342. doi:https://doi.org/10.1016/j.socnet.2008.07.002.
- [61] G. Li, C. Xiong, A.K. Thabet and B. Ghanem, DeeperGCN: All You Need to Train Deeper GCNs, *CoRR* abs/2006.07739
   (2020). https://arxiv.org/abs/2006.07739.
- [62] W. Li, C.-C. Liu, T. Zhang, H. Li, M.S. Waterman and X.J. Zhou, Integrative Analysis of Many Weighted Co-Expression Networks Using Tensor Computation, *PLOS Computational Biology* 7(6) (2011), 1–13. doi:10.1371/journal.pcbi.1001106.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

2.0

21

2.2

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

| 1  | [63]  | RR. Liu, CX. Jia and YC. Lai, Asymmetry in interdependence makes a multilayer system more robust against cascading failures. <i>Phys. Rev. E</i> <b>100</b> (5) (2019), 052306. doi:10.1103/PhysRevE.100.052306.              | 1  |
|----|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2  | [64]  | RR. Liu, CX. Jia and YC. Lai, Remote control of cascading dynamics on complex multilayer networks, New Journal                                                                                                                | 2  |
| 4  | [65]  | of Physics 21(4) (2019), 045002. doi:10.1088/1367-2630/ab0e1a.                                                                                                                                                                | 4  |
| 5  | [05]  | works, <i>Scientific Reports</i> <b>14</b> (1) (2024), 8769. doi:10.1038/s41598-024-59120-5.                                                                                                                                  | 5  |
| 6  | [66]  | LS. Lv, K. Zhang, T. Zhang and MY. Ma, Nodes and layers PageRank centrality for multilayer networks, Chinese                                                                                                                  | 6  |
| 7  | [67]  | <i>Physics B</i> 28(2) (2019), 020501. doi:10.1088/1674-1056/28/2/020501.                                                                                                                                                     | 7  |
| 8  | [07]  | <i>Series</i> <b>1533</b> (3) (2020), 032076. doi:10.1088/1742-6596/1533/3/032076.                                                                                                                                            | 8  |
| 9  | [68]  | M. Malek, S. Zorzan and M. Ghoniem, A methodology for multilayer networks analysis in the context of open and                                                                                                                 | 9  |
| 10 | [(0]  | private data: biological application, <i>Applied Network Science</i> <b>5</b> (1) (2020), 41. doi:10.1007/s41109-020-00277-z.                                                                                                 | 10 |
| 11 | [09]  | J.A. Mendez-Bermudez, G.F. de Arruda, F.A. Rodrigues and Y. Moreno, Scanng properties of multilayer random net-<br>works, <i>Phys. Rev. E</i> 96 (2017), 012307, doi:10.1103/PhysRevE.96.012307.                              | 11 |
| 12 | [70]  | C.C.J.M. Millar and C.J. Choi, Networks, Social Norms and Knowledge Sub-Networks, <i>Journal of Business Ethics</i> <b>90</b> (4)                                                                                             | 12 |
| 13 | [7]1] | (2009), 565–574. doi:10.1007/s10551-010-0607-x.                                                                                                                                                                               | 13 |
| 14 | [71]  | D. Mohdeb, A. Boubetra and M. Charikhi, WMPLP: A model for link prediction in heterogeneous social networks, in:<br>2014 4th International Symposium ISKO-Maghreb: Concepts and Tools for knowledge Management (ISKO-Maghreb) | 14 |
| 15 |       | Algiers, 2014, pp. 1–4. doi:10.1109/ISKO-Maghreb.2014.7033447.                                                                                                                                                                | 15 |
| 16 | [72]  | C. Morris, M. Ritzert, M. Fey, W.L. Hamilton, J.E. Lenssen, G. Rattan and M. Grohe, Weisfeiler and Leman Go Neural:                                                                                                           | 16 |
| 17 |       | Higher-Order Graph Neural Networks, in: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence                                                                                                            | 17 |
| 18 |       | tional Advances in Artificial Intelligence, AAAI'19/IAAI'19/EAAI'19, AAAI Press, 2019. ISBN 978-1-57735-809-1.                                                                                                                | 18 |
| 19 |       | doi:10.1609/aaai.v33i01.33014602.                                                                                                                                                                                             | 19 |
| 20 | [73]  | Y. Murase, J. Török, HH. Jo, K. Kaski and J. Kertész, Multilayer weighted social network model, <i>Phys. Rev. E</i> 90 (2014) 052810. doi:10.1103/PhysRevE.00.052810                                                          | 20 |
| 21 | [74]  | V. Nanumvan, C. Gote and F. Schweitzer, Multilaver network approach to modeling authorship influence on citation                                                                                                              | 21 |
| 22 | L. 1  | dynamics in physics journals, <i>Phys. Rev. E</i> 102(3) (2020), 032303. doi:10.1103/PhysRevE.102.032303.                                                                                                                     | 22 |
| 23 | [75]  | J. Ni, H. Tong, W. Fan and X. Zhang, Inside the Atoms: Ranking on a Network of Networks, in: <i>Proceedings of the 20th</i>                                                                                                   | 23 |
| 24 |       | np 1356–1365– ISBN 9781450329569 doi:10.1145/2623330.2623643                                                                                                                                                                  | 24 |
| 25 | [76]  | S. Pahwa, M. Youssef and C. Scoglio, Electrical Networks: An Introduction, in: <i>Networks of Networks: The Last Frontier</i>                                                                                                 | 25 |
| 26 |       | of Complexity, G. D'Agostino and A. Scala, eds, Springer International Publishing, Cham, 2014, pp. 163–186. ISBN                                                                                                              | 26 |
| 27 | [77]  | 9/8-3-319-03518-5.<br>E Papadopoulos and K-K Kleineberg Link persistence and conditional distances in multipley networks. <i>Phys. Rev. F</i>                                                                                 | 27 |
| 28 | [//]  | <b>99</b> (2019), 012322. doi:10.1103/PhysRevE.99.012322.                                                                                                                                                                     | 28 |
| 29 | [78]  | Q. Peng, K. Chen, Q. Liu, Y. Su and Y. Lu, Community Detection Algorithm for Heterogeneous Net-                                                                                                                               | 29 |
| 30 |       | works Based on Central Node and Seed Community Extension, in: 2021 3rd International Conference on Ad-<br>vances in Computer Technology Information Science and Communication (CTISC) Shanghai 2021 pp. 178–182               | 30 |
| 31 |       | doi:10.1109/CTISC52352.2021.00040.                                                                                                                                                                                            | 31 |
| 32 | [79]  | M. Perc, Diffusion dynamics and information spreading in multilayer networks: An overview, <i>The European Physical</i>                                                                                                       | 32 |
| 33 | 1001  | Journal Special Topics 228(11) (2019), 2351–2355. doi:10.1140/epjst/e2019-900201-4.                                                                                                                                           | 33 |
| 34 | [80]  | network embedding approach, Scientific Reports <b>11</b> (1) (2021), 8794, doi:10.1038/s41598-021-87987-1.                                                                                                                    | 34 |
| 35 | [81]  | E. Prodromou, ActivityPub, O'Reilly Media, Inc., Sebastopol, California, 2024, p. 416. ISBN 9781098169466.                                                                                                                    | 35 |
| 36 | [82]  | A. Rodionov and O. Rodionova, <i>Random Hypernets in Reliability Analysis of Multilayer Networks</i> , in: <i>Computational</i>                                                                                               | 36 |
| 37 |       | <i>Problems in Science and Engineering</i> , N. Mastorakis, A. Bulucea and G. Tsekouras, eds, Springer International Publishing, Cham. 2015, pp. $307-315$ , ISBN 978-3-319-15765-8, doi:10.1007/978 - 3 - 319 - 15765 - 817. | 37 |
| 38 | [83]  | R.A. Rossi and N.K. Ahmed, The Network Data Repository with Interactive Graph Analytics and Visualization, in:                                                                                                                | 38 |
| 39 |       | Proceedings of the Twenty-Ninth Conference on Association for the Advancement of Artificial Intelligence, AAAI'15,                                                                                                            | 39 |
| 40 | [84]  | AAAI Press, 2015, Austin, pp. 4292–4295–. ISBN 0262511290.<br>R.A. Rossi and N.K. Ahmed. An Interactive Data Repository with Visual Analytics. SIGKDD Explor. Newsl. 17(2)                                                    | 40 |
| 41 | [، ~] | (2016), 37–41–. doi:10.1145/2897350.2897355.                                                                                                                                                                                  | 41 |
| 42 | [85]  | E.V. Rybalova, G.I. Strelkova and V.S. Anishchenko, Impact of sparse inter-layer coupling on the dynam-                                                                                                                       | 42 |
| 43 |       | ics of a neterogeneous multilayer network of chaotic maps, <i>Chaos, Solitons &amp; Fractals</i> <b>142</b> (2021), 110477.<br>doi:https://doi.org/10.1016/j.chaos.2020.110477                                                | 43 |
| 44 | [86]  | A. Saa, Symmetries and synchronization in multilayer random networks, <i>Phys. Rev. E</i> 97 (2018), 042304.                                                                                                                  | 44 |
| 45 | -     | doi:10.1103/PhysRevE.97.042304.                                                                                                                                                                                               | 45 |
| 46 |       |                                                                                                                                                                                                                               | 46 |
|    |       |                                                                                                                                                                                                                               |    |

| 1        | [87]  | R.J. Sánchez-García, E. Cozzo and Y. Moreno. Dimensionality reduction and spectral properties of multilayer networks.                                                                                                                                           | 1        |
|----------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 2        | [*,]  | <i>Phys. Rev. E</i> <b>89</b> (2014), 052815. doi:10.1103/PhysRevE.89.052815.                                                                                                                                                                                   | 2        |
| 3        | [88]  | R.J. Sánchez-García, E. Cozzo and Y. Moreno, Dimensionality reduction and spectral properties of multilayer networks, <i>Phys. Rev. E</i> <b>89</b> (2014), 052815. doi:10.1103/PhysRevE.89.052815.                                                             | 3        |
| 4        | [89]  | A. Santoro and V. Nicosia, Optimal percolation in correlated multilayer networks with overlap, <i>Phys. Rev. Research</i> <b>2</b> (3) (2020) 033122 doi:10.1103/PhysRevResearch 2.033122                                                                       | 4        |
| 5        | [90]  | A. Santoro, V. Latora, G. Nicosia and V. Nicosia, Pareto Optimality in Multilayer Network Growth, <i>Phys. Rev. Lett.</i>                                                                                                                                       | 5        |
| 7        | [01]  | <b>121</b> (12) (2018), 128302. doi:10.1103/PhysRevLett.121.128302.                                                                                                                                                                                             | 7        |
| 8        | [91]  | on Knowledge and Data Engineering <b>29</b> (1) (2017), 17–37.                                                                                                                                                                                                  | 8        |
| 9        | [92]  | Y. Shi, Z. Huang, S. Feng, H. Zhong, W. Wang and Y. Sun, Masked Label Prediction: Unified Message Passing Model for                                                                                                                                             | q        |
| 10       |       | Semi-Supervised Classification, in: <i>Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence</i> , <i>IICAL21</i> , ZH. Zhou, ed. International Joint Conferences on Artificial Intelligence Organization, 2021, pp. 1548–1554 | 10       |
| 11       |       | Main Track. doi:10.24963/ijcai.2021/214.                                                                                                                                                                                                                        | 11       |
| 12       | [93]  | B. Škrlj and B. Renoust, Layer entanglement in multiplex, temporal multiplex, and coupled multilayer networks, <i>Applied Network Science</i> <b>5</b> (1) (2020), 89, doi:10.1007/s41109-020-00331-w                                                           | 12       |
| 13       | [94]  | Y. Sun, J. Han, X. Yan, P.S. Yu and T. Wu, PathSim: Meta Path-Based Top-K Similarity Search in Heterogeneous                                                                                                                                                    | 13       |
| 14       |       | Information Networks, Proc. VLDB Endow. 4(11) (2011), 992–1003–. doi:10.14778/3402707.3402736.                                                                                                                                                                  | 14       |
| 15       | [95]  | A. Tagarelli, A. Amelio and F. Gullo, Ensemble-Based Community Detection in Multilayer Networks, <i>Data Min. Knowl.</i>                                                                                                                                        | 15       |
| 16       | [96]  | Discov. <b>31</b> (3) (2017), 1506–1543–. doi:10.1007/s10618-017-0528-8.<br>M Tantardini F Jeva L Taioli and C Piccardi Comparing methods for comparing networks. Scientific Reports <b>9</b> (1)                                                               | 16       |
| 17       | [90]  | (2019), 17557. doi:10.1038/s41598-019-53708-y.                                                                                                                                                                                                                  | 17       |
| 18       | [97]  | D. Taylor, R.S. Caceres and P.J. Mucha, Super-Resolution Community Detection for Layer-Aggregated Multilayer Net-                                                                                                                                               | 18       |
| 19       | [00]  | works, <i>Phys. Rev. X</i> 7 (2017), 031056. doi:10.1103/PhysRevX.7.031056.                                                                                                                                                                                     | 19       |
| 20       | [98]  | D. Taylor, S. Shai, N. Stanley and P.J. Mucha, Enhanced Detectability of Community Structure in Multilayer Networks<br>through Laver Aggregation <i>Phys Rev Lett</i> <b>116</b> (2016) 228301 doi:10.1103/PhysRevLett 116.228301                               | 20       |
| 21       | [99]  | Y. Tian and O. Yağan, Spreading Processes With Layer-Dependent Population Heterogeneity Over Multilayer Networks,                                                                                                                                               | 21       |
| 22       |       | <i>IEEE Transactions on Network Science and Engineering</i> <b>11</b> (5) (2024), 4106–4119. doi:10.1109/TNSE.2024.3396730.                                                                                                                                     | 22       |
| 23       | [100] | D.T. Tran, S. Kiranyaz, M. Gabbouj and A. Iosifidis, Heterogeneous Multilayer Generalized Operational Perceptron,                                                                                                                                               | 23       |
| 24       | [101] | IEEE Iransactions on Neural Networks and Learning Systems 31(3) (2020), /10-/24.<br>T. Vallès-Català F.A. Massucci, R. Guimerà and M. Sales-Pardo, Multilaver Stochastic Block Models Reveal the Mul-                                                           | 24       |
| 25       | [101] | tilayer Structure of Complex Networks, <i>Phys. Rev. X</i> 6 (2016), 011036. doi:10.1103/PhysRevX.6.011036.                                                                                                                                                     | 25       |
| 26       | [102] | P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò and Y. Bengio, Graph Attention Networks, in: International                                                                                                                                           | 26       |
| 27       | [102] | Conference on Learning Representations, 2018. https://openreview.net/forum?id=rJXMpikCZ.                                                                                                                                                                        | 27       |
| 28       | [103] | L. wan, M. Zhang, X. Li, L. Sun, X. wang and K. Liu, identification of Important Nodes in Multilayer Helerogeneous<br>Networks Incorporating Multirelational Information. <i>IEEE Transactions on Computational Social Systems</i> <b>9</b> (6) (2022)          | 28       |
| 29       |       | 1715–1724. doi:10.1109/TCSS.2022.3161305.                                                                                                                                                                                                                       | 29       |
| 30       | [104] | X. Wang, A. Tejedor, Y. Wang and Y. Moreno, Unique superdiffusion induced by directionality in multiplex networks,                                                                                                                                              | 30       |
| 31       | [105] | <i>New Journal of Physics</i> <b>23</b> (1) (2021), 013016. doi:10.1088/1367-2630/abdb71.                                                                                                                                                                       | 31       |
| 32       | [105] | <i>L.</i> wang and M.c.v. Perc, Degree mixing in multilayer networks impedes the evolution of cooperation, <i>Phys.</i> $Rev \in 89$ (2014) 052813 doi:10.1103/PhysRevE.89.052813                                                                               | 32       |
| 33       | [106] | Z. Wang, D. Hou, C. Gao, J. Huang and Q. Xuan, A Rapid Source Localization Method in the Early Stage of Large-Scale                                                                                                                                             | 33       |
| 34       |       | Network Propagation, in: WWW '22, ACM, Virtual Event, Lyon, France, 2022, pp. 1372–1380–. ISBN 9781450390965.                                                                                                                                                   | .34      |
| 35       | [107] | D.J. Watts and S.H. Strogatz, Collective dynamics of 'small-world' networks, <i>Nature</i> <b>393</b> (6684) (1998), 440–442.                                                                                                                                   | 35       |
| 36       | [108] | ID Wilson I Palowitch S Bhamidi and A B Nobel Community Extraction in Multilaver Networks with Heteroge-                                                                                                                                                        | 36       |
| 37       | [100] | neous Community Structure, J. Mach. Learn. Res. 18(1) (2017), 5458–5506–.                                                                                                                                                                                       | 37       |
| 30       | [109] | J. Yang and J. Leskovec, Community-Affiliation Graph Model for Overlapping Network Community Detec-                                                                                                                                                             | 30       |
| 20       |       | tion, in: 2012 IEEE 12th International Conference on Data Mining, Brussels, Belgium, 2012, pp. 1170–1175.                                                                                                                                                       | 20       |
| 39       | [110] | doi:10.1109/ICDM.2012.139.<br>X Yang W Wang J-L Ma Y-L Oiu K Lu D-S Cao and C-K Wu BioNet: a large-scale and beterogeneous                                                                                                                                      | 39       |
| 40<br>41 | [110] | biological network model for interaction prediction with graph convolution, <i>Briefings in bioinformatics</i> 23(1) (2022),                                                                                                                                    | 40<br>41 |
| 42       | [111] | J. You, R. Ying and J. Leskovec, Design Space for Graph Neural Networks in Proceedings of the 34th International                                                                                                                                                | 42       |
| 43       | [111] | Conference on Neural Information Processing Systems, NIPS'20, Curran Associates Inc., Red Hook, NY, USA, 2020.                                                                                                                                                  | 43       |
| 44       |       | ISBN 9781713829546.                                                                                                                                                                                                                                             | 44       |
| 45       | [112] | A. Zhang, A. Zeng, Y. Fan and Z. Di, Detangling the multilayer structure from an aggregated network, <i>New Journal of</i>                                                                                                                                      | 45       |
| 46       |       | F hysics 20(7) (2021), 075040, 001:10.1086/1507-2050/ac1500.                                                                                                                                                                                                    | 46       |
|          |       |                                                                                                                                                                                                                                                                 | -        |
|          |       |                                                                                                                                                                                                                                                                 |          |

|     | 26    | Chatterjee and Kundu / HMN                                                                                                                                                                                |        |
|-----|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| -   | [112] | II 7han C. D. Ward I. II. Lei and D.C. V. Madularita in complex multilaneoutrada with multiple constant static                                                                                            | -      |
| Ţ   | [113] | H. Zhang, CD. Wang, JH. Lai and P.S. Yu, Modularity in complex multilayer networks with multiple aspects: a static perspective. <i>Applied Informatics</i> 4(1) (2017), 7, doi:10.1186/s40535-017-0035-4. | 1      |
| 2   | [114] | L. Zhang and J. Ren, Inhomogeneous percolation on multilayer networks, <i>Journal of Statistical Mechanics: Theory and</i>                                                                                | ∠<br>3 |
| 4   | [115] | S. Zhang, H. Tong, R. Maciejewski and T. Eliassi-Rad, Multilevel Network Alignment, in: <i>The World Wide Web Confer</i> -                                                                                | 4      |
| 5   |       | ence, WWW '19, ACM, New York, 2019, pp. 2344–2354–. ISBN 9781450366748. doi:10.1145/3308558.3313484.                                                                                                      | 5      |
| 6   | [116] | Y. Zhang, A. Garas and F. Schweitzer, Value of peripheral nodes in controlling multilayer scale-free networks, <i>Phys.</i><br><i>Rev. E</i> 93 (2016), 012309. doi:10.1103/PhysRevE.93.012309.           | 6      |
| 7   | [117] | Y. Zhao, Y. Yao and N. Zhong, Multilevel Web Personalization, in: Proceedings of the 2005 IEEE/WIC/ACM Interna-                                                                                           | 7      |
| 8   |       | tional Conference on Web Intelligence, WI '05, IEEE Computer Society, USA, 2005, pp. 649–652–. ISBN 076952415X.                                                                                           | 8      |
| 9   | [118] | Y.D. Zhong, V. Srivastava and N.E. Leonard, Influence Spread in the Heterogeneous Multiplex Linear Threshold Model.                                                                                       | 9      |
| 10  | L - J | IEEE Transactions on Control of Network Systems 9(3) (2022), 1080–1091.                                                                                                                                   | 10     |
| 11  | [119] | S. Zhou, S. Xu, L. Wang, Z. Liu, G. Chen and X. Wang, Propagation of interacting diseases on multilayer networks,<br><i>Phys. Rev. F</i> $98(1)$ (2018) 012303 doi:10.1103/PhysRevF 98.012303             | 11     |
| 12  | [120] | Y. Zhou, A modified algorithm of multiplex networks generation based on overlapped links, <i>Physica A: Statistical</i>                                                                                   | 12     |
| 13  |       | Mechanics and its Applications 514 (2019), 435-442. doi:https://doi.org/10.1016/j.physa.2018.09.103.                                                                                                      | 13     |
| 14  |       |                                                                                                                                                                                                           | 14     |
| 15  |       |                                                                                                                                                                                                           | 15     |
| 17  |       |                                                                                                                                                                                                           | 17     |
| 1.0 |       |                                                                                                                                                                                                           | 1.8    |
| 19  |       |                                                                                                                                                                                                           | 19     |
| 20  |       |                                                                                                                                                                                                           | 20     |
| 21  |       |                                                                                                                                                                                                           | 21     |
| 22  |       |                                                                                                                                                                                                           | 22     |
| 23  |       |                                                                                                                                                                                                           | 23     |
| 24  |       |                                                                                                                                                                                                           | 24     |
| 25  |       |                                                                                                                                                                                                           | 25     |
| 26  |       |                                                                                                                                                                                                           | 26     |
| 27  |       |                                                                                                                                                                                                           | 27     |
| 28  |       |                                                                                                                                                                                                           | 28     |
| 29  |       |                                                                                                                                                                                                           | 29     |
| 30  |       |                                                                                                                                                                                                           | 30     |
| 31  |       |                                                                                                                                                                                                           | 31     |
| 32  |       |                                                                                                                                                                                                           | 32     |
| 33  |       |                                                                                                                                                                                                           | 33     |
| 34  |       |                                                                                                                                                                                                           | 34     |
| 30  |       |                                                                                                                                                                                                           | 30     |
| 30  |       |                                                                                                                                                                                                           | 30     |
| 38  |       |                                                                                                                                                                                                           | 38     |
| 39  |       |                                                                                                                                                                                                           | 39     |
| 40  |       |                                                                                                                                                                                                           | 40     |
| 41  |       |                                                                                                                                                                                                           | 41     |
| 42  |       |                                                                                                                                                                                                           | 42     |
| 43  |       |                                                                                                                                                                                                           | 43     |
| 44  |       |                                                                                                                                                                                                           | 44     |
| 45  |       |                                                                                                                                                                                                           | 45     |
| 46  |       |                                                                                                                                                                                                           | 46     |
|     |       |                                                                                                                                                                                                           |        |