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Abstract. The present paper provides a generalized network model, namely, Heterogeneous Multi-layered Network (HMN),
which can simultaneously be multi-layered and heterogeneous. We proved that the sets of all homogeneous, heterogeneous
and multi-layered networks are subsets of the set of all HMNs depicting the model’s generalizability. The proposed HMN is
more efficient in encoding different types of nodes and edges. It is found experimentally that the HMN model when used with
GNNs improve tasks such as link prediction. In addition, we present a novel parameterized algorithm (with complexity analy-
sis) for generating synthetic HMNs. The networks generated from our proposed algorithm are more consistent in modelling the
layer-wise degree distribution of a real-world Twitter network (represented as HMN) than those generated by existing models.
Moreover, we also show that our algorithm is more effective in modelling an air-transportation multiplex network when com-
pared to an algorithm designed specifically for the task. Further, we define different structural measures for HMN. Accordingly,
we established the equivalency of the proposed structural measures of HMNs with that of homogeneous, heterogeneous, and
multi-layered networks.
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1. Introduction

Network analysis is widely used to explain behaviors of different complex systems, ranging from
physical processes to biological systems. In many cases complex systems cannot be expressed with sim-
ple networks of homogeneous nodes. Networks having diverse nodes and edges require a heterogeneous
graph [39, 75, 80]. In the literature, multilayer networks have also been used for different network sci-
ence problems [7, 8, 16, 62]. However, considering the nature of complex systems, it may be natural to
have multiple layers, each of which contains diverse type of nodes and edges. For example, the Facebook
[60] network which is heterogeneous due to different nodes like users, posts, pictures, and groups is also
multi-layered due to the different relations among these nodes. A layer in Facebook can contain inter-
actions between users based on friendship; another layer can contain relationships between users who
belong to the same picture; and a third layer can be formed with interactions between users and groups. A
multi-layered network cannot support heterogeneity in a layer due to the absence of node or edge types.
On the other hand, a single heterogeneous network cannot retain all the information present in a multi-
layered network. The existing heterogeneous networks allow only one type of link between two objects,
although the network may require different links. If we use these existing data structures for the Face-
book network as described, we will lose certain information. Similarly, the network of chemical, gene,
pathways, and diseases (CGPD) also shows multilayer and heterogeneous characteristics [104]. How-
ever, due to the lack of modeling techniques available, in [104] the authors have used multi-relational
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graphs. A multirelational graph represents multiple heterogeneous graphs as a collection, and there is no
way to express relations between these subgraphs. Networks with heterogeneous links between similar
or different types of nodes are becoming more and more prominent in the present era. These complex
networks are results of the modern internet and social network platforms. The existing data-structure has
several limitations, as mentioned, to handle such complex networks. A model to represent the different
semantic relationships among different entities in the form of a graph is the need of the hour.

Many networks used in different applications [43, 46, 67, 73] are not homogeneous networks in na-
ture. Nevertheless, such networks are assumed to be homogeneous networks [27, 103], heterogeneous
networks [52, 70] as well as multilayered network [22, 47, 113] while solving different problems. In
some cases, authors choose to name the model as heterogeneous multilayered network but the model
implicitly uses the same definition of multi-layer network provided in [11]. For example, work on sen-
timent analysis [41] and inter-layer coupling dynamics [82] consider each layer as homogeneous while
different layers contain different types of nodes, i.e., none of the layers are heterogeneous although the
graph is heterogeneous. A similar scenario can be found in the papers [95, 112]. The literature does not
propose a generic network to model all possible characteristics available in modern complex networks.

This paper proposes a new network model generalized heterogeneous multi-layered network that can
express modern complex networks, i.e., the proposed model supports heterogeneity and multi-layered
property simultaneously. Various structural measures are developed for this network. In addition, the
paper proposes a novel parameterized algorithm for generating a synthetic heterogeneous multilayer
network. The algorithm is capable of generating homogeneous, heterogeneous, multilayered, and het-
erogeneous multilayered networks by setting the parameters appropriately. The generated network will
provide different research opportunities with heterogeneous multilayer network where it is difficult to
obtain a real-world data set. The paper has four main contributions as follows.

• Proposes a generalized heterogeneous multi-layered network model. We define various structural
measures for this model.

• We prove that the set of all homogeneous, heterogeneous, and multilayered networks is a subset of
the set of all generalized heterogeneous multilayered networks.

• We present an algorithm that generates a heterogeneous multi-layered network with various layers
and different types of nodes.

• Various experimental results show the applicability of the proposed model in different applications
and the benefit of incorporating layers within the model.

The remaining paper is organized as follows. In Section 2 we will briefly discuss the preliminaries,
Section 3 reports the related work in the field. The proposed definition of a generalized heterogeneous
multi-layered network along with its structural properties are presented in Section 4. Section 5 con-
tains the algorithm for generating a heterogeneous multi-layered network and experimental results are
presented in 7. Finally, Section 8 concludes the findings.

2. Preliminaries

Definition 2.1 (Homogeneous Networks). A homogeneous network is a graph G = (V, E) with the
vertex set V and the edge set E denoting the relations among these vertices.
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Definition 2.2 (Neighborhood). The neighbourhood of a node v in a homogeneous network are the
nodes that have an edge with v i.e. the neighbourhood of a node v is as defined as,

N(v) = {v j| (v, v j) ∈ E} (1)

Definition 2.3 (Degree Centrality). In a homogeneous network, the degree centrality (DC) of a node v
is the ratio of its degree to the total number of nodes defined as,

DC(v) =
1

n− 1
|N(v)| (2)

Definition 2.4 (Betweenness Centrality). The betweenness centrality (BC) of a node v in a homogeneous
network is the fraction of the shortest paths passing through the node with the total number of shortest
paths in the network. It is defined as,

BC(v) =
∑

x,y∈V\{v}

|sp(x, y|v)|
|sp(x, y)| (3)

The function sp(x, y) denotes the set of all shortest paths between two nodes x and y in a network and
sp(x, y|v) returns the shortest paths from x to y that passes through v.

Definition 2.5 (Closeness Centrality). In a homogeneous network, the closeness centrality (CC) of a
node v is the sum of the reciprocal of the shortest path length from v to all other nodes in the network. It
is defined as,

CC(v) =
∑

w∈V\{v}

1

distance(v,w) (4)

Here (distance(v,w)) denotes the sum of the weights on the edges of the shortest path between two
nodes v and w in a network.

Definition 2.6 (Multi-layered Network [11]). A multi-layered network is defined as a triple M =
(Y,Gintra,Ginter) where Y = {1, 2, · · · , k} is the set of layers, Gintra = (G1,G2,G3, ...,Gk) is a sequence
of graphs with each graph Gi = (Vi, Ei) belonging to a layer, and Ginter = {Gi j = (Vi,V j, Ei j)|i ̸= j}.
An inter layer graph Gi j for layer i to j contains all the nodes and edges from layer i to layer j.

Definition 2.7 (Multiplex Network). A multiplex network is a network M = (V, E, L) with V as the
vertex set, E as the edge set and L as the layer set. An edge in E is a tuple (x, y, l) where x, y ∈ V and
l ∈ L. The vertex set is common across the layers which allows a multiplex network to have multiple
relations between the same pair of nodes with each relation captured in a different layer.

Definition 2.8 (Heterogeneous Network [88]). A network H = (V, E, {A, B}, { f1, f2}) with edges hav-
ing multiple nodes and edge types with functions f1 and f2 to map nodes and edges respectively to their
types A and B is called a heterogeneous network. It is mandatory for either the node type or the edge
type to be greater than one. Two links which belong to the same relation type have the same starting
node type as well as the ending node type.
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3. Related Work

In the literature heterogeneous and multilayered network models are used separately for different
social network analysis problems. A multilayered network with nodes for keyword, hashtag, and mention
types is used for sentiment analysis [41]. The authors consider that their network is heterogeneous due
to the presence of multiple types of nodes, but each layer of the network was homogeneous. In other
words, the network is just a simple multilayered network according to the definition of [10]. Except this
work, there is no mention of heterogeneous multilayered networks in the literature.

One of the pioneering works on multi-layer networks was by [56]. They have proposed a formal
definition of multi-layered networks. The definition was further simplified along with the addition of
structural measures in [11]. The formalism of multi-layer networks have led to various studies and
applications on them. Multi-layer networks have been studied in various contexts like the study of flow
processes or diffusion [17, 18], epidemic modelling and disease spreading [30, 113], generalization of
the percolation theory [86, 108], clique based heuristic node analysis [53], localization properties of
the network helping to understand the propagation of perturbation [50], and how the failure of nodes
in one layer propagates to other layers [63]. It is essential to mention that the literature contains a wide
variety of networks very similar in definition to multi-layered networks like multiplex networks [15, 57],
multilevel networks [54, 109] and network of networks [74].

Heterogeneous networks have existed for a long time with earlier works subsisting in social sciences.
The paper [44] is one of the earlier works in heterogeneous network mining exploring the applications of
links to mine such networks and distinguish objects based on links. The survey [88] presents a good idea
about some of the more recent works on heterogeneous networks. Heterogeneous networks are seen to
be applied in link prediction [70], community detection [77], modeling human collective behavior [35],
rail transit network [36] and heterogeneous susceptible infected network [100].

The literature review shows us that despite having much work on heterogeneous and multi-layered
networks, the literature has not addressed heterogeneity and multi-layered property simultaneously.

4. Generalized Heterogeneous Multi-layered Network (HMN)

Definition 4.1 (Heterogeneous Multi-layered Network). A heterogeneous-multi-layered network (HMN)
is defined by quintuple G = (V, E, L,T,R) where V is the set of vertices, E ⊆ ((V × L)× (V × L)) is
the set of edges, L is the set of layers, T = {TV ,TE} is the set of sets of vertex and edge types and R
is the set of functions. R contains 3 primary functions RVT : V→ TV , RET : E→ TE to map vertex and
edges to type and, RVL: V→ 2L \ {∅} to map a vertex to a set of layers.

A vertex may be present in many layers and cannot exist outside layers, hence the function RVL maps a
vertex to a power set of layers except the null set. For example a node u belonging to 3 layers l1, l2, l3 will
have RVL(v) = {l1, l2, l3}. We denote a node v at layer l as vl for sake of convenience, i.e., l ∈ RVL(vl).
There must be at least one layer in an HMN, i.e., |L| ⩾ 1. The set TV and TE at minimum contains one
type {⊥} each.

An edge e = (vlb
a , v

ld
c ) denotes that there is a directed connection from va at layer lb to vc at layer ld. An

edge is called an intra-edge if lb = ld or inter-edge if lb ̸= ld. The set R contain functions for mapping
nodes and edges to their respective types and layers. The functions RVT and RET map a vertex and an
edge to TV and TE respectively.
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(a)

(b)

Fig. 1. a) An example to demonstrate a heterogeneous-multi-layered networks with node and edge types. In the figure the black
colored edges are undirected and the green colored edges are directed. b) The figure shows the author paper relation for the
authors and papers marked in bold in Figure 1(a). The circle represents paper and the triangle represents author. The dotted
links and circles are the possibilities of two authors collaborating on a paper in the future.

Let us see the model with an example shown in Figure 1a. The network contains three layers with
layers representing research in the machine and deep learning (Layer 1), bio-science ( Layer 2), and
self-driving cars (Layer 3). The figure contains three types of nodes in the Layers 1 (paper, author, lab)
and 2 (paper, author, organization), and Layer 3 contains four types of nodes namely paper, author, lab,
and organization. There are directed interconnections between layers to show that papers in bio-science
or self-driving cars cite another paper in machine and deep learning. The network cannot be represented
with a homogeneous network without losing information. Even a multi-layered or heterogeneous net-
work will fail to capture the network due to the presence of multiple types of nodes (and edges) and
multiple layers respectively. It may be apparent that a heterogeneous network will describe Figure 1a by
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merging different layers into one. However, a heterogeneous network only partially captures the given
network as described in Remark 4.1.

Remark 4.1 (Heterogeneous Multi-Layer network is not another variant of a heterogeneous network).
The Figure 1a shows us in bold that three authors from three different layers have collaborated on a
paper in the third layer. Consider that these three layers get merged into one, then these three authors
and the paper will have the structure as shown in Figure 1b. Once we avoid the layer structure all these
three authors become homogeneous. Hence there is no way to separately keep their association with each
other in terms of the subjectivity expressed by the layers. For example, the possibility of collaboration
between the authors of layer 1 with 3, 2 with 3 and 1 with 2 can be different. The only way we can keep
this subjectivity is through the layers. Hence it is relevant to have both heterogeneity and multi-layered
property in the network definition itself. This will provide a generalized definition of a complex network.
We call such a network as a heterogeneous multi-layered network.

Lemma 4.1. The set of all multi-layered networksM is a subset of the set of all heterogeneous multi-
layered networksHm.

Proof. We will prove this by contradiction. Let us assume that ∃ x = (Y,Gintra,Ginter) such that x ∈ M
but x /∈ Hm. Now, ∃ y = (V, E, L,T,R) ∈ Hm such that

L = Y

G(V, E) = Gintra ∪Ginter where

Gintra = {G1,G2, · · · ,Gk} where Gi = (Vi, Ei)

Ginter = {Gi j} where Gi j = (Vi,V j, Ei j)

Vi = { v | v ∈ V & i ∈ RVL(v) }

Ei = { (v j, vk) | (vli
j , v

li
k ) ∈ E }

Ei j = { (vk, vm) | (vli
k , v

l j
m) ∈ E }

The set V =
⋃

i∈L Vi and E =
⋃

i∈L Ei. Each of the graphs in a particular layer in x is homogeneous
(Definition 2.1) but different layers may have different types of nodes. The functions RVT and RET map
all vertices and edges of a single layer to one value in the set TV and TE respectively. The presence of
such a y using which we can create an x contradicts with our assumption. Thus we show that the set of
all multi-layered networks is a subset of the set of all heterogeneous multi-layered networks. □

Corollary 4.1.1. A multiplex network is a special case of an HMN.

Proof. A multiplex network is a multilayered network where every layer has the same vertex set so
there is no need for interconnections between the layers. In a multiplex network M = (Y,Gintra,Ginter),
Gintra is (G1,G2, · · · ,Gk) and Ginter = {Gi j} where Gi = (Vi, Ei) and Gi j = (Vi,V j, Ei j) with V1 =
V2 = V3 = · · · = V|Y| = V and Ei j = ∅ ∀Gi j. In this case TV = {T1} and TE = {T ′

1, · · · ,T ′
|L|}. Thus a

multiplex network is a special case of a multi-layered network making it a special case of an HMN. □
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Lemma 4.2. The set of all heterogeneous networks H is a subset of the set of all heterogeneous multi-
layered networksHm.

Proof. We will prove this by contradiction. Let us assume that ∃ x = (Vhet, Ehet, {A, B}, { f1, f2}) ∈ H
such that x /∈ Hm. Now, y = (V, E, L,T,R) with the following values for the parameters is inHm.

(V, E) = (Vhet, Ehet) L = {1}
TV = A TE = B

Note that RVT ≡ f1 and RET ≡ f2 based on the definition of heterogeneous networks. The function
RVL maps to default set as there is a single layer. Considering all the parameters of y are generated from
the parameters of x, it is proved that for every x ∈ H there exists a corresponding y ∈ Hm such that
x ≡ y. Thus, x ∈ H =⇒ y ∈ Hm where x ≡ y which shows that H ⊂ Hm. We use the notation ⊂
instead of ⊆ asH can never be equal toHm due to the presence of layers inHm. □

Lemma 4.3. The set of all homogeneous networks S is a subset of the set of all heterogeneous multi-
layered networksHm.

Proof. We will prove this by contradiction. Let us assume that ∃ x = (Vhomo, Ehomo) ∈ S such that
x /∈ Hm. Now, y = (V, E, L,T,R) with the following values for the parameters is inHm.

(V, E) = (Vhomo, Ehomo) L = {1}
TV = {⊥} TE = {⊥}

Note that RVT maps to TV and RET maps to TE . The function RVL maps to default set as there is a
single layer. Considering all the parameters of y are generated from the parameters of x, it is proved that
for every x ∈ S there exists a corresponding y ∈ Hm such that x ≡ y. Thus, x ∈ S =⇒ y ∈ Hm where
x ≡ y which shows that S ⊂ Hm. □

It must be noted that the definition of R can contain additional functions. For example, all the nodes
in a layer L can be returned by a function say RLV , and all nodes of type T in a layer L can be returned by
a function say RT L. When we want all node types in a layer we can represent RT L as RL. In other words,
we can add other functions to R as required. This makes the definition of HMN extendable for different
contexts. The addition of the functions RL and RT L do not alter the definitions and proofs as mentioned
earlier.

4.1. Advantages of HMN through Examples

Let us consider the network shown in the Figure 2. The network represents a real life twitter network
which is heterogeneous and multi-layered at the same time. The first layer contains tweets. There is
a connection between two tweets using the same hashtag. The second layer contains users with links
between two users indicating one follows the other. In addition to that a user or tweet can be aggressive
or non aggressive represented using the color. The inter-layer links represent a user liking a tweet. The
above network is represented as a HMN in Figure 2. One may argue, that the same information can be
represented as a heterogeneous network (in Figure 3), however, the complexity will increase in many
folds as described here. In Figure 3 we can see that the types of nodes doubled, i.e., a node can be of
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Tweet

Person

Aggressive

Follows

Mentions

Likes

Fig. 2. An example twitter network with each rectangle representing a layer. The first layer contains tweets and the second layer
contains users.

Non-aggressive Tweet

Non-aggressive Person

Follows (layer 2)

Mentions (layer 1)

Likes (layer 12)

Edge Types

Aggressive Tweet

Aggressive Person
Node Types

Fig. 3. An example twitter network with each rectangle representing a layer. The first layer contains tweets and the second layer
contains users.

two types (user, tweet) where each type can have two subtypes (aggressive, non-aggressive). Now let us
consider a case where a user can be mildly aggressive, moderately aggressive, severely aggressive and
non-aggressive. In that case a heterogeneous network will have 2 ∗ 4 = 8 types of nodes and 3 types of
edges making a total of 11 types to substitute 2 layers with 4 types in a HMN. It must be noted that two
layers can intrinsically mean 3 types of edges (2 intra and 1 inter) without explicit markup. Similarly,
increasing one layer will require 3 ∗ 4 = 12 node types and 3(intra) + 3(inter) = 6 edge types in a
heterogeneous network increasing the total number of types to 18 from 11. In contrast, a HMN will
require 3 layers with 4 types to represent the same. In fact, a HMN intrinsically stores |L|C2 edge types
which require explicit definitions in a heterogeneous network. This in-turn increases the computational
complexity of certain tasks (example in the following paragraph) in a heterogeneous representation of
the network. In other words, the proposed HMN model’s advantage is at the abstraction level, which
simplifies the data structure for complex graphs.

Let us consider the application of HMN through the lens of link prediction in the given Twitter net-
work. We consider the Jaccard Co-efficient for scoring a possible edge (x, y) which can be defined as
JC(x, y) = N(x)∩N(y)

N(x)∪N(y) where N(x) defines the neighbors of node x. In a heterogeneous setting we may
need to consider the neighbors of a particular type. Considering the network in Figure 3 if we need to
find neighbors N(x) of a particular node x of type (say tweet) we need O(V) time for each node x in the
worst case as shown in snippet 1 below. In the same setting, we need O(k) time in our HMN with the
help of function RT L which returns all k vertices of a particular type in a given layer, as shown in the
snippet 2. In a real Twitter network, k << V . We use the function RVL to obtain the layer information for
node x.
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(a) Movie - layer (b) User - layer (c) Movie + layer (d) User + layer

Fig. 4. Figures a and b show the t-SNE plot of the feature vector for the movie and user nodes without layer information. Figures
c and d show the feature vectors after adding layer information. We can clearly see that the feature vectors have condensed after
adding layer information bringing structurally similar nodes closer to one another thus increasing the result of link prediction.
Features are obtained from GraphSAGE model.

1. for n in N(x):
if n.type == x.type:

NT(x).add(n)
2. for n in N(x) U RTL(x.type, RVL(x)):

NT(x).add(n)

4.1.1. Using layers improves existing tasks
The use of layers helps reduce types and query complexity as explained above. Now we show that

layers can add additional domain knowledge to an existing heterogeneous network. In fact, we can
say that a layer is meta-information about a heterogeneous network that is inherently present but not
apparently visible. HMN provides a systematic way of managing this meta-information starting from
the definitions to the data structure. To prove our claim, we have taken the movie lens dataset [45] and
encoded the domain knowledge that people who like at least one sci-fi movie rate movies differently
when compared to people who like other genres of movies. We have moved sci-fi movies and users who
have seen and rated at least one of them to layer 1 and other users and movies to layer 2. We try to predict
links on such a network to see what movie a user will watch (and rate) next. For the link prediction task,
we use state-of-the-art GNN architectures available. We run the GNN models on two different feature
sets of the same network, the first being the feature set of the original heterogeneous network and the
second with a layer dimension added to the feature vector of each movie and user. The results in Table 1
show an increase in the area under the curve for all models when we use layers. The t-SNE plot shown in
Figure 4 shows that the embedding of movies belonging to the sci-fi genre is closer as is the embedding
for the users watching that genre clearly showing the relevance of adding layers.

5. Synthetic HMN Generation

It is difficult to obtain heterogeneous multi-layered networks despite a lot of real-world networks be-
ing HMN. We have addressed this problem by proposing a novel parameterized algorithm for generating
a heterogeneous multi-layered network. The proposed algorithm can generate a multi-layered, heteroge-
neous, and homogeneous network using different values of the parameters as described in the Lemmas
4.1, 4.2, and 4.3 respectively.
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Table 1
AUC for the Link Prediction Task with and without layers on the movie-lens heterogeneous dataset.

Model Without Layer With Layer
SAGEConv [42] 92.77 94.11
Graphconv [71] 76.2 80.87
GATConv [97] 88.75 89.77
ResGatedGraphConv [12] 86.62 86.63
GATv2Conv [14] 89.56 90.78
TransformerConv [89] 92.87 94.13
MFConv [29] 81.89 85.46
GENConv [61] 93.43 94.51
GeneralConv [105] 77.61 83.84
FiLMConv [13] 75.07 80.34

5.1. Algorithm

The Algorithms of 1 and 2 generate an HMN. The algorithms work as follows. At time step t a
new node n is added to the initially empty network G. The number of nodes that can be added to the
network is limited by the parameter N. The node u is assigned to a layer l of L uniformly randomly.
The type of u is assigned uniformly randomly from RL(l) where RL(i) = {Ti}i∈L and Ti ⊆ TV . Since
different real-world datasets have different type distributions, we can assign node types based on any
other distribution without changing any other part of the algorithm. The added node u connects with
other nodes in the same layer and other layers using preferential attachment. The preference of a node
is decided based on its own degree and the degree of its neighbours (Algorithm 2, Lines 6-7). This
makes the algorithm capable of generating power law and other types of networks. The parameters
α and β decide the weightage to be given to a node’s own degree and the degree of its neighbours,
respectively. The minimum number of connections a node makes with other nodes (in the same and
different layers) is decided by the parameter M, a L × L matrix. For making intra-layer connections,
the function connection1 takes an induced graph Gii from the HMN G where Gi j = I(G,Vi ∪ V j). The
induced graph can also be called a subHMN. An induced graph comes with all the types of nodes and
edges associated with vertex set Vi in layer i and V j in layer j. For the inter-layer connections with the
node u, the function connection2 takes three induced graphs Gii, G j j and Gi j where i = l and j ∈ L \ l.
Let us consider a situation where no nodes are in the inter-layer subHMN G12 and a new node (u) is
assigned to the layer 1. In making a cross-layer connection with layer 2, if there are sufficient nodes
(> m12) in the layer 2, then m12 nodes are selected at random from layer 2 and connected with u. If the
number of nodes in layer 2 < m12, then we store the current node in a list so that the edges with u can be
created once there are sufficient nodes in layer 2.

Remark 5.1. The above algorithm assigns a node to a single layer, making it incapable of generating a
multiplex network without certain modifications.

5.2. Complexity Analysis and Scalability

Adding a new node in layer l triggers two functions, conn1 and conn2, for intra layer and inter layer
link generation. The algorithm establishes the intra layer links in O(m) time where m = Mll. Here Mll

denotes the minimum number of connections a node makes in its layer. Following the intra layer links,
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Algorithm 1: Generating an HMN
Input: N, L,RL,M, α, β
Output: Return HMN G

1 node← 1,RVL ← {}
2 G = Empty HMN
3 while node < N do
4 i = uni f ormRandom(L)
5 RVL(node) = i
6 t = uni f ormRandom(RL(i))
7 Gii.addNode(node)
8 Gii = connection1(Gii, node,Mii, α, β)
9 while j ∈ L do

10 if i ̸= j then
11 Gi j = connection2(Gii,G j j,Gi j, node,Mi j, α, β)

12 node = node + 1;

we make inter layer connections for the node with all other layers in O(|L|m′) considering the worst
case. where |L| denotes the number of layers and m′ = max

j∈L
(Ml j). It must be noted that the worst case

will arise when the node needs to connect to every other node in every layer.

6. Structural Measures of HMN

In this section, we define some of the structural measures of HMN. By definition HMN uses direction
for an edge e ∈ E. However, many network measures consider the in-links and out-links together. When
applicable, notations related to in-links and out-links are superscripted with IN and OUT respectively
in the following text.

Definition 6.1 (Out/In-Neighborhood in HMN). The Out/In-neighborhood of a node vl is defined by the
connected nodes from/to the node vl to all the nodes situated in any layer in a set of layers L and having
a type t ∈ T . That is,

N IN(vl,L, T ) = {uk|(uk, vl) ∈ E, k ∈ L,RVT (u) ∈ T }

NOUT (vl,L, T ) = {uk|(vl, uk) ∈ E, k ∈ L,RVT (u) ∈ T }
(5)

Remark 6.1. The definition of neighborhood is flexible to include as many types of nodes and layers
we wish to take. To get all types of neighbors in all the layers we set T = TV and L = L where TV and
L denote all vertices and layers respectively.

Remark 6.2. A node can be present in more than one layers. One should note that the definition of
neighborhood presented here does not contain the neighbors that the same node v in layer k may have
where k ̸= l.
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Algorithm 2: connection1() for intra layer and connection2() for inter layer connections
Input: g1, g2(optional), g3(optional), node,m, α, β

1 G = emptyGraph()
2 Function nodeDistribution (G, α, β)
3 nodesDist = [ ]
4 for i ∈ G.nodes do
5 j = 0
6 c = int(α ∗ fdeg(i) + β ∗ fneighbor_deg(i))
7 while j < c do
8 nodesDist.add(i)

9 Function connection1 (g1, node,m, α, β)
10 if count(g1.nodes) < m then
11 return G = g1
12 if count(g1.nodes) = m then
13 G = starGraph(g1.nodes)

14 if g1.nodes > m then
15 G.edges = g1.edges
16 nodesDist = nodeDistribution(G, α, β)
17 targets = uni f ormRandom(nodesDist,m)
18 newEdges = [(node, i) | i ∈ targets]
19 G.addEdges(newEdges)

Output: return intra graph G
20 Function connection2 (g1, g2, g3, node,m, α, β)
21 if count(g3.edges) = 0 and count(g2.nodes) < m then
22 g3.add(node)
23 return g3
24 if count(g3.edges) = 0 then
25 targets = uni f ormRandom(g2.nodes,m)
26 for vertex ∈ g3.nodes do
27 for each item in targets do
28 g3.addEdge((vertex, item))

29 a = g2.edges
30 b = g3.edges
31 a = a.add(b)
32 G.addEdges(a)
33 nodesDist = nodesDistribution(G, α, β)
34 nodesDist = [i | i ∈ nodesDist & i ̸∈ g1.nodes]
35 targets = uni f ormRandom(nodesDist,m)
36 for each item in targets do
37 g3.addEdge((node, item))

Output: return inter graph g3
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Definition 6.2 (Neighborhood in HMN). The neighborhood of a node vl is defined by N(vl,L, T ) =
N IN(vl,L, T ) ∪ NOUT (vl,L, T ).

Definition 6.3 (HMN Degree Centrality). Given L and T the degree centrality (DC) of a node vl in an
HMN is the ratio of the number of neighboring nodes of vl having type in T and belonging to a layer in
L to the count of all nodes of type in T and any layer in L. That is,

DC(vl,L, T ) =
|N(vl,L, T )|

|{uk|k ∈ L, u ∈ V, uk ̸= vl,RVT (u) ∈ T }|
(6)

Definition 6.4 (Shortest Path in HMN). Given L and T the shortest path between two nodes vl and wk in
an HMN is a path through the nodes of any layer in L and type in T such that the sum of the weights (in
case of a unweighted HMN the weights of all edges are 1) of the edges in the path is minimized. There
can be more than one shortest path between two nodes and the set of all such shortest paths is denoted
by sp(vl,wk). The quantity d(vl,wk) is the sum of the weights on the edges of a shortest path between vl

and wk. When there is no path between vl and wk the d(vl,wk) is∞.

Definition 6.5 (HMN Betweeness Centrality). Given L and T the betweeness centrality of a node vl in
a heterogeneous multi-layered network is the fraction of shortest paths between any two nodes xk and y j

(where RVT (x),RVT (y) ∈ T , k, j ∈ L) passing through node vl among all the shortest paths between xk

and y j. If there is no path between xk and y j then |sp(xk ,y j|vl)|
|sp(xk ,y j)| is considered to be 0. That is,

BC(vl,L, T ) =
∑

xk ,y j∈V′

|sp(xk, y j|vl)|
|sp(xk, y j)|

where V ′ = {ui|i ∈ L,RVT (u) ∈ T , u ∈ V, ui ̸= vl}

(7)

If we are considering only cross layered connections then we can set the layers variable to L− RVL(vl).
The cross layered betweeness will indicate the importance of a node outside its own layer.

Definition 6.6 (HMN Closeness Centrality). Given L and T the closeness centrality of a node vl in a
heterogeneous multi-layered network is the average shortest path length from vl to all other nodes of a
layer in L and type in T in the network.

CC(vl,L, T ) =
∑

uk∈V′

1

d(vl, uk)

where V ′ = {uk|u ∈ V, uk ̸= vl, k ∈ L,RVT (u) ∈ T }

(8)

Lemma 6.1. Given an HMN G = (V, E,T,R) with |L| = 1 and TV ,TE = {⊥}, i.e., when an HMN is
a homogeneous network (Lemma 4.3), the neighborhood of a node vl ∈ V is equivalent to the neighbor-
hood of v in a homogeneous network.
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Proof. Given HMN G is nothing but a homogeneous network as per Lemma 4.3. The Definition 6.2
considers all types of neighbors of a node vl in all the layers when |L| = 1,TV ,TE = {⊥} which is
nothing but the degree of the node v1; making the neighborhood of HMN equivalent to the neighborhood
of the homogeneous network (Definition 2.2) it represents. □

Corollary 6.1.1. Given an HMN which is a homogeneous network (Lemma 6.1), DC(vl,L, T )
(Equation 6) ≡ DC(v) (Equation 2) .

Proof. The neighborhood of an HMN with parameters according to Lemma 6.1 is equivalent to the
neighborhood of a homogeneous network. Thus, the numerator in Equation 6 is equivalent to the number
of neighbors of a node (making numerator in Equation 6 = Equation 2). The denominator in Equation
6 contains all the nodes of the network (an HMN equivalent to a homogeneous network) except vl (the
node whose centrality we are trying to find). So, the denominator in Equation 6 is equivalent to the
denominator in Equation 2. Thus, it is proved that DC(vl,L, T ) ≡ DC(v). □

Corollary 6.1.2. The shortest path between two nodes of an HMN with parameters |L| = 1,TV ,TE =
{⊥} is equivalent to the shortest path between the same nodes in a homogeneous network.

Proof. When we have only a single layer, i.e., |L| = 1 and a single type of vertex and edge , i.e.,
TV ,TE = {⊥} then we consider nodes belonging to all the layers and node types in the shortest path by
default (as an HMN is a homogeneous network with the given parameters as per Lemma 4.3) making
the shortest path in an HMN equivalent to the shortest path in a homogeneous network. □

Corollary 6.1.3. Given an HMN which is a homogeneous network (Lemma 6.1), BC(vl,L, T )
(Equation 7) ≡ BC(v) (Equation 3) .

Proof. The shortest path between two nodes of an HMN with parameters as in Corollary 6.1.2 is equiv-
alent to the shortest path between the same nodes of a homogeneous network. Thus the numerator and
denominator in Equation 7 is equivalent to the numerator and denominator in Equation 3. □

Corollary 6.1.4. Given an HMN which is a homogeneous network (Lemma 6.1), CC(vl,L, T )
(Equation 8) ≡ CC(v) (Equation 4) .

Proof. The Distance between two nodes of an HMN with parameters as in Corollary 6.1.2 is equivalent
to the distance between the same nodes of a homogeneous network. Thus the numerator and denominator
in Equation 8 is equivalent to the numerator and denominator in Equation 4. □

Definition 6.7 (HMN Clustering Co-efficient). Given L and T , the clustering coefficient (CCo) of a
node, vl, in a heterogeneous multi-layered network is defined as the fraction of triangles that the node vl

participates in, out of the total number of triangles possible through that node. That is,

CCo(vl,L, T ) =
2 ∗ |Triangles(xk, y j, vl)|

|N(vl,L, T )| ∗ (|N(vl,L, T )| − 1)

where k, j ∈ L,RVT (xk) ∈ T ,RVT (y
j) ∈ T

(9)
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Table 2
Centrality measure and clustering co-efficient of EATN when compared to BINBALL and generated HMN

Dataset Nodes Edges Degree Betweenness Avg CC Avg Triangles/Node Triangles
EATN 55 97 0.06027 0.02592 0.45824 2.22683 62.62162
Generated HMN (α = 1, β = 0, M = 2) 67 208 0.06147 0.02093 0.43264 3.59262 91.1111
BINBALL 106 22 0.00388 0.0004 0.00989 0.01286 0.45455

Table 3
Comparison of Generated network with Chemical networks

Datasets Nodes Edges Density Avg Degree Assortativity Triangles Avg Triangles/Node Avg CC Clique Number
ENZYMES-g272 44 156 0.165 3.55 -0.05 47 1.07 0.23 2
ENZYMES-g366 42 152 0.176 3.62 -0.03 48 1.14 0.23 1
Generated HMN (α = 0.6, β = 0.6, M = 2) 54 155 0.108 4.74 -0.06 48 1.67 0.14 4
ENZYMES-g392 48 178 0.158 3.71 -0.02 74 1.54 0.26 1
ENZYMES-g117 46 180 0.174 3.91 -0.03 59 1.28 0.19 2
Generated HMN (α = 0.7, β = 0.7, M = 2) 60 173 0.098 4.77 -0.05 65 2.25 0.17 4
ENZYMES-g526 58 220 0.133 3.79 -0.02 66 1.14 0.21 1
ENZYMES-g527 57 214 0.134 3.75 -0.03 80 1.4 0.27 2
Generated HMN (α = 0.8, β = 0.8, M = 2) 74 215 0.080 4.81 -0.028 70 2.84 0.16 4
ENZYMES-g349 64 236 0.117 3.69 0.00 78 1.22 0.24 2
ENZYMES-g103 59 230 0.134 3.9 -0.03 73 1.24 0.22 2
Generated HMN (α = 0.9, β = 0.9, M = 2) 80 233 0.074 4.82 -0.109 82 3.07 0.17 4
ENZYMES-g295 123 278 0.037 2.26 0.00 6 0.05 0.01 1
ENZYMES-g296 125 282 0.036 2.26 0.00 2 0.02 0.01 1
Generated HMN (α = 1.0, β = 1.0, M = 2) 124 258 0.034 4.16 -0.436 0 0.00 0.00 2

We can prove all the Lemmas and Corollary for clustering co-efficient in a similar manner as shown in
the previous definitions.

7. Experiment and Results

Experiments have been performed to show the ability of the proposed algorithm to generate heteroge-
neous multilayered networks with structural properties close to real-world networks. We try to generate
a Twitter network and an European air transportation network by changing certain parameters of our al-
gorithm. Further experiments are performed to compare the degree distributions and centrality measures
of the generated synthetic network with their real counterparts. We report only the degree distribution
of the nodes of both the real and synthetic network in the case of a large graph like Twitter. For the
smaller air transportation network we present a comparison of the degree distributions along with other
structural properties like centrality measures and clustering co-efficients. In both the cases we include
comparisons with existing generation algorithms.

It must be noted that we generated an HMN with two layers for representing the real Twitter network
with parameter values L = {1, 2},RL(1) = RL(2) = {t1, t2}. The HMN for modelling air transportation
was generated using parameter values L = {1, 2, ..., 37},RL(i) = {t1}. We can also generate homo-
geneous, heterogeneous as well as multilayered networks using our proposed algorithm. In order to
generate homogeneous networks we can set the values of L = {1} and RL(1) = {t1}. The heteroge-
neous networks can be generated with L = {1},RL(1) = {t1, t2, ...., tk} and multi-layered networks can
be generated with L = {1, 2, 3, ..., k},RL(i) = {t1} parameters. The m values for all the networks are
positive samples generated from a normal distribution with a mean of 2 and a standard deviation of 1.
The use of m values in this range generated degree distributions with a scale free property.
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Table 4
Comparison of Generated network with Biological networks

Datasets Nodes Edges Density Avg Degree Assortativity Triangles Avg Triangles/Node Avg CC Clique N
Bio-yeast-protein-inter 1846 4406 0.003 4.000 -0.160 72 0.110 0.050 6
Generated HMN (α = 0.7, β = 0.7, M = 2) 1978 5927 0.003 4.993 -0.800 60 0.091 0.024 4
bio-DM-HT 2989 4660 0.001 3.118 -0.090 59 0.059 0.010 3
Generated HMN (α = 0.8, β = 0.5, M = 2) 1508 4517 0.004 4.991 -0.120 68 0.135 0.019 4
bio-grid-mouse 1450 3272 0.003 4.000 -0.150 120 0.248 0.030 7
Generated HMN (α = 0.9, β = 0.7, M = 3) 1488 5939 0.005 6.983 -0.190 110 0.222 0.028 5

Table 5
Comparison of Generated network with Miscellaneous networks

Datasets Nodes Edges Density Avg Degree Assortativity Triangles Avg Triangles/Node Avg CC Clique N
cryg2500 2500 9849 0.003 7.000 0.600 400 0.400 0.010 4
Watt-2 1856 9694 0.006 10.000 -0.070 838 0.930 0.020 4
Generated HMN (α = 1.0, β = 0.9, M = 3) 2441 9751 0.003 7.989 0.020 708 0.870 0.015 4
PTC-MR 4915 10108 0.001 4.000 -0.300 180 0.109 0.000 3
PTC-FM 4925 10110 0.001 4.000 -0.300 168 0.102 0.000 3
Generated HMN (α = 1.0, β = 0.9, M = 3) 4059 10236 0.001 5.044 -0.252 203 0.150 0.000 2
M80PI-n1 4028 8066 0.001 4.000 -0.140 0 0.000 0.000 2
S80PI-n1 4028 8066 0.001 4.000 -0.140 0 0.000 0.000 2
Generated HMN (α = 0.5, β = 0.5, M = 2) 3909 7662 0.001 3.920 -0.168 0 0.000 0.000 2
Mutag 3371 7442 0.001 4.000 -0.260 0 0.000 0.000 2
Generated HMN (α = 0.5, β = 0.5, M = 2) 3822 7338 0.001 3.840 -0.154 0 0.000 0.000 2
bn-mouse-kasthuri-graph-v4 1029 1700 0.003 3.000 -0.220 0 0.000 0.000 7
Generated HMN (α = 0.8, β = 0.5, M = 2) 807 1578 0.005 3.911 -0.259 0 0.000 0.000 2
bibd-15-3 455 1364 0.013 5.000 -0.630 166 1.094 0.010 4
Generated HMN (α = 1.0, β = 0.0) 481 1436 0.012 5.971 -0.632 180 1.123 0.047 4
lpi-bgdbg1 629 1579 0.008 5.000 -0.040 159 0.658 0.010 3
Generated HMN (α = 1.0, β = 0.0) 519 1550 0.012 5.973 -0.015 143 0.827 0.027 4
Ia-crime-moreno 829 1474 0.004 3.000 -0.160 57 0.106 0.010 3
Generated HMN (α = 1.0, β = 0) 763 1443 0.005 3.782 -0.230 0 0.000 0.010 2

7.1. A real world dataset

We have used a Twitter dataset [40] (referred to here as TWITT) and represented it in the format as
shown in Figure 2. A tweet can be easily classified as aggressive or non-aggressive based on a standard
language classification model. The Twitter network has 20125 nodes and 3938046 edges in the tweet
layer (layer 1), 35936 nodes and 60824 edges in the user layer (layer 2) and 93123 edges in the user-
tweet layer (interlayer connection).

7.2. Modelling TWITT with existing generation models

In our literature survey we have not found existing methods for generating a generic heterogeneous or
a multi-layered network so we compare the structural properties of the HMN generated by Algorithms
1 and 2 with the existing homogeneous models. The homogeneous models used are the Barabasi-Albert
(BA) model [3], Erdos-Reyni (ER) model [33], Internet as graph [32], Gnm random graph. In each of the
Figures 5a, 5b, 5c, we have compared the degree distribution of the largest component of different layers
of the TWITT network with graphs generated from the aforementioned models as well as proposed
synthetic network. Each of the generated graphs have comparable nodes and/or edges.

As we can see from the Figures 5a, 5b and 5c our proposed HMN (referred to using the keyword
synthetic) is very close to the degree distribution of the actual TWITT dataset except for the user-tweet
layer. It must be noted our proposed network does not have any node having a degree less than the
thresholds defined in M, similar to a BA network. When we compare our results with other models we
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(a) tweet
shares hashtag←−−−−−−→ tweet layer
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(b) user follows←−−−→ user layer.
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Fig. 5. Comparing the smoothed degree distribution of the different layers of the TWITT network with our synthetic network
and other standard networks on a logarithmic scale.

see that our model is consistent across the layers which shed light on the generic nature of our model.
We have considered the interlayer as well as the intralayer degree of a node for preferential attachment,
and from the Figures 5a - 5c it is evident that it well describes a real-world network.

7.3. Generating existing networks

We have successfully shown the generation capabilities of HMN for generating large heterogeneous
networks with more than 10000 nodes. To demonstrate the capabilities of HMN for generating smaller
networks we have tried to model the smaller European air transportation network [15] abbreviated as
EAT N. The air transportation network is also a multiplex network having 37 different layers with each
one of the layer representing a different airlines of Europe. To compare our results with existing models
we have taken the BINBALL [5] generative model designed especially for modelling the multiplex
air transportation network. We have generated 10 layers of the air transportation network using both
BINBALL and HMN and compared the average centrality measures of the air transportation network
with both the generated networks. The results are shown in Table 2. It must be noted that the results
presented in Table 2 are averaged over the nodes of each of the layers in the multiplex network. The
column Triangles/node denotes the average number of triangles any node participates in averaged over
all the layers. In addition to the centrality measures, we compare the degree distribution of 2 layers
sampled randomly from the EATN with randomly sampled layers generated from BINBALL and HMN
as shown in Figure 6 (our proposed network is referred to as HMNG).

The air transportation and Twitter networks alone do not represent the existing breadth of networks
in the literature. To show the generalization capability of our proposed algorithm, we have tried to
generate networks belonging to different domains like small molecule datasets (PTC-MR, PTC-FM),
biological networks (bio-DM-HT, bio-grid-mouse, Bio-yeast-protein-inter), networks of nitroaromatic
compounds (Mutag), crystal growth eigenmode graphs (cryg2500), combinatorial problems (bibd-15-3),
computational fluid dynamics graph (Watt-2), linear programming problems (lpi-bgdbg1), eigenvalue
model reduction problems (M80PI-n1, S80PI-n1), chemical datasets (ENZYMES-g272, g366, g392,
g117, g526, g527, g349, g103, g295, g296), brain networks (bn-mouse-kasthuri-graph-v4) and even
crime dataset (Ia-crime-moreno). We have collected the networks from [80]. Networks belonging to
different domains have different structural properties such as degree, density, centrality measure, number
of triangles and assortativity, etc. We have compared our generated network with the existing networks
on such structural parameters. The results are shown in Table 3, 4, 5. We have considered other structural
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measures apart from centrality measures. This includes density, average degree, assortativity, triangle
counts, clustering co-efficient, and the number of max cliques. It must be noted that in all the tables, CC
denotes clustering co-efficient.

In our experiments, we have seen that a single graph generated from our algorithm with different
parameter values (α, β and M) for different layers (both intra and inter) can model different networks
with varying intra-layer and inter-layer properties. This can be seen for the enzyme networks g103, g295
and g296, which are modelled using different layers of the same graph using parameters as mentioned
in Table 3. The graph g103 is modelled using generated intra-layer graph whereas g295 and g296 are
modelled using inter-layer graph. It must be noted that the number of triangles in an inter-layer graph
is inherently zero. We combine the inter-layer graph with the edges of an intra-layer graph to model
different network characteristics. Also, in Table 3, we observe that increasing the values of α and β
increases the number of triangles and the average degree for the networks generated using intra layers
as shown in the first 4 sets of rows of Table 3. In the case of biological networks shown in Table 4 with a
comparable number of nodes, the average degree remains similar even for a small decrease in the value
of β. We have found the average degree, assortativity and clustering coefficient to increase when alpha
and beta increase. The value of assortativity increases with alpha even when beta decreases, but it takes a
bigger jump when we increase alpha with beta. In the last row of Table 4, we have increased the value of
the parameter M to analyze the structural similarity when the number of nodes is very similar. Increasing
the value of M by 1 increases the number of edges keeping other aspects of the network comparable. In
Table 5, we compare our results to different types of nodes that cannot be grouped under one category.
We have achieved zero triangles in certain networks using inter-layer connections without intra-layer
edges. It must be noted that there is a randomness in the selection of neighbours of a node which results
in non-determinism, i.e. network properties may vary slightly even with the same parameter values.

8. Discussion and Conclusion

In this paper, we introduced a new model Heterogeneous Multilayered Network (HMN), which is a
generalized network model capable of representing any complex networks of type homogeneous, het-
erogeneous, multilayer and their combinations. We also defined different structural measures on HMN.
We have proved that the set of all HMNs is a superset of the set of all homogeneous, heterogeneous, and
multi-layered networks.

In addition, a parameterized algorithm is presented to generate an HMN synthetically. We show that
the algorithm is able to generate a homogeneous, heterogeneous, and multilayered network by changing
parameter values. Through experiments, we show that all networks generated by this algorithm have
scale-free properties.

The network generated by the algorithm is generalized and can be tweaked by changing the parameter
values for applications in certain areas where networks largely follow a scale-free property. These syn-
thetic networks will open the opportunity to research with HMNs that is otherwise difficult to conduct
due to the unavailability of the data. Although heterogeneous network data are available, to the best of
our knowledge, there is no algorithm for generating a heterogeneous network and the proposed algo-
rithm would encourage research with heterogeneous networks as well. Note that the proposed algorithm
can only be used to generate an undirected HMN. However, we believe that with minor changes, we can
generate directed HMNs. To show the applicability of the generated networks using our proposed algo-
rithm we have compared it to a real-world Twitter network as well as a multiplex EATN network. An
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Fig. 6. The figures compare the degree distributions of randomly selected layers from EATN with networks generated from
BINBALL and HMNG.

important future research is to show that our proposed definition of HMN holds for a dynamic network
or a signed network.

Finally, with this work, we tried to open a new avenue of research with complex networks. While
the theories developed will help further theoretical analysis and provide the basis of application, the
synthetic network generation algorithm will provide the opportunity to develop applications with HMN.
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