Data Science 0 (0) 1 1 IOS Press

3 ⁴ Estimating Reaction Barriers with \sim 5 ϵ lepen Reinforcement Learning ϵ \sum_{7}^6 Deep Reinforcement Learning

λ ditty Ω_1 Adittya Pal

 10 *Institut for Matematik og Datalogi, Syddansk Universitet, Campusvej 55, 5230 Odense M, Denmark* 11 12 *E-mail: [adpal@imada.sdu.dk;](mailto:adpal@imada.sdu.dk) ORCID:<https://orcid.org/0009-0005-0705-7768>*

13
Abstract. Stable states in complex systems correspond to local minima on the associated potential energy surface. Transitions ¹⁴ between these local minima govern the dynamics of such systems. Precisely determining the transition pathways in complex¹⁴ 15 and high-dimensional systems is challenging because these transitions are rare events, and isolating the relevant species in experiments is difficult. Most of the time, the system remains near a local minimum, with rare, large fluctuations leading to 16 17 making the system's dynamics highly sensitive to the calculated energy barriers. This work aims to formulate the problem of 17 making the system's dynamics highly sensitive to the calculated energy barriers. This work a ¹⁸ finding the minimum energy barrier between two stable states in the system's state space as a cost-minimization problem. It ¹⁸ 19 is proposed to solve this problem using reinforcement learning algorithms. The exploratory nature of reinforcement learning 20 agents enables efficient sampling and determination of the minimum energy barrier for transitions. $_{21}$ Keywords: deep reinforcement learning, minimum energy pathways, reaction energy barrier, actor-critic algorithm $_{21}$ transitions between minima. The probability of such transitions decreases exponentially with the height of the energy barrier,

2451-8484 \odot 0 – IOS Press. All rights reserved.

1 1. Introduction 1

 2×2 3 There are multiple sequential decision-making processes one comes across in the world, such as con-⁴ trol of robots, autonomous driving, and so on. Instead of constructing an algorithm from the bottom up ⁴ 5 for an agent to solve these tasks, it would be much easier if one could specify the environment and the 6 state in which the task is considered solved, and let the agent learn a policy that solves the task. Rein-7 forcement learning attempts to address this problem. It is a hands-off approach that provides a feature $\frac{7}{10}$ 8 vector representing the environment and a reward for the actions the agent takes. The objective of the 9 agent is to learn the sequence of steps that maximizes the sum of returns.

10 One widespread example of a sequential decision-making process where reinforcement learning is 10 11 utilized is solving mazes [\[22\]](#page-14-0). The agent, a maze runner, selects a sequence of actions that might have 11 12 long-term consequences. Since the consequences of immediate actions might be delayed, the agent must 12 13 13 evaluate the actions it chooses and learn to select actions that solve the maze. Particularly, in the case of 14 14 mazes, it might be relevant to sacrifice immediate rewards for possibly larger rewards in the long term. 15 15 This is the exploitation-exploration trade-off, where the agent has to learn to choose between leveraging 16 16 its current knowledge to maximize its current gains or further increasing its knowledge for some possibly ¹⁷ larger reward in the long term, possibly at the expense of short-term rewards. The process of learning by ¹⁷ 18 18 an agent while solving a maze is illustrated in Figure [1.](#page-2-0)

19 GridWorld is an environment for reinforcement learning that mimics a maze [\[27\]](#page-14-1). The agent is placed 19 20 20 at the start position in a maze with blocked cells, and the agent tries to reach a stop position with 21 21 the minimum number of steps possible. One might note an analogy of a maze runner with an agent 22 22 negotiating the potential energy landscape of a transition event for a system along the saddle point ²³ with the minimum height. The start state and the stop state are energy minima on the potential energy ²³ ²⁴ surface, separated by an energy barrier for the transition. The agent would have to perform a series of ²⁴ ²⁵ perturbations to the system to take it from one minimum (the start state) to another (the end state) through ²⁵ ²⁶ the located saddle point. As in the maze-solving problem, the agent tries to identify the pathway with ²⁶ ²⁷ the minimum energy barrier. If the number of steps is considered the cost incurred in a normal maze, it ²⁷ ²⁸ is the energy along the pathway that is the cost for the transition event. A comparison is attempted in ²⁸ 29 29 29 Figure [2.](#page-3-0)

³⁰ The problem of locating the minimum energy barrier for a transition has applications in physical ³⁰ ³¹ phase transitions, synthesis plans for materials, activation energies for chemical reactions, and the con-³¹ ³² formational changes in biomolecules that lead to reactions inside cells. In most of these scenarios, the ³² ³³ dynamics are governed by the kinetics of the system (rather than the thermodynamics) because the ther-³³ ³⁴ mal energy of the system is much smaller than the energy barrier of the transition. This leads to the ³⁴ ³⁵ system spending most of its time around the minima, and some random large fluctuations in the system ³⁵ ³⁶ lead to a transition. This is precisely why transition events are rare and difficult to isolate and charac-³⁶ ³⁷ terize with experimental methods. Moreover, these ultra-fast techniques can be applied to only a limited³⁷ ³⁸ number of systems. Because transition events are rare, sampling them using Monte Carlo methods re-
³⁸ ³⁹ quires long simulation times, making them inefficient [\[2\]](#page-13-0). To sample the regions of the potential energy ³⁹ ⁴⁰ surface around the saddle point adequately, a large number of samples have to be drawn. Previous work⁴⁰ ⁴¹ has been done to identify the saddle point and determine the height of the transition barrier—transition ⁴¹ ⁴² path sampling [\[17\]](#page-14-2), nudged elastic band [\[13\]](#page-14-3), growing string method [\[16\]](#page-14-4), to name a few—which use ⁴² ⁴³ ideas from gradient descent. However, even for comparatively simple reactions, these methods are not ⁴³ ⁴⁴ always guaranteed to find the path with the energy barrier that is a global minimum because the initial ⁴⁴ ⁴⁵ guess for the pathway might be wrong and lead to a local minimum.⁴⁵ 46 46

 39 Fig. 1. Maze solving using reinforcement learning: (a) The agent is at a state at a particular time step. (b) The agent takes an action (according to the policy it is supposed to learn) and reaches the next state. (c) The agent records the reward obtained by ⁴¹ algorithms this (state, action, reward, next state, next action) tuple is stored while the agent is learning. With a large number of ⁴¹ 42 interactions with the environment (e), where the agent takes an action at a state to learn the reward obtained, the agent learns a policy (f) which maximizes the rewards collected by the agent. The policy (f) gives the sequence of actions that the agent has $\frac{43}{3}$ to take from the initial state to the final state so that it collects the maximum rewards in the episode.
44 taking the action at that state. (d) The agent takes another action to explore the environment. In most reinforcement learning

- 45
- 46

 barrier as determined by a growing string method on the potential energy surface with 9 intermediate images. (b) The reaction 40 41 41 method. The reaction barrier is marked as ΔE^{\ddagger} . (c) The same potential energy surface as in (a) is course grained to construct ⁴¹ ⁴² the maze. The initial state is marked as the yellow box while the final state is marked as the green box. The agent can move 42 43 to the blue boxes while the red boxes represent walls. The energy cutoff 0 is chosen to determine whether a grid box is a wall 44 or not. (d) Instead of the extreme classification of a grid box as a wall or not, each grid box is assigned an energy value. The ⁴⁵ The energy profile for the pathway identified by the agent in this maze is plotted as the dashed green line in (b). As it might be 46 seen, coarse-graining the potential energy surface into a 8 × 8 maze, ans solving then solving it using standard reinforcement profile, plotted as a solid blue line (interpolated to give a smooth curve) from the pathway determined by the growing string agent is then allowed to learn the path with the minimum sum of energies along it's path from the initial state to the final state.

 1 With the advent of deep learning and the use of neural nets as function approximators for complex 2 mappings, there has been increased interest in the use of machine learning [\[26\]](#page-14-5) to either guess the con- 3 figuration of the saddle point along the pathway (whose energy can then be determined by standard *ab* 4 *initio* methods) or directly determine the height of the energy barrier given the two endpoints of the 5 transition. Graph neural networks [\[30\]](#page-15-0), generative adversarial networks [\[21\]](#page-14-6), gated recurrent neural net- 6 works [\[3\]](#page-14-7), transformers [\[20\]](#page-14-8), machine-learned potentials [\[12,](#page-14-9) [15\]](#page-14-10), and so on, have been used to optimize 7 the pathway for such transitions.

8 8 Noting the superficial similarities between solving a maze and determining the transition pathway 9 9 with the lowest energy barrier, it is proposed to use standard and tested deep reinforcement learning al-10 gorithms used to solve mazes in an attempt to solve the problem of finding minimum energy pathways. 10 ¹¹ The problem is formulated as a min-cost optimization problem in the state space of the system. This for-
¹¹ ¹² mulation is used to determine the barrier height of the optimal pathway in the Mueller-Brown potential. ¹² 13 Neural nets are used as the actor and critic function approximators, and a randomly perturbed policy is 13 ¹⁴ used to facilitate exploration of the potential energy surface by the agent. Delayed policy updates and ¹⁴ ¹⁵ target policy averaging are used to stabilize the learning, especially during the first few epochs, which ¹⁵ ¹⁶ are crucial to the optimal performance of the agent. ¹⁶

¹⁷ Section [2](#page-4-0) describes the methods used to formulate the problem as a Markov decision process and the ¹⁷ ¹⁸ algorithm used to solve it. Section [3](#page-8-0) elaborates on the experiments where the formulated method is used ¹⁸ ¹⁹ to determine the barrier height of a transition on the Mueller-Brown potential. Section [4](#page-12-0) contains a short ¹⁹ ²⁰ discussion of the work in the context of other similar studies and the conclusions drawn from this work. ²⁰

23 **2. Methods** 23

25 25 To solve the problem of finding a pathway with the lowest energy barrier for a transition using rein-²⁶ forcement learning, one has to model it as a Markov decision process. Any Markov decision process ²⁶ ²⁷ consists of (state, action, next state) tuples. In this case, the agent starts at the initial state (a local min-²⁸ imum) and perturbs the system (the action) to reach a new state. Since the initial state was an energy ²⁸ ²⁹ minimum, the current state will have higher energy. However, as in many sequential control problems, ²⁹ ³⁰ the reward is delayed. A series of perturbations that lead to states with higher energies might enable ³⁰ ³¹ the agent to climb out of the local minimum into another one containing the final state. By defining a ³¹ ³² suitable reward function and allowing the agent to explore the potential energy surface, it is expected ³² ³³ that the agent will learn a path from the initial to the final state that maximizes the rewards. If the reward ³⁴ function is defined properly, it should correspond to the pathway with the lowest energy barrier for the ³⁴ $\frac{35}{35}$ transition $\frac{35}{35}$ transition.

³⁶ Once the problem is formulated as a Markov decision process, it can be solved by some reinforcement ³⁶ ³⁷ learning algorithm. Twin Delayed Deep Deterministic Policy Gradient (TD3) [\[6\]](#page-14-11) is a good start because³⁷ ³⁸ it prevents the overestimation of the state value function, which often leads to the agent exploiting the ³⁸ ³⁹ errors in the value function and learning a sub-optimal policy. Soft Actor Critic (SAC) [\[9\]](#page-14-12) tries to blend³⁹ ⁴⁰ the deterministic policy gradient with a stochastic policy optimization, promoting exploration by the ⁴⁰ ⁴¹ agent. In practice, using a stochastic policy to tune exploration often accelerates the agent's learning.⁴¹ 42 42

-
- 43 43 *2.1. Markov Decision Process* 44 44

⁴⁵ The Markov decision process is defined on: ⁴⁵

46 46

- 21 $\hspace{1.5cm}$ 21 22 \sim 22 24 24
	-
	-
- **•** a state space S, consisting of states $s \in \mathbb{R}^d$, where d is the dimensionality of the system, chosen to 1 2 2 be the number of degrees of freedom in the system.
- **•** a continuous action space A, where each action $\Delta s \in \mathbb{R}^d : |(\Delta s)_i| \leq 1$ is normalized, and the action is scaled using an appropriate scaling factor λ .

At a state $s^{(k)}$, the agent takes an action $\Delta s^{(k)}$. Since the action is considered a perturbation to the 6 6 current state of the system, the next state $s^{(k+1)}$ is determined from the current state $s^{(k)}$ as $s^{(k+1)} = \frac{1}{2}$ $s^{(k)} + \lambda \cdot \Delta s^{(k)}$.

To determine

 $\frac{8}{3}$ To determine the minimum energy barrier for a transition, the reward for an action taking the agent to state $s^{(k+1)}$ from state $s^{(k)}$ is chosen to be the negative of the energy of the next state, $-E(s^{(k+1)})$. 10 10 The negation makes maximizing the sum of rewards collected by the reinforcement learning agent in an $\frac{11}{12}$ episode equivalent to minimizing the sum of energies along the pathway for the transition. The reward $\frac{12}{12}$ acts as immediate feedback to the agent for taking an action in a particular state. However, what is $\frac{13}{14}$ important is the long-term reward, captured by the sum of the rewards over the entire episode, leading $\frac{14}{15}$ the agent to identify a transition pathway with a low sum of energies at all intermediate steps.

 $\frac{15}{16}$ Since both the state space and action space are continuous, an actor-critic based method, specifically $\frac{16}{17}$ the soft actor-critic (SAC), is used. Additionally, since the state space is continuous, the episode is $\frac{17}{18}$ deemed to have terminated when the difference between the current state and the target state is smaller 18 defined to have terminated when are unreleased occurrent the cartent state and the target state is smaller than some tolerance, $x \in \mathbb{R}^d : |x - x_t| < \delta$ for some small δ . Otherwise, it would be extremely unlikely that the agent would land exactly at the coordinates of the final state after taking some action.

21 **21 22 21 22 21 22 21** 22 2.2. The continuous contract 22 *2.2. Algorithm*

23 α 23 α 24 α 24 α 25 α 24 SAC, an off-policy learning algorithm with entropy regularization, is used to solve the formulated 24 $\frac{25}{25}$ Markov Decision process because the inherent stochasticity in its policy facilitates exploration by the $\frac{25}{25}$ agent. The algorithm learns a behavior policy π_{θ} and two critic Q-functions, which are neural nets with $\frac{26}{26}$ 27 parameters φ_1 and φ_2 (me 1 or Ω) (h) χ (h) χ

28 28 29 b). The retains from the state 3° when acting according to the poncy λ is the discounted state $\frac{29}{2}$ of rewards collected from that step onwards till the end of the episode: $R_t = -\sum_{i=1}^T \gamma^{i-t}$, $E(s^{(i)})$.
The objective of the reinforcement learning agent is to determine the policy π^* that maximizes the 31 and objective of the refinoncement realining agent is to determine the policy π and maximizes the 31 32 32 identity, N_l , for states $3 \leq C$. This is done by defining a state-action value function, $\mathcal{Q}(3, 4a)$, $\frac{32}{2}$ which gives an estimate of the expected returns if action $a^{(i)}$ is taken by the agent when at state $s^{(i)}$: $Q(s^{(i)}, a^{(i)}) = \mathbb{E}\left[R_t : s_t = s^{(i)}, a_t = a^{(i)}\right]$. Since the objective is to maximize the sum of the returns, the action-value function can be recursively defined as 35 action-value function can be recursively defined as 35 parameters ϕ_1 and ϕ_2 (line 1 of Algorithm [1\)](#page-6-0).
The agent chooses an action $a^{(k)} \equiv \Delta s^{(k)}$ to take when at state $s^{(k)}$ following the policy π_θ (line
8) The returns from the state $s^{(k)}$ when acting accordin 8). The returns from the state *s*^(*k*) when acting according to the policy π is the discounted sum of rewards collected from that step onwards till the end of the episode: $R = -\sum_{i=1}^{T} x^{i-t} F(s^{(i)})$ The objective of the reinforcement learning agent is to determine the policy π^* that maximizes the returns R_+ for states $s \in S$. This is done by defining a state-action value function $O(s^{(i)}, a^{(i)})$ returns, R_t , for states $s \in S$. This is done by defining a state-action value function, $Q(s^{(i)}, a^{(i)})$, which gives an estimate of the expected returns if action $q^{(i)}$ is taken by the agent when at state $s^{(i)}$.

$$
36 \t\t 37
$$

$$
Q(s^{(i)}, a^{(i)}) = -E(s^{(i+1)}) + \max_{a^{(i+1)} \in \mathcal{A}} Q(s^{(i+1)}, a^{(i+1)})
$$
³⁷
38
38

40 40 which is implemented in line 14 of Algorithm [1.](#page-6-0)

⁴¹ A replay buffer with a sufficiently large capacity is employed to increase the probability that indepen-⁴¹ ⁴² dent and identically distributed samples are used to update the actor and two critic networks. The replay ⁴² ⁴³ buffer (in line 3) is modeled as a deque where the first samples to be enqueued (which are the oldest) are ⁴³ ⁴⁴ also dequeued first, once the replay buffer has reached its capacity and new samples have to be added. ⁴⁴ ⁴⁵ Since an off-policy algorithm is used, the critic net parameters are updated by sampling a mini-batch ⁴⁵ 46 46

18 13: sample a minibatch B of $(s, a, r, s', \text{ done})$ tuples from the replay buffer R 18

19 14 19

14: compute targets as (where $a' = \pi_{\theta}(\cdot|s') + \text{clip}(\epsilon, -\epsilon_{\text{lim}}, \epsilon_{\text{lim}})$)

¹⁹

²⁰ 20 \sim 20 21 and $\sqrt{21}$ 21 and $\sqrt{21$ 21

22 $y(r, s') = r + \gamma(1 - \text{done}) \left(\min_{i=1,2} Q_{\phi_{i,\text{target}}}(s', a') - \alpha \log \pi_{\theta}(a'|s')) \right)$

²⁴ 15: update critic Q-nets parameters by one step of gradient descent with loss function (with ²⁴

²⁵ the gradient clipped by some maximum value)²⁵ the gradient clipped by some maximum value)²⁵ 26 26

27 and $\sqrt{2}$ 27 and $\sqrt{2}$ 27 and 27

28 $\frac{1}{\sqrt{2}} \nabla \cdot \left(\sum \min_{\alpha} \frac{\partial}{\partial x} (s, a) - v(r, s') \right)$ for $i = 1, 2$ 29 $|D|$ $\left(\frac{E}{cR}l=1,2\right)$ \qquad \qquad 29

 31 16: if $t \text{ }$ % update_target == 0 then 32 17: update actor net parameters by one step of gradient descent with loss function (with 32

33 **12 Solution Contract Contract Contract Server Structure Contract Server Structure Contract Server Structure Contract Server Structure Structure Structure Contract Structure Structure Structure Structure Structure Struc**

34 34

 $\frac{1}{1}$ $\left($ $\frac{1}{2}$ $\frac{1$ 36 $\frac{1}{\Box P} \left[\begin{array}{c} \vee_{\theta} \end{array} \right]$ mm $Q_{\phi_i}(s, \pi_{\theta}(s)) - \alpha \log \pi_{\theta}(a|s)$

 37 37 37 37

38 38 18: update the entropy coefficient α as one step of gradient descent with loss function $\frac{39}{29}$

40 40

41 $1 - \left(\sum_{i=1}^{n} x_i + x_i \right)$ 41

42 $|\mathcal{B}| \stackrel{\vee}{\sim} \alpha \log \frac{\lambda \theta(\mathbf{a}|\mathbf{b})}{\log \lambda}$ $\alpha \log \alpha$

 23 23

 $\min_{i=1,2} Q_{\phi_{i,\mathrm{target}}}(s', a') - \alpha \log \pi_{\theta}(a' | s')) \bigg)$

 30 30

for $i = 1, 2$

 \setminus^2

 \setminus^2

22: end for

 $\frac{1}{|\mathcal{B}|}$ ∇_{ϕ_i}

 $\frac{1}{|\mathcal{B}|}$ ∇_{θ}

 $\sqrt{\nabla}$

 $\sqrt{\nabla}$

s∈B

 $\sqrt{\nabla}$

min

s∈B

min

 $\min_{i=1,2} Q_{\phi_i}(s, a) - y(r, s')$

 $\min_{i=1,2} Q_{\phi_i}(s, \pi_{\theta}(s)) - \alpha \log \pi_{\theta}(a|s)$

23: end for

24: return the actor net parameters θ and critic Q-net parameters ϕ_1, ϕ_2 .

8 *A. Pal / Estimating Reaction Barriers with Deep Reinforcement Learning*

24 24 Parameters used while training the RL agent. 25 25

 26 26 27 декемв<u>е</u>р — 2002 год на 2003 год на 20
Село в 2003 год на 200

 $_{28}$ from the replay buffer at each update step (line 13). Stochastic gradient descent is used to train the actor $_{28}$ 29 29 and the two critic nets.

30 30 30 30 30 The entropy coefficient α is adjusted over the course of training to encourage the agent to explore 30
31 more when required and avalant its knowledge at other times (line 19) 5101 However, come almonta ³¹ more when required and exploit its knowledge at other times (line 18) [\[10\]](#page-14-13). However, some elements³¹ 32 from the TD3 algorithm [\[6\]](#page-14-11) are borrowed to improve the learning of the agent, namely delayed policy 32 $\frac{33}{2}$ 33 updates and target policy smoothing. The critic Q-nets are updated more frequently than the actor and $\frac{34}{34}$ ³⁵ the target Q-nets to allow the critic to learn faster and provide more precise estimates of the returns from 36 36 the current state. To address the problem of instability in the learning, especially in the first few episodes 37 while training the agent, target critic nets are used. Initially, the critic nets are duplicated (line 2) and ³⁷ ³⁸ subsequently soft updates of these target nets are carried out after an interval of a certain number of steps ³⁸ ³⁹ (line 19). This provides more precise estimates for the state-action value function while computing the 40 \sim 40 \sim 40 returns for a particular state in line 14. To encourage the agent to explore the potential energy surface, $_{42}$ clipped noise is added to the action chosen by the actor net (line 9). This also makes it difficult for $_{42}$ 43 43 the actor to exploit imprecise Q-net estimates during the beginning of the training. The changes to the ⁴⁴ SAC algorithm, borrowed from TD3, are highlighted in blue in the pseudocode of Algorithm [1.](#page-6-0) The ⁴⁴ ⁴⁵ parameters used in the particular implementation of the algorithm are listed in Table [1.](#page-7-0) 46 46

A. Pal / Estimating Reaction Barriers with Deep Reinforcement Learning 9

	Parameter	Value	
$\overline{2}$	number of dimensions (d)		
	limits for dimensions 1	$(-1.70, 1.30)$	
4	limits for dimensions 2	$(-0.40, 2.10)$	
	scaling factor for action (λ)	0.01	
	tolerance for convergence (δ)	10^{-4}	
6			
	Table 2		

 8 m Some parameters of the Markov Decision process to find pathways with the minimum energy barrier on the chosen potential.

en de la construction de la constr
De la construction de la construct

 11 11

10 3. Experiments 10

12 12 The proposed algorithm is applied to determine the pathway with the minimum energy barrier on 12 $_{13}$ the Müller–Brown potential energy surface [\[25\]](#page-14-14). The Müller–Brown potential has been used to bench-14 mark the performance of several algorithms that determine the minimum energy pathways, such as the 14 $_{15}$ molecular growing string method [\[7\]](#page-14-15), Gaussian process regression for nudged elastic bands [\[18\]](#page-14-16), and $_{15}$ 16 accelerated molecular dynamics [\[29\]](#page-15-1). Therefore, it is also used in this work to demonstrate the applica- $_{17}$ bility of the proposed method. A custom Gym environment [\[28\]](#page-14-17) was created following the gymnasium $_{17}$ 18 interface (inheriting from the class Gym) to model the problem as a Markov Decision Process to be $_{18}$ 19 solved by a reinforcement learning pipeline. The values for the parameters used in Algorithm [1](#page-6-0) are listed $_{19}$ 20 **10 100 1.** 20 in Table [1.](#page-7-0)

22 $3.1.$ Results 22 *3.1. Results*

23 23 $_{24}$ The Müller–Brown potential is characterized by the following potential:

$$
V(x, y) = \sum_{i=0}^{3} W_i \cdot \exp\left[a_i (x - \overline{x}_i)^2 + b_i (x - \overline{x}_i) (y - \overline{y}_i) + c_i (y - \overline{y}_i)^2\right]
$$
(1)

21 $\hspace{1.5cm}$ 21

25 \sim 25

where $W = (-200, -100, -170, 15)$, $a = (-1, -1, -6.5, 0.7)$, $b = (0, 0, 11, 0.6)$, $c = \frac{29}{(10, -10, -6.5, 0.7)}$, $\bar{r} = (1, 0, -0.5, -1)$ and $\bar{v} = (0, 0.5, 1.5, 1)$. The potential energy surface for $\bar{s} = 0$ $(10, -10, -6.5, 0.7), \overline{x} = (1, 0, -0.5, -1), \text{ and } \overline{y} = (0, 0.5, 1.5, 1).$ The potential energy surface for
³¹ the system is plotted in Figure 3a, and the local minima are at $(-0.558, 1.442)$ (0.623, 0.028), and ³¹ the system is plotted in Figure [3a,](#page-9-0) and the local minima are at $(-0.558, 1.442)$, $(0.623, 0.028)$, and ³¹
³² $(-0.050, 0.467)$ with the value of $V(x, y)$ being -146.7 -108.2 and -80.8 respectively. The RI ag $(1,0.050, 0.467)$ with the value of *V*(*x*, *y*) being -146.7 , -108.2 , and -80.8 , respectively. The RL agent was trained to locate a path on this surface from (0.623, 0.028) with a random step (with zero mean and was trained to locate a path on this surface from $(0.623, 0.028)$ with a random step (with zero mean and 33
34 35 a standard deviation of 0.1) added to it as the initial state to $(-0.558, 1.442)$ as the terminal state, 34 34 a standard deviation of ⁰.1) added to it as the initial state to (−0.558, ¹.442) as the terminal state, with ³⁵ the minimum energy barrier. The first random step was chosen to avoid the same starting point in each³⁵ ³⁶ training iteration of the agent, so it learns a more generalized policy. Some of the parameters for the ³⁶ ³⁷ Markov Decision Process to model this potential are given in Table [2.](#page-8-1)

³⁸ In Figure [5a,](#page-10-0) an ensemble of paths generated by the trained RL agent with the starting points slightly ³⁸ ³⁹ 39 perturbed from $(0.623, 0.028)$ by noise added from $\mathcal{N}(0, 0.1)$ is plotted on the energy surface. The ³⁹ apergy profiles along the generated trajectories are plotted in Figure 5b aloned by the maximum of the ⁴⁰ energy profiles along the generated trajectories are plotted in Figure [5b](#page-10-0) aligned by the maximum of the ⁴⁰ ⁴¹ profiles (and not by the start of the trajectories) for better visualization. The predicted energy barrier for the transition of interest is -40.36 ± 0.21 . One can see that the agent learns to predict the path with the 42
⁴³ correct minimum energy barrier, albeit the energy barrier estimated by the agent is a little higher ⁴³ correct minimum energy barrier, albeit the energy barrier estimated by the agent is a little higher than ⁴³ the optimal analytical solution (-40.665). However, the result demonstrates that reinforcement learning 44
 45 algorithms can be used to locate the minimum energy barrier for transitions between stable states in ⁴⁵ algorithms can be used to locate the minimum energy barrier for transitions between stable states in ⁴⁵ 46 46

13 (a) Potential energy surface to find the paths with (b) Learning curve with the shaded region representing one 13 14 minimum energy barrier. Standard deviation from the mean over 11 trials. minimum energy barrier.

and 12 and 12

⁴⁵ the barrier height, to avoid overestimating it. ⁴⁵ 46

16 16 Fig. 5. Trajectories generated by the trained agent following the learnt policy.

$\frac{17}{17}$ 22 11 17 18 18 *3.2. Ablation Studies*

¹⁹ Several modifications were made to the standard SAC algorithm to be used in this particular case 20 (highlighted in blue in Algorithm [1\)](#page-6-0). Studies were performed to understand the contribution of each 20 $\frac{21}{100}$ individual component to the working of the algorithm in this particular environment by comparing the $\frac{22}{2}$ performance of the algorithm with different hyperparameters for a component. The parameters for one $\frac{22}{2}$ $\frac{23}{2}$ modification was varied, keeping the parameters for the other two modifications unchanged from the $\frac{23}{2}$ $\frac{24}{100}$ fine-tuned algorithm. Each modification and its contribution to the overall learning of the agent are $\frac{24}{100}$ described in the following sections. The mean and the standard deviation of the returns from the last 25 ²⁶ 100 training steps for each modification to the existing algorithm are listed in Table [6a](#page-11-0) to compare the ²⁶ ²⁷ performance of the agents. The modification that leads to the highest returns is highlighted.²⁷ 28 $\overline{1}$ 28

29 29 *3.2.1. Target Policy Smoothing*

30 30 Injecting random noise (with a standard deviation σ) into the action used in the environment (in line σ) of Algorithm 1) encourages the agent to explore, while adding noise to the actions used to calculate 31 9 of Algorithm [1\)](#page-6-0) encourages the agent to explore, while adding noise to the actions used to calculate 31 $_{32}$ the targets (in line 14 of Algorithm [1\)](#page-6-0) acts as a regularizer, forcing the agent to generalize over similar $_{32}$ 33 actions. In the early stages of training, the critic Q-nets can assign inaccurate values to some state-action 33 ³⁴ pairs, and the addition of noise prevents the actor from rote learning these actions based on incorrect ³⁴ ³⁵ feedback. On the other hand, to avoid the actor taking a too random action, the action is clipped by some ³⁵ $_{36}$ maximum value for the noise (as done in lines 9 and 14 of Algorithm [1\)](#page-6-0). The effect of adding noise to $_{36}$ 37 spread the state-action value over a range of actions is plotted in Figure [6b.](#page-11-0) Adding noise leads to the 37 38 agent learning a policy with less variance in the early learning stages and a more consistent performance.

39 39 *3.2.2. Delayed Policy Updates*

⁴⁰ Delaying the updates for the actor nets and the target Q-nets (in lines 17 and 19 of Algorithm [1\)](#page-6-0)⁴⁰ ⁴¹ allows the critic Q-nets to update more frequently and learn at a faster rate, so that they can provide a ⁴¹ ⁴² reasonable estimate of the value for a state-action pair before it is used to guide the policy learned by ⁴² ⁴³ the actor net. The parameters of the critic Q-nets might often change abruptly early on while learning, ⁴³ ⁴⁴ undoing whatever the agent had learned (catastrophic failure). Therefore, delayed updates of the actor ⁴⁴ ⁴⁵ net allow it to use more stable state-action values from the critic nets to guide the policy learned by it. The 46 46

¹⁴ (a) Returns for the last 100 episodes of trials (b) Effect of adding noise to the target action (a) Returns for the last 100 episodes of trials

(d) Effect of varying constant values of α and a tunable α on the learning of the agent.

33 Fig. 6. Effect of the various modifications to the SAC algorithm on the learning of the agent.

 35 effect of varying intervals of delay for the actor update on the learning of the agent is plotted in Figure [6c.](#page-11-0) 36 Updating the actor net for every update of the critic nets led to a policy with a high variance (blue plot). 37 Delaying the update of the actor net to once every 2 updates of the critic resulted in the agent learning 37 38 a policy that provided higher returns but still had a high variance (green plot). Delaying the update of 38 ³⁹ the actor further (once every 4 and 8 updates of the critic net plotted as the red and magenta curves, ³⁹ ⁴⁰ respectively) further improved the performance of the agent. One can notice the lower variance in the ⁴⁰ ⁴¹ policy of the agent during the early stages (first 200 episodes of the magenta curve) for the agent which ⁴¹ ⁴² updates the actor net and target critic nets once every 8 updates of the critic nets. However, delaying ⁴² ⁴³ the updates for too long intervals would cripple the learning of the actor. The performance of the agent ⁴³ ⁴⁴ suffers when the update of the actor is delayed to once every 16 updates of the critic nets (yellow curve)⁴⁴ ⁴⁵ and the agent fails to learn when the update of the actor net is further delayed to once every 32 updates ⁴⁵ 46

¹⁵ 15 15 for each modification on the learning of the agent. ¹⁵ 15 on the learning of the agent.

¹⁴ (a) A potential energy surface with pathways passing (b) The energy profiles of the three pathways depicted ¹⁴ 15 through three different saddle points. $\frac{15}{2}$ in (a) with their respective barrier heights. 15 through three different saddle points.

 $_{17}$ Fig. 7. (Left) Three possible pathways on a potential energy surface (taken from [\[5\]](#page-14-18)) passing though different saddle points. $_{17}$ 18 based methods would not improve this pathway as it passes through a local minima. This pathway has an energy barrier of ¹⁸ 19 1.50. The pathway with the lowest energy barrier, 1.27, is depicted by a solid line, and was learnt by the reinforcement learning 19
20 agent following Algorithm 1 (right) The energy profile for the three possible trans $_{20}$ agent following Algorithm [1.](#page-6-0) (right) The energy profile for the three possible transition pathways. Nudged elastic band would $_{20}$ have overestimated the energy barrier for the transition by $(150 - 127)/127$ or 18% , and hence underestimates the frequency 21
with which it assume by $1 \qquad \qquad 21$ $\frac{22}{2}$ $\frac{22}{2}$ 22 A simple interpolation between the starting and ending points would lead to the dotted trajectory. Running traditional gradient with which it occurs by $1 - e^{-1.50 - (-1.27)} = 20\%$.

 23 of the critic nets (cyan curve). 23 24

25 25 *3.2.3. Tuning the Entropy Coefficient*

26 26 The entropy coefficient α can be tuned as the agent learns (as done in line 18 of Algorithm [1\)](#page-6-0), which 27 overcomes the problem of finding the optimal value for the hyperparameter α [\[10\]](#page-14-13). Moreover, simply α fixing α to a single value might lead to a poor solution because the agent learns a policy over time; it fixing α to a single value might lead to a poor solution because the agent learns a policy over time: it $\frac{28}{100}$ should still explore regions where it has not learned the optimal action, but the policy should not should still explore regions where it has not learned the optimal action, but the policy should not change $_{29}$ ₃₀ much in regions already explored by the agent that have higher returns. In Figure [6d,](#page-11-0) the effect of the ₃₀ 31 variation of the hyperparameter α on the learning of the agent is compared. As can be seen, a tunable α 31 allows the agent to learn steadily encouraging it to explore more in the earlier enisodes and exploiting ³² allows the agent to learn steadily, encouraging it to explore more in the earlier episodes and exploiting ³² ³³ the returns from these explored regions in the latter episodes, resulting in a more stable learning curve (blue curve). A too low value of α , such as 10^{-3} or 10^{-1} , makes the algorithm more deterministic (TD3-
like), which leads to sub-optimal performance and the agent being stuck in a local minimum (plotted as $_{35}$ like), which leads to sub-optimal performance and the agent being stuck in a local minimum (plotted as $_{35}$ 36 green and red curves, respectively). An α value of 0.1 has comparable performance to the tunable α, but 36
the learning curve is less stable and there are abrunt changes in the policy function (magenta curve). The 37 the learning curve is less stable and there are abrupt changes in the policy function (magenta curve). The 37 38 38 original implementation of SAC suggested ⁰.² as a fixed value for α, which leads to a learning curve 39 39 resulting in a policy with high variance (yellow curve). A too high value of α, such as ⁰.5, makes the algorithm more stochastic (REINFORCE-like), which also leads to sub-optimal learning (cyan curve). $\frac{40}{40}$

41 41

42 42 4. Discussions and Conclusion 43 43

⁴⁴ Advancements in reinforcement learning algorithms based on the state-action value function have led ⁴⁴ ⁴⁵ to their application in diverse sequential control tasks such as Atari games, autonomous driving, and ⁴⁵ 46 46

A. Pal / Estimating Reaction Barriers with Deep Reinforcement Learning

1 1 1 1 1 1 1 robot movement control. This project formulated the problem of finding the minimum energy barrier 2 for a transition between two local minima as a cost minimization problem, solved using a reinforcement 3 learning setup with neural networks as function approximators for the actor and critics. A stochastic ⁴ policy was employed to facilitate exploration by the agent, further perturbed by random noise. Target ⁴ 5 networks, delayed updates of the actor, and a replay buffer were used to stabilize the learning process for 6 the reinforcement learning agent. While the proposed framework samples the region around the saddle 7 point sufficiently, providing a good estimate of the energy barrier for the transition, there is definitely 7 8 scope for improvement. As future work, the method could be applied to more realistic systems.

 9 Previous works in determining transition pathways using deep learning or reinforcement learning tech- 10 niques include formulating the problem as a shooting game solved using deep reinforcement learning [\[32\]](#page-15-2). Additionally, in [\[14\]](#page-14-19), this problem is formulated as a stochastic optimal control problem, where 11 12 neural network policies learn a controlled and optimized stochastic process to sample the transition 12 13 pathway using machine learning techniques. Stochastic diffusion models have been used to model el- 14 ementary reactions and generate the structure of the transition state, preserving the required physical 15 symmetries in the process [\[4\]](#page-14-20). Furthermore, the problem of finding transition pathways was recast into 15 16 a finite-time horizon control optimization problem using the variational principle and solved using re-17 inforcement learning in [\[8\]](#page-14-21). Recent work [\[1\]](#page-13-1) used an actor-critic reinforcement learning framework to 17 18 optimize molecular structures and calculate minimum energy pathways for two reactions.

 19 This work differs from previous efforts by providing a much simpler formulation of the problem, using 20 the energy of the state directly as the reward while searching for transition pathways with the minimum 21 energy barrier. One of the main advantages of this method is that, unlike traditional methods such as the 22 nudged elastic band or the growing string method, it does not require an initial guess for the transition 23 pathway. Traditional methods use energy gradient information along the pathway to iteratively improve 24 to a pathway with better energetics. However, the success of these methods depends on the initial guess 25 for the pathway, which might be stuck in a local minimum, as shown in Figure [7,](#page-12-1) leading to a sub-optimal 26 solution. This could result in an overestimate of the energy barrier and subsequently an underestimate 27 of the probability for the transition to occur, leading to imperfect modeling of the system. On the other 27 28 hand, the use of a stochastic policy in a reinforcement learning setup avoids this problem, increasing 29 the chances of finding a better estimate of the transition barrier as the agent explores the state space. 30 However, as a trade-off for the simple model and generic approach, the agent learns slowly and requires 31 a large number of environment interactions.

34 Acknowledgements

 35 ³⁶ The author would like to gratefully acknowledge the computational resources provided by Institut for ³⁶ 37 Matematik og Datalogi, Syddansk Universitet for this work.

38

 32 33

39 excelences 40 References

- 41 [1] R. Barrett and J. Westermayr, Reinforcement Learning for Traversing Chemical Structure Space: Optimizing Transition 42 States and Minimum Energy Paths of Molecules, *The Journal of Physical Chemistry Letters* 15(1) (2024), 349–356, 43 PMID: 38170921. doi:10.1021/acs.jpclett.3c02771.
- 44 [2] P.G. Bolhuis and D.W.H. Swenson, Transition Path Sampling as Markov Chain Monte Carlo of Trajectories: Recent 45 doi:https://doi.org/10.1002/adts.202000237. [https://onlinelibrary.wiley.com/doi/abs/10.1002/adts.202000237.](https://onlinelibrary.wiley.com/doi/abs/10.1002/adts.202000237) 46 Algorithms, Software, Applications, and Future Outlook, *Advanced Theory and Simulations* 4(4) (2021), 2000237.

- 1 1 [3] S. Choi, Prediction of transition state structures of gas-phase chemical reactions via machine learning., *Nat Commun* 14 2^{2} (2023). doi:10.1038/s41467-023-36823-3.
- 3 3 reaction diffusion model, *Nature Computational Science* 3(12) (2023), 1045–1055. doi:10.1038/s43588-023-00563-7. [4] C. Duan, Y. Du, H. Jia and H.J. Kulik, Accurate transition state generation with an object-aware equivariant elementary
- ⁴ [5] W. E, W. Ren and E. Vanden-Eijnden, Simplified and improved string method for computing the minimum energy paths ⁴ 5 5 in barrier-crossing events, *The Journal of Chemical Physics* 126(16) (2007), 164103. doi:10.1063/1.2720838.
- 6 6 [6] S. Fujimoto, H. van Hoof and D. Meger, Addressing Function Approximation Error in Actor-Critic Methods, 2018. [https://arxiv.org/abs/1802.09477.](https://arxiv.org/abs/1802.09477)
- ⁷ [7] A. Goodrow, A.T. Bell and M. Head-Gordon, Transition state-finding strategies for use with the growing string method, 8 8 *The Journal of Chemical Physics* 130(24) (2009), 244108. doi:10.1063/1.3156312.
- 9 9 [8] J. Guo, T. Gao, P. Zhang, J. Han and J. Duan, Deep reinforcement learning in finite-horizon 10 10 to explore the most probable transition pathway, *Physica D: Nonlinear Phenomena* 458 (2024), 11 [S0167278923003093.](https://www.sciencedirect.com/science/article/pii/S0167278923003093) 11 11 133955. doi:https://doi.org/10.1016/j.physd.2023.133955. [https://www.sciencedirect.com/science/article/pii/](https://www.sciencedirect.com/science/article/pii/S0167278923003093)
- 12 12 [9] T. Haarnoja, A. Zhou, P. Abbeel and S. Levine, Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement 13 **13** 13 **13 Learning with a Stochastic Actor, 2018. [https://arxiv.org/abs/1801.01290.](https://arxiv.org/abs/1801.01290)**
- 14 14 [10] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta, P. Abbeel and S. Levine, Soft Actor-Critic Algorithms and Applications, 2019. [https://arxiv.org/abs/1812.05905.](https://arxiv.org/abs/1812.05905)
- 15 15 [11] H. Hanke and D. Knees, A phase-field damage model based on evolving microstructure, *Asymptotic Analysis* 101 (2017), $149-180.$ 16 149-180. 149–180.
- 17 [12] S. Heinen, G.F. von Rudorff and O.A. von Lilienfeld, Transition state search and geometry relaxation throughout 17 18 18 chemical compound space with quantum machine learning, *The Journal of Chemical Physics* 157(22) (2022), 221102. doi:10.1063/5.0112856.
- ¹⁹ [13] G. Henkelman, B.P. Uberuaga and H. Jónsson, A climbing image nudged elastic band method for finding saddle points¹⁹ 20 20 and minimum energy paths, *The Journal of Chemical Physics* 113(22) (2000), 9901–9904. doi:10.1063/1.1329672.
- 21 [14] L. Holdijk, Y. Du, F. Hooft, P. Jaini, B. Ensing and M. Welling, Stochastic Optimal Control for Collective Variable Free 21 Sampling of Molecular Transition Paths, 2023. [https://arxiv.org/abs/2207.02149.](https://arxiv.org/abs/2207.02149)
- ²² [15] R. Jackson, W. Zhang and J. Pearson, TSNet: predicting transition state structures with tensor field networks and transfer²² 23 23 learning, *Chem. Sci.* 12 (2021), 10022–10040. doi:10.1039/D1SC01206A.
- 24 24 [16] M. Jafari and P.M. Zimmerman, Reliable and efficient reaction path and transition state finding for sur-25 25 face reactions with the growing string method, *Journal of Computational Chemistry* 38(10) (2017), 645–658. doi:https://doi.org/10.1002/jcc.24720. [https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.24720.](https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.24720)
- ²⁶ [17] H. Jung, R. Covino, A. Arjun et al., Machine-guided path sampling to discover mechanisms of molecular self-²⁶ 27 27 organization., *Nat Comput Sci* 3 (2023), 334–345–. doi:10.1038/s43588-023-00428-z.
- 28 28 [18] O.-P. Koistinen, F.B. Dagbjartsdóttir, V. Ásgeirsson, A. Vehtari and H. Jónsson, Nudged elastic band calculations acceler-29 29 ated with Gaussian process regression, *The Journal of Chemical Physics* 147(15) (2017), 152720. doi:10.1063/1.4986787.
- 30 30 [20] K.-D. Luong and A. Singh, Application of Transformers in Cheminformatics, *Journal of Chemical Information and Mod-*[19] E. Lefever, A hybrid approach to domain-independent taxonomy learning, *Applied Ontology* 11(3) (2016), 255–278.
- 31 31 *eling* 64(11) (2024), 4392–4409, PMID: 38815246. doi:10.1021/acs.jcim.3c02070.
- 32 32 [21] M.Z. Makos, N. Verma, E.C. Larson, M. Freindorf and E. Kraka, Generative adversarial networks for transition state ´ geometry prediction, *The Journal of Chemical Physics* 155(2) (2021), 024116. doi:10.1063/5.0055094.
- ³³ 33 [22] T. Mannucci and E.-J. van Kampen, A hierarchical maze navigation algorithm with Reinforcement Learning and mapping, 34 34 in: *2016 IEEE Symposium Series on Computational Intelligence (SSCI)*, 2016, pp. 1–8. doi:10.1109/SSCI.2016.7849365.
- 35 35 [23] P.S. Meltzer, A. Kallioniemi and J.M. Trent, Chromosome alterations in human solid tumors, in: *The Genetic Basis of* 36 36 *Human Cancer*, B. Vogelstein and K.W. Kinzler, eds, McGraw-Hill, New York, 2002, pp. 93–113.
- [24] P.R. Murray, K.S. Rosenthal, G.S. Kobayashi and M.A. Pfaller, *Medical Microbiology*, 4th edn, Mosby, St. Louis, 2002.
- ³⁷ [24] T.R. Müller and L.D. Brown, Location of saddle points and minimum energy paths by a constrained simplex optimization³⁷ 38 38 procedure., *Theoret. Chim. Acta* 53 (1979), 75–93. doi:10.1007/BF00547608.
- 39 39 [26] G.M. Rotskoff, A.R. Mitchell and E. Vanden-Eijnden, Active Importance Sampling for Variational Objectives Dominated 40 40 by Rare Events: Consequences for Optimization and Generalization, in: *Proceedings of the 2nd Mathematical and Sci-*41 41 Research, Vol. 145, PMLR, 2022, pp. 757–780. [https://proceedings.mlr.press/v145/rotskoff22a.html.](https://proceedings.mlr.press/v145/rotskoff22a.html) *entific Machine Learning Conference*, J. Bruna, J. Hesthaven and L. Zdeborova, eds, Proceedings of Machine Learning
- 42 42 [27] R.S. Sutton and A.G. Barto, *Reinforcement Learning: An Introduction*, A Bradford book, MIT Press, 1998. ISBN 43 43 [9780262193986.](http://www.isbnsearch.org/isbn/9780262193986) [https://books.google.dk/books?id=CAFR6IBF4xYC.](https://books.google.dk/books?id=CAFR6IBF4xYC)
- 44 44 [28] M. Towers, J.K. Terry, A. Kwiatkowski, J.U. Balis, G.d. Cola, T. Deleu, M. Goulão, A. Kallinteris, A. KG, M. Krim-45 45 doi:10.5281/zenodo.8127026. [https://zenodo.org/record/8127025.](https://zenodo.org/record/8127025)mel, R. Perez-Vicente, A. Pierré, S. Schulhoff, J.J. Tai, A.T.J. Shen and O.G. Younis, Gymnasium, Zenodo, 2023.
- 46 46

A. Pal / Estimating Reaction Barriers with Deep Reinforcement Learning

