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Predictive maintenance solution for industrial
systems - an unsupervised approach based on
log periodic power laws
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Abstract. A new unsupervised predictive maintenance analysis method based on the renormalization group approach used to
discover critical behavior in complex systems has been proposed. The algorithm analyzes univariate time series and detects
critical points based on a newly proposed theorem that identifies critical points using a Log Periodic Power Law function fits.
Application of a new algorithm for predictive maintenance analysis of industrial data collected from reciprocating compressor
systems is presented. Based on the knowledge of the dynamics of the analyzed compressor system, the proposed algorithm
predicts valve and piston rod seal failures well in advance.
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1. Introduction

Detecting the symptoms of a failure and predicting when it will occur, in multivariate or univariate
time series collected via the Internet of Things (IOT), is central to the concept of predictive maintenance
(PM), which is now used in almost every area of industry. PM allows a company to better prepare for
a potential failure by redesigning the production process in advance or creating a workaround when
shutdown is not possible. Thus minimizing the costs and the effort of standard maintenance operations
through predictive engineering.

Predicting failures, provided by PM can be very profitable for a company, under the condition that
PM minimizes the number of false warnings (false positives) and maximizes the number of correctly
predicted events (true positives). Creating a properly working PM process faces two main problems:

(1) related to the definition of what is a failure in the considered technological process or in the IoT
data,

(2) the development or the application of the best algorithm (based on physical description, machine
learning, or statistical methods) to the data being analyzed.

While the theoretical definition of failure is well known, in practice problems are encountered with its
implementation. For various reasons (economic, productive, etc.) not every failure requires corrective
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action. Sometimes, a minor failure is not a good reason to stop a monitored machinery or a production
process. This imprecise description of failure leads to substantial difficulties when attempting to use
supervised methods to build a correct Predictive Maintenance process. This would suggest that unsuper-
vised approaches may prove to be a better suited tool for building PM processes.

This article describes an unsupervised failure prediction method [1] used to monitor reciprocating
compressor systems based on a concept used, among others, in finance, called Log-Periodic Power
Law (LPPL) proposed by the [2] and [3]. However, due to the different nature of the data analyzed,
the LPPL method cannot be applied in the same way as it was introduced for bubble (or anti-bubble)
detection in economic time series. Due to the different definitions of PM failure in industrial applications,
modifications need to be made to the LPPL method. In the case of data describing the financial market,
the variable that directly characterizes changes in the system under analysis is examined. Such a variable
is, for instance the index of the analyzed financial market, or directly the price of shares.

In the case of a machine (e.g. compressor or other systems containing a number of subsystems), the
analysis uses indirect data collected by sensors. It is not possible to measure the direct changes causing
the failure (e.g. material degradation, cracks etc.) but it is possible to measure changes resulting from
the influence of deteriorating machine components on the measured values.

In the description of the application of the presented method, which will be discussed in detail on the
basis of the monitoring data from reciprocating compressors, such indirect data are, for instance, changes
in the opening angle of suction or discharge valves inside the compression chamber as a function of the
volume in the cylinder chamber expressed by the angle of rotation of the crankshaft. In other words,
degradative (unmonitored) changes affect measured variable changes in a less visible (more distorted)
ways than in the case of direct measurement of variables.

Every failure has a cause, an initiating event, let's call it an initial breakdown (IB). Using the IB
concept, the failure analysis can be as follows:

• until the IB occurs, the behavior of the machine is normal and shows no signs of failure.
• After the IB occurs, noticeable changes begin to occur indicating future problems.

The idea of detecting the IB point in order to use it to predict failure is similar to the concept of detecting
a point of trend change in a time series. Therefore, it is not necessary to predict the time of failure in
the future. It is sufficient to determine whether it can be determined whether a given point in the time
series is the initial (initiating) moment of IB or not. If it is known that the current point in the analyzed
time series is an IB point, then, based on the knowledge of the dynamics of the monitored device, it is
possible to identify the time window in the future (in units of operating time of the device) in which the
failure will occur. It is impossible however, to predict the exact time of failure of the monitored device
using the presented method. This is mainly due to unpredictable occurrences, such as: changes in the
load of the device, periods of time when the device is switched off, etc.

The organization of the paper is as follows. Chapter 2 briefly describes the current status of unsuper-
vised predictive maintenance in the industry. The chapter 3 answers the question of why the logarithmic-
periodic oscillation detection method is suitable for detecting sudden failures in an industrial system.
Chapter 4 describes a numerical method for determining failure time points from the data. The part 5
introduces the data used for the analysis presented and the following section 6 shows the results ob-
tained using the new method. Finally, the part 7 discusses the results, advantages and disadvantages of
the proposed method.
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2. Related works

Despite the appearance of clarity, the description of a method as unsupervised is sometimes used too
hastily. As described in the section (1), it is not always possible to identify with sufficient precision the
time of failure as well as its cause. Even after repairs, the process of determining the time of failure
or its origin is fraught with difficulties. Therefore, before describing the status of work on unsupervised
methods, it should be stated, that in this work the “unsupervised method” is understood as a solution that
does not require the knowledge of labelled data of any kind as well as the lack of information concerning
the input data's condition as either good/healthy or anomalous.

Following the work of [4] (which also includes references to other research works, as well as studies
of specific solutions involving a broader understanding of the "unsupervised method"), the spectrum of
available solutions can be generally divided into 2 categories.

(1) Solutions involving the use of prediction techniques to predict points in the future and then compare
them with actual data to detect anomalies, as shown in [5]. Depending on the predictive solutions
used, this category of methods requires a large amount of data. In this case, a separate problem is
the accuracy of the prediction part, which is a supervised method. Hence the requirement to control
it, which makes the whole solution complicated if one wants to use it in practical applications.

(2) Solutions based on measurements of distance or similarity used to evaluate the degree of data
anomaly. In this case, methods using clustering algorithms [6] or determining similarity between
time series or data are used. This approach sometimes leads to problems when encountering new
data the like of which did not exist in the past. At times this renders them impossible to use for
real-time data analysis.

The solution proposed in this paper is an attempt to solve the issues identified in both of the above
categories: the problem of data demand and the problem associated with data behavior that is not present
in the past.

3. The occurrence of log-periodic oscillations as a prelude to failure.

The purpose of the PM method is to provide predictions about future failures of the system described as
a set of various components cooperating together. This section illustrates why the LPPL-based algorithm
is applicable to failure prediction and describes the basics of the LPPL-based method.

The generalized relation describing the hazard rate h (t) (or hazard function) of a certain physical
quantity at time t prior to material destruction by degeneration [7] is of the form

ḣ (t) = Gh (t)δ (1)

where the ḣ (t) denotes the derivative of the function h (t) in time t. The δ and G are the parameters of
model. The G is a positive constant parameter. In the following, it is assumed that h (t) corresponds to
changes in the variable that is tracked and from which the failure is attempted to be predicted. The hazard
function, based on conditional probability theory, measures the probability that the relevant variable will
show signs of failure, given that the failure has not occurred before prior to time t.

The equation (1) has 3 classes of solutions depending on the value of δ. For δ = 1 the exponential
function is obtained

h (t) = h (t0) eG(t−t0) (2)
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where t0 is a value of the initial time.
For δ < 1:

h (t) = [(1− δ) (t − t0) G]
1

1−δ (3)

and for δ > 1:

h (t) = [(δ− 1) (tc − t) G]
1

1−δ (4)

with tc as a constant corresponding to time in a future. As can be seen, the solutions found for δ = 1 (2)
and for δ < 1 (3) do not converge for times t > 0. Therefore, the time of failure cannot be determined
from their behavior. The most interesting case is δ > 1 (4), where the solution has a converging point at
a finite time tc in future. In our analysis, the time tc will denote a time of a potential failure and can be

determined by the choice of G =
(

1
tc

) 1
1−δ . Then tc = 1

(δ−1)h(t0)δ−1 .

Let's assume that the degradation of a working part, whose deterioration (failure) is predicted, can be
treated as a discontinuous stochastic process associated with a given monitored variable. To simplify the
analysis, the second assumption is to treat the degradation changes of physical quantity p (t) over time t
as a non-homogeneous Poisson process in which the changes occur according to the hazard rate function
h (t). The dynamics of such a process can be described by the equation

dp (t) = −p (t) h (t) dt (5)

the solution of which can be written as

log

[
p (t)
p (t)

]
= −

∫ t

t0
h (u) du = P (t) . (6)

In our case, P (t) has an approximate form

P (t) ≈ h0
η+ 1

(tc − t)η+1 (7)

where η = 1
1−δ and the P (t) is shifted by the integration constant h0

η+1 (tc − t0)
η+1. The result obtained

(7) coincides with work [8] (compare with equation (3) in the reference 7)
Solution (7) is invariant under continuous scale invariance (CSI), which manifests itself through the

scaling property of the solution P (t) if the argument of the function P (t) is scaled to (tc − t). Rescaling
by some factor ν the argument tc− t→ (tc − t)×ν changes the solution P (t) to the form P (t)×µ where
µ = ν−1−η [9]. The CSI feature, around the critical points t = tc, is common to systems demonstrating
a continuous phase transition (second order phase transition).

The basic assumption of the LPPL method is that, the described process is near the critical point of the
second-order phase transition. In our case, this is the point in time at which the failure of the described
system occurs. With this assumption, the final equation is obtained, the use of which for fitting is known
in literature as the LPPL method [10], [11].
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Let W (t) = log (p (t)) and refer p (t) to the variable by which our industrial system is analyzed as
a function of time t. Let tc be the time of event that defines our phase transition in physical framework
(critical point of time). Then the argument x and the real function F (x) are defined as

x = tc − t with t < tc and F (x) = W (tc)−W (t) (8)

As a starting point for our derivation, the CSI is assumed to exist around critical points.
This allows us to use the renormalization group approach, which permits us to write a certain real

function F (x) around a critical point x ≈ 0 through the rescaled argument x expressed by a scaling
function φ (x) in the form

F (x) =
1

µ
F [φ (x)] (9)

where µ is a constant and its argument x is invariant under arbitrary linear transformation of the x:

φ (x) = νx and x > 0 (10)

with ν as a constant.
The solution of equation (9) is the function

F (x) = Cxα (11)

where C and α are constants to be determined.
The request of scaling invariance (9) with the general form of the solution postulated by eq. (11) can

be rewritten as

Cxα = C
να

µ
xα (12)

which, after taking into account the identity,

1 = ei2πn with n ∈ N, (13)

leads to the equality

ei2πn =
να

µ
(14)

what allows to calculate the α exponent in a most general form as

α =
log (µ)

log (ν)
+ i

2π

log (ν)
n. (15)
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Therefore, the solution of equation (9) can be expressed as [12]

F (x) =
C
µ

(νx)
log(µ)
log(ν)

+i 2π
log(ν)

n
=

C
µ

(νx)
log(µ)
log(ν) Π

(
log (x)

log (ν)

)
(16)

where Π (·) is a periodic function with period 1, i.e. Π (y) = Π (y + 1) . The index n should be treated
as one of the parameters characterizing the described physical system. Since n and other parameters
appearing in the function (16) are unknown, it is necessary to reformulate the function (16) in such a
way that it can be used to fit existing data and thus determine whether a given point tc is a critical point.

An additional necessary condition that must be satisfied by function (16), or more precisely by its real
part, is the trend that is determined by the power law (n = 0), which is the leading order term and the
oscillations associated with n 6= 0 will contribute as a next-to-leading order corrections.

The periodic function Π (·) can be expressed by means of the Fourier series with respect to the variable
y with period T

Π (y) = exp
[
i2πn

( y
T

)]
=

+∞∑
k=−∞

ckei2πk( y
T ) (17)

with

ck =
1

T

∫ T
2

− T
2

{
exp

[
i
2π

T
yn
]}

e−i 2πP kydy =
1

π

sin [π (k − n)]

k − n
for n, k ∈ N. (18)

However, non-zero coefficients ck of the Fourier expansion (17) are obtained only for non-integer dif-
ferences (k − n), which contradicts our claim for the existence of non-zero expressions associated with
n ∈ N. The problem of zero coefficients of the fourier expansion of (17) can be solved by rewriting the
identity (13) to the form

1 = ei2πn → 1 = ei 2πq (nq) (19)

where, the variable q denotes an parameter associated with the physical degradation mechanism of the
described system.

In that formulation, α (15) can be rewritten as

α =
log (µ)

log (ν)
+ i

2π
log(ν)

q

n
q

(20)

what allows us to rewrite the equation (16) to the form

F (x) =
C
µ

(νx)

log(µ)
log(ν)

+i 2π
log(ν)

q

n
q

(21)

In this case, the expansion of F (x) into Fourier series gives us the following result.
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F (x) =
C
µ

(νx)
log(µ)
log(ν) e

i 2π
log(ν)

q

n
q log(x)

=
C
µ

(νx)
log(µ)
log(ν)

∑
k∈N

cke
i 2π
log(ν)

q

log(x)k

(22)

where

ck =
1

T

∫ T/2

−T/2
ei 2πT

(
n
q−k

)
ydy =

1

π

sin
[
π
(

k − n
q

)]
k − n

q
(23)

with a redefined variable y = log(x)
log(ν)

q

.

Given the denominator
(

k − n
q

)
in the coefficients of ck (23), the main dominant terms of the

series (22) are defined by the index k from the set {−1 + [n/q] , [n/q] , 1 + [n/q]} where [n/q] is
the integer part of division n/q. To simplify the notation, let us redefine the index values from
{−1 + [n/q], [n/q], 1 + [n/q]} to {−1, 0,+1}.
This allows us to approximate the final form of the function F (x) (22) by the first 3 largest components
of the Fourier series (c0 and c−1 or c+1)

F (x) ≈ C
µ

(νx)
log(µ)
log(ν)

[
c0 + c±1 cos

(
2π

log(ν)
q

log (x)

)
± ic±1 sin

(
2π

log(ν)
q

log (x)

)]
(24)

where the notation c±1 was used to denote ambiguity as to which coefficient is the second dominant
one for k = −1 or k = +1. Since only the real part of the expression is of interest (our measurements
are real values), using the previous definition of the variable F (x) (8) and generalizing our unknown
parameters (µ, ν, C, q, n, k and W (tc)) by adding constant A and phase Φ to the formula (24) to their
new representations (A, B, m, C, ω, Φ) one obtains the final formula which is referred to as a first-order
model and used in LPPL literature [10, 11]

W (t) ≈ A + |tc − t|m [B + C1 cos (ω log |tc − t|+ Φ)] . (25)

For the purpose of numerical fitting the LPPL function to the data, a transformed version of the formula
(25) is used, in the form of

W (t) ≈ A + |tc − t|m [B + C1 cos (ω log |tc − t|) + C2 sin (ω log |tc − t|)] (26)

where C1 = C cos (Φ) and C2 = −C sin (Φ). Both equations (25, 26) can be used to find critical time
points in the time series of input data that indicate component failures in the input data.
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4. Fitting method of the LPPL model to the data

Due to the number of parameters (A,B,m,C1,C2,ω) necessary to be determined during the fitting pro-
cedure of the LPPL function (26) and the presence of many local extremes, the procedure of obtaining
the best fit is difficult and computationally expensive.

Instead of trying to determine the critical time tc in the future, as is determined in the case of predic-
tions of crashes in financial time series [8, 11, 13], it is assumed that the failure happens "now". With
this assumption, the calculations involved in fitting the function (26) to the data are performed for a
range of time windows of different lengths from the past to "now". This corresponds to the hypothesis
that the time point tc (time point of the phase transition) is "now" and corresponds to the last point in the
input time series tinp. Therefore, it is necessary to add to the set of parameters, an additional parameter
specifying the length of the subset of time series points tinp preceding the time point tc for which the best
fit of the function W (t) (26) was found. The length of this subset is denoted as lmax.
In particular, our redefined set of arguments x = tc − t in the matching procedure is the set of points
〈1, xlmax〉 in time units characteristic to the tinp series. The definition of the argument set x = tc − t in the
matching procedure is replaced by the set of points 〈1, xlmax〉, where 1 corresponds to the present time
and lmax corresponds to the time of lmax from the past. The index lmax is the one of the parameters of the
matching function (26).

As parameter fitting, the method described in the work of [13] is used, appropriately modified for our
purposes, i.e., by excluding the parameter corresponding to the critical time tc and adding the parameter
lmax to the fitting procedure.

The constraints imposed on the fitting parameters (lmax,A,B,m,C1,C2,ω) are as follows:

(1) lmax: the number of past data used for the best fit. For a small number of data there may be too
many good fits (with very small fitting error), which may correspond to random correlations of the
data with the form of the fitted function (26).

(2) A > 0: since in our case there are always positive values. It is determined by the character of the
input data.

(3) 0 < m < 1: to ensure that the fitting value for the critical time tc was greater than zero (m > 0) and
changed faster than exponentially for times close to the critical time tc (m < 1).

(4) 2 < ω < 8: this condition avoids too fast log-period oscillations (otherwise they would fit the
random component of the input data) and too slow log-period oscillations (otherwise they would
contribute to the power law behaviour ≈ A + B |tc − t|m)

(5) B, C1,C2: these parameters are fitted without additional constraints.

Depending on the type of input data to be analyzed, the limits of variation of the parameters to be fitted
require careful adjustment.

Having determined all parameters of the fitting LPPL function, in the next step, it is necessary to
determine trends based on the identified local maxima and minima of the shape of the fitted function:
Tmax for local maxima and Tmin for local minima. The procedure of finding trends is carried out separately
for maxima and minima in the following way:

(1) all local extrema (N) are found,
(2) from this set, the N-1 extreme values closest to the current time point (i.e., the point for which an

attempt is made to determine whether phase transition has occurred or not) are selected,
(3) To this set of points a straight line is fitted by linear regression. The slope of the line determines

the trend for a given category of extremes (maxima or minima).
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Then, using the calculated trends of the extreme values of the best LPPL fit, it is determined whether
a given point (defined as a pair: {datetime, value}) corresponds to a phase transition or not (this is IB
point or not). For this purpose, a theorem describing the critical point was formulated. Its proof will be
the aim of the next publication.

Theorem 1. Assume that the function f (x) corresponds to the best found fit of the LPPL function (26)
to the analyzed input time series ts = {(tn − tlmax , yn−lmax) , ..., (tn − tn−1, yn−1)} where lmax > 0 is one of
the fit parameters of the function f (x) (26) specifying the length of the sequence preceding the actual
values (tn − tn−1, yn−1) defined by the index n. The function f (x), have Nmax > 2 local maxima and
Nmin > 2 local minima. Let Tmax denote the slope of the linear fit determined by the last Nmax values of
the local maxima and Tmin denote the slope of the linear fit determined by the last Nmin values of local
minima.

If both trends Tmax and Tmin determined for the function f (x) have the same behavior (both increasing
or decreasing) for the last point (tn − tn−1, yn−1) of the series ts, then the point (tn, yn) is the critical point
for the series ts. The trend of the series ts will change to the opposite for next points (tn+k, yn+k) (where
k > 0) with respect to the trend for points preceding tn.

In the presented method, each point satisfying fulfilling the requirements of Theorem (1) is treated as
a point initiating a future failure (IB point). Determining the time of failure requires knowledge of the
dynamics of the monitored system and will be discussed in the next section (6).

5. Data description

Monitoring data from a reciprocating compressor, describing the PV diagram of one of the compres-
sion chambers, was used to demonstrate the operation of the method. Based on these, the values of the
angle of opening of the suction valve (OSV) expressed by the angle of rotation of the crankshaft were
determined. The data is available at [14].

This value, for a given cycle described by the PV diagram, is very sensitive to changes in the amount
of gas in the chamber, for example, due to its leakage through a broken valve or piston rod seal system.
OSV changes are directly dictated by the thermodynamics of the compression process in the compressor
chamber. Monitoring the changes in OSV provides a basis for compressor diagnostics and allows to de-
termine compressor efficiency, valve operation, or the condition of the piston seals or piston rod sealing
elements [15].

The data has been averaged to daily values and covers a period of time between 2019-08-23 and
2022-01-19.

In order to compare the results of failure prediction, data identifying the dates of repair interventions
with their respective reasons for failure and the dates of observation of anomalous compressor behavior
without interruption of operation were used.

6. Prediction of failures: methodology and results

To test the effectiveness of our algorithm, a backtest of the detection method was conducted on histor-
ical data starting from the initial date of 2019-10-09 (tstart) to 2022-01-01, calculating initial breakdown
(IB) points for this time period. The range of the variable length of the time series lmax was assumed
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to be 30 < lmax < 101 in time units of days. Given the minimum number of observations (101 days)
needed to perform calculations of the IB points, the backtest is started for time t = tstart + 101 (in daily
units). Then, moving forward in time to the future, the best-fit LPPL function (26) is calculated for each
subsequent time t by determining the goodness of fit of the LPPL function using the mean squared error
(mse).

Intuitively, one can expect that the accuracy of determining the critical points using theorem (1) will
strongly depend on the error of fitting the LPPL curve (26) to the data. The smaller the fitting error, the
greater the confidence that a given point of the input time series determined as an IB point according to
the theorem (1) is really the IB critical point. In addition, it is expected that in the vicinity of the true
IB breakpoint (before and after it), the method should find some good fits of the LPPL function with a
small error, but this is not a necessary criterion for the existence of an IB point for days as time units.

The figure (1) shows 2 examples of the fit function (26) to data along with calculated criteria for trends
determined from maxima and minima of the fitting function satisfying the criteria of Theorem (1).

(a) positive trends

(b) negative trends

Fig. 1. Examples of LPPL function (26) fits for cases with positive trends (a) and with negative trends (b) for selected current
times (dates in proleptic Gregorian ordinal units). Some fit parameters calculated for both trend categories: (a) positive trend:
current date: tc = 2020 − 08 − 28, length of the time series: lmax = 79, mean squared error: mse = 2.6 · 10−5; (b) negative
trend: current date: tc = 2020− 09− 23, length of the time series: lmax = 55, mean squared error: mse = 5.7 · 10−5.

The figure (2) shows the application of this procedure for the diagnosis of the critical points with
additional information about the dates of failure repairs (see the description of the figure (2)).
The figure (2) confirms our initial hypothesis very well. It shows:

(1) groups of points with similar fitting errors at least 14 days before the time of failure identification
(repair is usually performed with additional delay due to the compressor operating conditions).
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Fig. 2. Calculated IB points for the analyzed input time series (marked in the figure by a solid line with measurement points).
The vertical lines of different colors indicate the diagnosed by the algorithm IB points. For each group of the IB points, the
mean value of the matching error (mse) of the LPPL function (26) is annotated. The black vertical lines indicate the dates
of compressor repairs, which typically took place a few to several weeks after the algorithm detected the fault (IB points).
The correlation with the diagnosed breakpoints is clearly visible, except for the prediction determined by the largest error
(mse=0.000249) for 2020-12-14.

(2) Dependence of the matching error on the criticality of the failure: the signaling of the grouping of
critical points for the beginning of 2020-12-14 is characterized by a large error (mse = 24.9·10−5),
much larger than for the group of points for which the failure has been confirmed (mse <= 5.7 ·
10−5).

Taking these conclusions into account and comparing the recorded failures and behaviors suggesting
problems in compressor operation, classified by experts as insignificant, with the predictions made by
the model, it is possible to determine the threshold values of the fitting error (mse) and the corresponding
categories of predictions:

Definition 1. Classification of calculated initial breakdown points:

(1) Critical event: (mse < 6 · 10−5) severe failure expected, checking the compressor required and
preparation for repair,

(2) Monitoring event: (6 · 10−5 <= mse < 10 · 10−5) distinct possibility of issues, monitoring of
compressor behavior required.

(3) Irrelevant event: (10 · 10−5 <= mse) no significant issues predicted, compressor behaviour can
be monitored though.

As shown, sometimes the algorithm detects a larger number of IB points located very close to each
other. Such cases were simplified by choosing a single representation (the first IB point of the group) for
each group of signals. This was done by assuming that a signal belongs to a group if its distance from
the preceding signal is smaller than or equal to 3 days.

6.1. Determining the time window of predicted failures

By comparing the failure times predicted by the algorithm with their actual occurrence, a criterion for
predicting the time window in which the failure will occur can be also determined. One of the parameters
for fitting the LPPL function (26) to the data is the length of the chosen sequence of data preceding the
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analyzed time point lmax. For the data analyzed, the time window for the occurrence of a predicted failure
was defined as:

Definition 2. The predicted time period of failure occurrence is defined as the interval
〈
n + lmax

2 , n + 90
〉
,

where n and lmax are the indices of the actual time point xn and the parameter defining the length of the
input time series tinp used to find the best fit of the LPPL function (26) to a given value of tinp (xn, yn),
respectively.

The definition (2) is based on knowledge of the dynamics of the device for which the algorithm
parameters have been defined. For other devices, all parameters should be selected based on the dynamics
of their behavior. Duration of the time window with predicted failure is assumed to be valid for a certain
period of time and is up to 90 days.

In the case of compressors, due to the different criticality of failures, some of them may be accepted
for a longer period of time (even several months in the case of valve failures) to wait for a convenient
moment of repair.

Considering:

• the classification of alerts specified in the definition (1),
• the selection of the representative of the groups of warnings (by selection of the initial signal for

the common group of calculated IB points),
• the definition (2) specifying the expected time window in which the failure will occur,

the raw results shown in figure (2) can be redrawn to a new form, as shown in figure (3). The correlation
between predicted failure times and actual repair times, and the time periods when experts detected
abnormal compressor behavior is very good for the Critical event and Monitoring event categories.
Predictions in the Irrelevant event category were not confirmed by any repair and diagnosis records.

6.2. Root cause of predicted failures

In the analysis presented here, the input data monitors the change in the opening angle of the suc-
tion valves in the compression chamber expressed by the angle of rotation of the crankshaft. The trend
identified from the determination of the IB points can be used to guess the type of future failure in the
compression chamber [15]. By predicting the trend for times after the IB point, it is possible to try to
determine approximately which part will fail - the valve or the piston rod sealing rings. Thus, when the
predicted trend of the suction valve opening angle is decreasing, it is likely that the suction valve or
piston rod seal rings are failing. If the trend suggests an increase in angle, this behavior indicates a leak
in the discharge valve.

Thus, based on the theorem (1) and a physical interpretation based on the behavior of the time series,
the algorithm is able to predict not only the time window of failure, but also the group of parts that may
fail. This provides an opportunity to verify the prediction not only on the basis of event times, but also
on the basis of identifying the parts that can fail.

To better illustrate the additional information regarding the location of the future failure, the figure (4)
shows the same data as in the Figure (3) with additional information about the parts that actually failed,
the parts in which experts have observed problems and prognosis of failures predicted by the algorithm.
Details are given in the description of the figure (4).

For the entire time period analyzed, 2 cases that deviate from the diagnosis are visible
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Fig. 3. Redrawn prediction of failures by the algorithm in comparison with reparation times and problems detected by experts.
The figure shows representations of groups of discovered IB points (colored and continuous single vertical lines) and predicted
failure time periods corresponding with them according to definition (2) (corresponding colored areas bounded by vertical
dashed lines). The categorization of the criticality of the forecasted problems (definition (1)) is represented by the splitting into
3 separate figures, each for a separate criticality category. The Monitoring event class remains without any marked vertical
lines. The algorithm found no prediction for this category. The reparation (maintenance) dates are indicated in the figures by
black vertical lines. Time periods when abnormal compressor behavior requiring monitoring and was not qualified for repair
by experts are indicated by the gray colour without additional delimiting lines. The intersection of the areas determined by
the algorithm as the period of failure occurrence with periods of abnormal behavior of the compressor can be seen for periods
starting from 2021-07-15 in the Critical event category. The raw data of the input time series tinp are indicated by the solid
blue line with the measurement points (o).

(1) in the category Monitoring event, for date 2021 − 07 − 15, there is a disagreement between
the predicted failure type suction valve or sealing - leakage and the diagnosed one indiation of
discharge valve leakage.

(2) the perturbation identified by experts, started in 2021 − 11 − 30 and identified as indiation of
discharge valve leakage was not predicted by the algorithm at all.

7. Discussion

The comparison of the information resulting from the failure predictions and comparing it with the
knowledge from maintenance logs and expert detection of periods of anomalous compressor operation,
including the prediction classification, is provided in Table 1.

Major challenges in the field of industrial application of failure prediction, especially in the unsu-
pervised version, is a number of issues relating to proper identification of failures and behaviors of
monitored devices. These difficulties mainly stem from:

• the large variety in the types of failures,
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Fig. 4. The same graphs as in the figure (3) with added annotations describing the failures predicted by the algorithm - colored
texts (different from gray and black), reasons for compressor reparations - black text and diagnosed abnormal compressor
behavior requiring monitoring - gray text. For better visualization, areas of the diagnosed abnormal behaviour of the compressor
that require monitoring are displayed in the "Monitored Event" category.

• the small number of failures compared to the amount of data,
• the large variety of behaviors leading to the same type of failure,
• the difference in operating conditions, which can cause ambiguity in labeling accurate data.

The problems are very difficult to solve if the methods used to predict failures are based on the analysis
of numerical values of input data (by calculating similarities, correlations, logic trees, building naural
networks, etc.). Normalization and/or standardization procedures only introduce a common scale to the
analyzed data.

The proposed method introduces a new type of procedure, which is based on the search for common
functional behavior (26). From the point of view of the numerical values of the analyzed data, the course
of the fitted function can be very different for different events - different patterns of the function for
different values of fitted parameters. Even when new data appears with values that did not exist in the
past, it is possible to determine the critical point (IB) for a potential event, as the model fits functions to
the data.

The IB points determined by this method, upon which the time window of failure occurrence is pre-
dicted in the next step, are the trend change points in the data. From this perspective, the described
solution can be reduced only to the task of determining the trend change points.

To calculate the key performance indicators (KPIs) of the presented algorithm, the generally known
indicators can be used: Precision = T P/ (T P + FP) and Recall = T P/ (T P + FN), where T P - de-
fines True Positive events, i.e. correctly predicted failures or abnormal behavior in the operation of the
compressor, FP - False Positives, i.e. events predicted by the algorithm that turned out to be false and
FN - False Negatives, i.e. failures and instabilities of the compressor that were not predicted.
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In the analysis of results (section 6), the limits of acceptance of errors of fitting the LPPL function (26)
determining the criticality of the predicted events (definition 1) were defined on the basis of the results.
Therefore, in order to calculate the Precision and Racall indicators, all results are taken into account
without distinguishing them due to the defined criticality.

Comparing the predicted failure periods, taking into account the dates and predicted types of failures
with the dates and descriptions of Maintenance logs or recorded faults (Figs. 3 and 4 and the table
1), the calculated values of T P, FP and FN are as follows: T P = 4, FP = 2, FN = 1 . Hence
Precision = 0.67, Recall = 0.8. Given that, this result takes into account the dating of the predicted
failure period along with the prediction of the cause of failure, such an outcome is considered very good.

In summary, the list of advantages and disadvantages of the presented method is a consequence of
a paradigm change in data behavior classification, from the one based on numerical values to the one
based on functional similarity.
Advantages of the method:

• the proposed model can be applied to very short time series (in our case, the minimum length of the
series is only 101 points).

• There are no problems with data that appears for the first time. In the proposed solution, the part
that qualifies certain data as IB is based solely on functional behavior. This universality is due to
the renormalization group approach.

• The simplicity of the final production solution. The most difficult part of the algorithm is fitting the
function to the data. Since the method does not contain components based on supervised methods,
there is no need to monitor their quality.

Disadvantages of the method:

• data: the method is applicable to data that describe a physical process that degrades/changes due to
perturbations introduced by interacting elements. This is because the method searches for behavior
characteristic of phenomena in which phase transitions can be observed. Hence, not all data are
appropriate for the described method.

• Matching the function to the data is based on the proper determination of boundaries of the param-
eters to be matched (26). This requires individualized adjustment of the ranges of change of these
parameters to the monitored device.

• It is required to select the time step of the input time series in such a way that it is consistent with
the dynamic characteristics of the monitored device.

8. Conclusions

This paper presents the application of a methodology for describing critical behavior in complex
systems based on the renormalization group approach in unsupervised predictive maintenance. The pro-
posed algorithm analyzes the behavior of a complex system based on a time series representing the phys-
ical behavior of the system. To demonstrate the effectiveness of the algorithm for industrial applications,
predictive results are presented for time series describing the thermodynamics of the gas compression
process in a monitored reciprocating compressor in one of the compression chambers.

It was shown that failures in the analyzed industrial system can be treated as critical behavior in
complex systems. Then the symptoms of future failure appear in the form of Log Periodic Power Law
structures for phase transitions in the analyzed time series. Based on the most generalized scheme for
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describing the behavior of an analyzed system in the vicinity of phase transitions of the 2nd kind based
on the Log Periodic Power Law, a new way of predicting failures in compressor systems is proposed.

The presented algorithm is based on 3 steps. In the first step, the algorithm determines the IB points
in the analyzed time series by means of fitting the LPPL function (equation (26)) using the proposed
theorem (1). The second step of the proposed method is based on the knowledge of the dynamics of the
monitored system, and specifies the time window in which the predicted failure may occur. In the last
step, a criticality classification of the predicted failure is carried out, based on the goodness of fit of the
LPPL curve to the data (critical event, monitoring event, insignificant event).

Taking into account the specificity of problem detection in industrial systems (the demand to reduce
the number of false alarms and to minimize the number of unpredicted events), it has been demonstrated
that it is possible to experimentally determine such an error threshold of fitting the LPPL function to the
data that all serious failures can be predicted if the fitting error is smaller than the threshold. In addition,
it is also possible to define such thresholds for the LPPL curve-fit error to the data, for which the area of
occurrence of less critical failures that do not require rapid intervention can be defined.

The method can also be applied to predictive IoT analysis of other industrial systems.
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