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Abstract. Decomposition for complexity minimization has long been a challenging approach. yet decomposition for outliers
has rarely been experimented with. This paper presents a data decomposition approach as a pre-processor for outlier detection.
The decomposition of the data using space partitioning makes homogeneous sub-groups. Consequently, it reduces the com-
plexity of data patterns by isolating possible outliers into the sub-groups from monolithic characters. This approach creates
sub-groups of homogeneous data points based on the fitness of purpose. They optimize the outlier patterns in the sub-groups
for subsequent mapping of outlier detectors onto the sub-groups. This decomposition strategy is found to be effective in reduc-
ing the complexity of learning for the detectors without deterioration in the overall detection rate. We experimented with this
approach using different benchmark detectors on eight benchmark datasets. Our data decomposition approach is superior for
identifying localized patterns in the partitions and offers a better generalization.

Keywords: Decomposition, Space partitioning, Outlier, Entropy

1. Introduction

Outlier detection is one of the most important pattern recognition tasks in data science for data-driven-
decision making. Detection of outliers seeks to identify the unique or rare instances that deviate sig-
nificantly from most data. The objective is to identify and flag the exceptional or uncommon objects
compared to most of the data. Misclassification of any such single event can be catastrophic in critical
applications, e.g., in social network [11], in Streaming data [13], in medical diagnosis [12], in geo-
science [30]. Real-life applications demand that a single outlier instance should not remain undetected
even though it is weak.

Various outlier detection techniques have been proposed in the past tailored to different applications’
specific characteristics and requirements. Outlier detection tasks are commonly classified into three cat-
egories: supervised, semi-supervised, and unsupervised, depending on the availability of outlier labels.
Unsupervised methods are extensively used in outlier detection, primarily due to the shortcomings of
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obtaining accurate and representative labels, which are often expensive and scarce. Unsupervised outlier
detection methods can be categorized into six major types based on their underlying approaches: Lin-
ear models [41], clustering-based methods [29], probabilistic-based method [31] information-theoretic
methods [51], neural network-based methods [36], isolation-based methods [28], and nearest neighbour-
based methods [3]. These methods have been developed and refined to suit the unique features of each
application, taking into account factors such as data distribution, data type, domain knowledge, and
desired level of sensitivity.

Although significant development is witnessed in unsupervised outlier detection, it remains a challeng-
ing and exciting problem for the pattern recognition community. Outlier detection becomes challenging
due to a lack of prior knowledge and a highly imbalanced class. Complexity further inflates because
of local irregularities and the boundary effect of defining outliers. In handling such problems, conven-
tional outlier detection methods do not perform effectively. To overcome such limitations, we propose
a data decomposition [25] of pattern space aimed at getting a more robust outcome by partitioning the
data into sub-groups of homogeneous elements. In Fig. 1, we present the data decomposition effect
in 2 — d projection of d-dimensional pattern space where boldfaced points may be undetected by the
conventional method because of local irregularities. By other pattern projections, such as partitioning
the monolithic space into sub-groups, those points become potential outliers in that partitioned space
because of isolation.

A standard decomposition method isolates anomalous data points into sub-groups based on the inher-
ent characteristics of data points. Such decomposition characteristics are expected to give group-wise
detection efficiency to the outlier detectors. To achieve the data decomposition goal, we use the stan-
dard clustering [19] method as proof of concept. Here, the clustering method works as a pre-processor
for outlier detectors to reduce the data pattern’s complexity. It creates a smooth ground for the outlier
detectors to learn the patterns in the homogeneous groups of data points in sub-groups and improve
the outlier scores. Our approach investigates a pre-processing framework for outlier detection inspired
by the Learning-follows-decomposition (LFD) [25] strategy through clustering based on the fitness of
purpose as it considers homogeneity condition while making sub-groups than other clustering methods.
The principle characteristic of our data decomposition modulation is that an outlier detector can take
advantage of the decomposition [32]. Experimentally, our approach alleviates the drawbacks mentioned
above. We experimented on eight benchmark datasets and six standard outlier detection methods to es-
tablish whether the above decomposition strategy produced a conducive environment for the detector
to perform better. The proposed approach performs better on almost all the datasets and detectors. Fur-
ther, to strengthen our proposed approach, we analyze the pattern complexity in the subgroups using
an information-theoretic method (i.e., entropy). We do some empirical experimentation to look into the
intensity of complexity reduction in the decomposed space to validate our decomposition strategy for
outlier detection. This step enhances the acceptability of our proposed approach and gives better logical
support for our step.

The research contributions of the proposed work are: (i) data decomposition is more pronounced to
create patterns of outliers in sub-groups so that the detection process becomes more accessible for the
detectors, and (i1) Outlier-clusters make outlier detection trivial and thus, outliers could be detected
effectively from the decomposed clusters.

The rest of the paper is organized as follows. Section 2 tells us about the significance of our approach.
Section 3 mentions a few existing methods related to decomposition. Section 4 describes the proposed
methodology. Section 5 reports the experimental setup and empirical results. Finally, Section 6 concludes
the paper.
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Table 1
Abbreviation and Description

Abbreviation For

O-cluster Outlier cluster (proposed)

AD After Data Decomposition (proposed)

WD Without Data Decomposition (proposed)

LOF Local outlier factor [4]

COF Connective-based outlier factor [43]

IForest Isolation Forest [28]

COPOD Copula-Based Outlier Detection [26]

PCA PCA-based outlier detector [41]

kNN k-Nearest Neighbor (kNN) based outlier detector [3]

2. Motivation

Is there any pre-processing approach concerning the outlier detection that makes the outlier detectors
more robust? Our motivation is based on the following factors:

e Understanding the inherent pattern of data is crucial before detection and how data-centric infor-
mation can help the outlier detection process through partitioning. We want to examine the inherent
specific outlier pattern (Fig. 1), which can cause systematic measurement failure for the detectors.

e Outliers are rare events to identify in the different data types. The border effect and dense data
locality adversely affect the identification of outliers. How the data modulation in homogeneous
sub-groups (Fig. 1) before detection can help smooth and effective the detection process.

e As a part of the complexity reduction and quality enhancement process, how data decomposition
[25] can reduce learning complexity by increasing decision surface and as a consequence, it can
reduce local irregularities for the outlier detector and increase classification accuracy in different
data distribution.

3. Related Work

In the past decade, various methods have been developed for outlier detection under the unsupervised
category. Among the recent developments, Cheng et al. [8] proposed an ensemble-based detector for
global and local outliers. Recently, Li et al. [27] studied ECOD (Empirical-Cumulative-distribution-
based Outlier Detection). Wang et al. [46] used a virtual graph-based outlier detection method. An ex-
clusive survey of model-based outlier detection techniques has been presented recently by Wang et al.
[48]. As our work concentrates on data decomposition and subsequent mapping of outlier detectors, we
restrict the rest of the related work to the same category.

A well-known k-nearest neighbor (KNN) based approach [3] computes the distances between data
points, and a data point with a significantly higher distance value from its nearest neighbors based on
a threshold is regarded as an outlier. An efficient version of the distance-based method is proposed
by Ramaswamy et al. [39]. They partition the data and remove parts that cannot contain outliers, thus
reducing the computation and improving efficiency. Breunig et al. [4] developed a Local Outlier Factor
(LOF) to identify outliers based on the density approach. The principle behind the density approach
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Figure 1. Data decomposition effect on outliers. Outliers and inliers are presented by boldfaced diamond and circle symbols,
respectively.

is that outlier data points are likely to occur in the low-density region while the normal data points are
found in dense spaces. Tang et al. [43] proposed COF, an improved version of LOF [4] based on chaining
distance. Liu et al. [28] proposed a unique isolation-based model, and they observed that outliers are
present in the vicinity of the trees’ roots due to their isolation. Inliers are found closer to the terminal
nodes of the trees. Shyu et al. [41] proposed a PCA-based outlier approach. He et al. [17] designed a
cluster-based local outlier factor (CBLOF) based on the concept of a cluster-based local outlier.

A Learning-follows-Decomposition (LFD) strategy [25] for hierarchical learning of pattern spaces
uses a multi-objective genetic algorithm followed by (near-) optimal learning of pattern sub-spaces.
Their technique is a generic solution to complex high-dimensional problems where clusters are generated
based on the fitness of purpose. This strategy splits a problem into a series of sub-problems; it then
assigns a set of function approximators to each sub-problem such that each module specializes in a
subdomain to learn the pattern. Maimon et al. [32] outlined a brief overview of the decomposition
methods by presenting the essential properties that characterize various decomposition frameworks and
their respective benefits. In a different vein, Paulheim and Meusel introduced an alternative method
for outlier identification called ALSO (attribute-wise learning for scoring outliers) [37]. Rather than
relying on density-based measures, ALSO examines patterns within the data. The authors decompose
the outlier detection problem into supervised learning tasks, enabling the identification and evaluation
of patterns’ strengths within each attribute. Weight assignments are made to attributes based on these
strength estimations, with weaker or nonexistent patterns receiving lower weights. Outliers are identified
by comparing each data point against the established patterns, considering the attribute weights. Any data
point deviating significantly from the patterns is classified as an outlier. Jiang et al.

[21] proposed a K-means a clustering-based two-phase method to detect outliers. The first phase in-
volves partitioning data points. The second phase consists of constructing a minimum spanning tree
(MST) based on the cluster centers obtained in the first phase. Outliers are identified as clusters lo-
cated in small sub-trees. Gan et al. [15] proposed an approach that combines data clustering and outlier
detection by augmenting the k-means algorithm with an extra "cluster" to accommodate outliers. To op-
timize the objective function of this enhanced algorithm, They have developed an iterative procedure and
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demonstrated its convergence. Chawla et al. [7] proposed a k-means-based solution to cluster the data
and identify outliers simultaneously. They apply the k-means algorithm; the data points in the clusters far
from their nearest cluster centers are considered outliers. This method converges to the local optimum
of outliers by an iterative method. However, K-means the algorithm is vulnerable to outliers, and such
outliers may have a disproportionate impact on the final cluster configuration. This can result in many
classification errors. Jiang et al. [21] proposed a K-means a clustering-based two-phase method to de-
tect outliers. The first phase involves partitioning data points. The second phase consists of constructing
a minimum spanning tree (MST) based on the cluster centers obtained in the first phase. Outliers are
identified as clusters located in small sub-trees.

Gan et al. [15] proposed an approach that combines data clustering and outlier detection by augment-
ing the k-means algorithm with an extra "cluster" to accommodate outliers. To optimize the objective
function of this enhanced algorithm, They have developed an iterative procedure and demonstrated its
convergence. Chawla et al. [7] proposed a k-means-based solution to cluster the data and identify outliers
simultaneously. They apply the K-means algorithm; the data points in the clusters far from their nearest
cluster centers are considered outliers. This method converges to the local optimum of outliers by an
iterative method. However, k-means the algorithm is vulnerable to outliers, and such outliers may have
a disproportionate impact on the final cluster configuration. This can result in many classification errors.
Jiang et al. [21] proposed a k-means a clustering-based two-phase method to detect outliers. The first
phase involves partitioning data points. The second phase consists of constructing a minimum spanning
tree (MST) based on the cluster centers obtained in the first phase. Outliers are identified as clusters
located in small sub-trees.

A K Jain [20] presented a comprehensive examination of pattern clustering methods, focusing on sta-
tistical pattern recognition principles. The objective was to offer practical guidance and references to
foundational concepts that were accessible to a wide range of clustering practitioners. A taxonomy of
clustering techniques was presented alongside an exploration of overarching themes and recent develop-
ments. Kashef and Warraich [23] introduced a novel taxonomy of distributed data clustering algorithms,
shedding light on their distinct distributed modeling strategies. Their taxonomy categorized these cluster-
ing processes into homogeneous and heterogeneous approaches. Additionally, they investigated diverse
distributed performance and quality measures, offering a comprehensive understanding of their effective-
ness. Buhmann and Kiihnel [5] presented a complexity-optimized approach using a clustering strategy
that explicitly considered the balance between the simplicity and accuracy of data representation. This
approach involved jointly optimizing distortion errors and complexity costs within the clustering algo-
rithm. By employing a maximum entropy estimation of the clustering cost function, they determined the
optimal number of clusters, their positions, and their corresponding probabilities. This method ensured
an effective trade-off between precision and simplicity in data representation. Wu and Wang [49] intro-
duced a novel approach to outlier detection, which involved formulating a rigorous definition of outliers
and devising an optimization model using the concept of holoentropy. This approach incorporated both
entropy and total correlation, offering a comprehensive perspective on outlier identification. Leveraging
this model, they presented a streamlined outlier factor computation that was uniquely identifiable and
amenable to efficient updates.

4. The Proposed Methodology

The existing detection method works on the assumption that outliers can only be identified using devi-
ation characters, but it ignores entirely the local structure of data. Moreover, it becomes tough to identify
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outliers in a monolithic space because of its pattern complexity and above mentioned assumption. This
paper proposed a decomposition-based unsupervised method to detect outliers very effectively. First,
we partition the data into sub-groups or clusters using standard clustering. As clustering technique cre-
ates clusters of homogeneous elements, and the homogeneous grouping of data points fits the outliers
in the different clusters based on the clustering criteria. Second, we check the subgroup’s structure and
characteristics for possible fitting of detectors onto the subgroups. Third, we employ a standard outlier
detector in each cluster based on defined criteria. Finally, we outline the evaluation framework for our
approach based on the standard metrics. We present extensive empirical results over eight benchmark
data sets. We establish the competency of our approach in the detection of outliers. We also show that
the generalization of our approach using six heterogeneous standard outlier methods is quite effective.
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Figure 2. Workflow of the algorithm.

We aim to pre-process the input data by decomposing it into sub-groups of homogeneous data points
and detect outliers in the subsequent sub-groups using a standard outlier detection method. Such pre-
processing of input data is expected to create a conducive environment for the detector to yield effective
and efficient output. In this work, we assume the heterogeneity of unnatural input data with global [24],
local [4] type, and unnatural data points distributed in the clusters according to their characteristics. Since
k-means [44] clustering tries to separate data points in k groups of equal variance by minimizing inertia
or within-cluster sum-of-squares criterion. As inertia assumes that clusters are convex and isotropic, it
is expected that separation is appropriately done by the k-means clustering method. But it is not always
the case. Sometimes, k-means clustering responds poorly to irregular shapes. Considering this fact, We
consider the following two cases:

e Case 1: If a few isolated data points create a separate cluster of tiny size (less than equal to 2% of
total data points), we treat these data points as an outlier. As outliers are usually located in low-
density regions than the normal data points, these highly isolated data points are strong candidates
to be outliers compared to other data points. So, they can be treated as outliers by definition [4].
Here, we refer to these clusters as outlier-cluster (O-cluster), i.e., O-cluster is one of the sub-groups
containing only outliers. So, there is no need to assign any detector as it categorically classifies the
potential outliers. The reasoning behind using a 2% limit for the O-cluster is based on experiments
on benchmark datasets, such as the Pageblock dataset, which shows that using a 2% limit results in
all data points in the O-cluster being outliers according to the dataset’s ground truth. Using a higher
limit can result in some normal data points becoming part of the O-cluster, which does not satisfy
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the criteria for an O-cluster and can lead to unexpected results in the overall decomposition process.

e Case 2: Clusters with a significant number of data points that have complex data patterns with the
local and global patterns of outliers, which signifies Case 2. This type of cluster requires treatment
for depth dive to identify more localized patterns in homogeneous data. This homogeneous data
modulation makes few localized outlier points potentially deviated in decomposed space, and their
isolation from normal points is quite significant. That is why we consider those clusters suitable for
assigning standard outlier detectors to identify more unnatural events or outliers.

4.1. Principle of the Proposed Approach

The proposed approach is based on the assumption that local outliers are the potential global outliers
in the subgroup after decomposition. Local outliers can have more precise, stronger isolation in the
subgroups after decomposition than its monolithic space. As showcased in Fig. 3, O1, O3, and O3 are
the localized outlier patterns that are very tough to identify in monolithic space, but they can behave
strong outliers in the partitioned space considering its isolation from inliers. The isolation radius (IR),
which is the radius of the isolation region, has great importance in the context of outliers here. Smaller IR
may indicate strong outliers in their individual partitioned subgroups, but higher IR values may indicate
strong global outliers for all the partitioned subgroups, and here we mention it as an O-cluster or Outlier
cluster. This is presented here as O4 in Fig. 3 (a) and (c). This way, the original space can be transformed
into a better, smoother, less complex space for the outlier detectors to identify, like cake and butter.

Based on the above-mentioned concept, the original monolithic space can be presented as a set of
a few well-designed subgroups of similar characters. As shown in the Fig. 3 (d), S;(i € [1,k]) is the
isolation region comprised of X and x;(j € [1, N]) as center of region. B;(j € [1,N]) are the modified
isolation measure in the partitioned subgroups.

4.2. Analytical Formulation

Here, we define our proposed method using mathematical notions. To outline our algorithm, let X =
{x1, x2, .....xy } be a dataset containing of N data points with d dimension and we also consider a distance
functiond : X xX — RY in the d-dimensional Euclidean space R9. The Euclidean distance is represented

. S 1 .
between the pairs of data points in X as: d(x;, x;) = (Zle(xit — xj,)z) 2, where x; = (X1, Xi2+evens Xig) 1S
the representation of x; in RY.

4.3. Decomposition Approximation

In our approach towards reducing complexity for the outlier detectors, we intend to decompose input
data into sub-groups and subsequently map detectors in the sub-groups for learning. If we consider input
data decomposition as mapping F' from an (N, d)-shaped input data (X) to k sub-groups (ny, d), then the
following formulation is a (VV, d)-shaped function decomposition into many (7, d)-shaped sub-groups
subject to meeting the criteria Objective f(X).

ng

. pd d
F.RN—>LkJR e <N (1)
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Figure 3. Principle of the proposed approach.
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As data decomposition modularity minimizes the hypersphere into smaller sub-groups, they represent
a comparatively lesser complex domain for the detectors to learn patterns, and a detector exercises less
effort to get better output. Fig. 1 depicts the benefits of decomposition into sub-groups.

Here, our objective f(X) is to increase the homogeneity of sub-groups and decrease the learning
complexity, i.e., data points should be of the same characteristic. We wish to maximize the homogene-
ity of data points by distributing them in sub-groups based on defined decomposition criteria. As a
consequence of decomposition, outlier data points of homogeneous character cater according to their
sub-groups. For the decomposition step, we choose standard k-means clustering with four different
configurations of k. Let Z = {z1,z2,.....z+} be a set of potential cluster centers that are used for the
decomposition of dataset X. The distance of x € X to its closest cluster center z(x | Z) is represented by:

dx|Z) = rzréi?{d(x, z)} 2)

0 J o 0w N
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Here, the input data (X) is decomposed into & cluster by minimizing the within-cluster sum-of-squares
criteria, which is given by:

U(X.z) =) d(x|Z) =2 min(|xi - z]?) 3)
i=0 i=0

Let the number of data points in the clusters be 7, a decisive factor for assigning a detector to the
clusters. Let A = {ay,as,...,ax} is a set of detected outliers in the respective clusters. We experiment
with our data decomposition strategy in four different configuration values of k (number of clusters), so
the detected outlier in the four different configurations of decomposition is represented by D;(A) Vj €
{2,3,4,5}.

4.4. Algorithmic Description

Our data decomposition method is described in Algorithm 1. We take six different types of outlier
detectors and four different configurations for data decomposition, chosen sequentially in a fixed number
of clusters. Here, we attempt to find complex outlier patterns for all four decomposition configurations.

Algorithm 1 Data Decomposition

Input: M;, Ms...., M,,:= m-sets of heterogeneous outlier detector, Set of points X = {x1, xa..., X, }
Output: A = identified outliers

I: A=¢
2: DJ(A) = ¢
3: for each (j € {2,3,4,5}) do
4 perform decomposition of k subgroups /* equation 1 and equation 2
5: calculate ny, Vk
6 if (n; < 0.02N) then /* check for O-cluster
7 zx=ay CAVk
8 else
9: assign any M,, /* employ detector
10: Check a; in each z;
11: end if
12: A=a;UayU... Uag
13: end for

14: return D;(A) Vj € {2,3,4,5}

For each clustering configuration of k, we decompose the data points in the sub-groups or clusters
using k-means (Lines 3-4). Then we calculate the size of these clusters (Line 5). Then, we check the
condition of the O-cluster (Line 6); if it satisfies, we do not assign detectors. Otherwise, we assign
detectors in the clusters (Line 9) and detect outliers (Line 10) in the clusters. Finally, we integrate all the
clusters (Line 12) for evaluation measures.

4.5. Information Theoretic Validation

To further validate the pattern complexity reduction in the subgroups or decomposed space, we use
information-theoretic methods (i.e., entropy).
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Mathematically, Let the dataset X consists of subgroups S1,S9, ...., Sk. Heom be the combined entropy
of the entire data set or monolithic data. Let H; be the entropy of the k-th subgroup after decomposition.
Here, our objective is to prove:

Hcom = Z Hk (4)
k

Where H,,,, = — Zf\’: 1 PxlogaPy, and Hy = — inesk P,logaPy,. P, is the probability of the event
x € X and P,, is the probability of the eventin x; € S;. So, we get from equation 4 that

N
- prlogZPx P Z(_ Z Px,-log?Px,-) (5)
i=1 k

xXi €Sy

Now, we will calculate the P, and P,, from the dataset and subgroups by using Euclidean distance. Our
primary goal is to validate the homogeneity concept and further reduce complexity. We will calculate
the Euclidean distance of each data point from the respective mean, and that value will be normalized
using Norm, = *—*. We will transform the normalized value into the predictive probability of that data
point by using the formula P, = H%Xp_x Here, we try to establish our fitness of purpose by looking into
homogeneous characteristics of subgroups by checking their distance values from the respective mean.
It is assumed that subgroups may have lower pattern complexity than entire data after decomposition.

Let’s express Euclidean distance for this purpose, and that is dy = /(X — ,u)%. Where y is the mean
of the data points. We calculate distance values for X and subgroups S, S 2, ...., S k. Then, these distance
values feed in the Norm, for the normalization, and then these are transformed into probabilities using
P.. Then we calculate entropy H,,, and H; using the probability values, and we do our analysis on
complexity reduction.

The proposed decomposition method for outlier detection is validated with the help of entropy mea-
sures for all the datasets to build a strong foundation for our claim and give a logical sequence of our
investigation. We take the decomposition setting of four subgroups for all the datasets. The algorithm 2
of the data decomposition validation is explained below:

4.6. Learning Complexity

The complexity of most of the unsupervised outlier detectors is approximate of the order O(N?),
where N is the number of data points. For any data pattern, learning complexity after using data de-
composition is: O(n?) + O(n3) + ... + O(n?) < O(N?). Our objective behind data decomposition is to
reduce the sum of squares using sub-groups. We assume that each sub-group is an independent event in
a statistical sense. Separability measure [14] of data into sub-groups preserve the inherent pattern space
intact, increasing the decision surface’s regularity. Consequently, this data decomposition step surges
classification accuracy.
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Algorithm 2 Data Decomposition Validation

Input: S1,S5...., 5 ,:= k-sets of subgroups, Set of points X = {x1, x3..., X, }, k:= number of subgroups, x:= mean
Output: H,,, = calculated combined entropy of X and H; = calculated entropy of subgroup(S )

I: Heom = ¢

2: Hk = ¢

3: for each S Vk and X do

4: Calculate u

5: Calculate dx /* compute distance from group mean

6: Standardize dy using Norm,

7. Get P, from Norm, get probabilities

8: Calculate H,,,, and H; using P, /* get entropy

9: Check Heom > Y, H /* equation 5
10: end for

11: return H.,, and ), Hy

5. Experimental Setup and Empirical Results

In this section, We present the experimental setup of our proposed approach and experimental results
on meaningful benchmark datasets, which can be easily traceable at the UCI repository. We use six
heterogeneous outlier detectors in our approach. We have done our entire experiment using the Jupyter
notebook !, and visualization is generated using the Plotly library.

5.1. Dataset Description

In this work, we use eight benchmark datasets from the UCI machine learning repository 2.

Table 2
Summary of the used datasets.

Dataset Instances Dimension Outliers (%)
Pendigits 6870 16 156(2.27%)
Pageblocks 5471 11 560(10.23%)
Optdigit 5216 64 150(3%)
Waveform 3443 21 100(2.9%)
Thyroid 7200 6 536(7.42%)
Letter 1599 32 100(6.25%)
Satimage 5803 36 71(1.2%)
ALOI 49534 27 1508(3.04%)

The datasets are briefly described below in Table 2. Pendigits (Pen-Based Recognition of Handwrit-
ten Digits) dataset is a multi-class classification dataset having ten classes (0,1,...,9) of different hand-
writings, and class 4 is taken as an outlier. The PageBlocks dataset contains information on various block

1https:// github.com/gourangaduaril995/outlier-decomp
2http:// archive.ics.uci.edu/ml/datasets.html
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types in document pages, and the task is to separate text from pictures or graphics. Here, other than text
blocks are treated as outliers, as in Campos et al. [6]. Optdigits (optical recognition of handwritten dig-
its) is a multi-class dataset of handwritten digits. Here, the digit “0” instances are taken as outliers, and
the rest are inliers. As mentioned in the UCI repository, the Waveform dataset represents three classes of
waves. Class “0” is labeled an outlier, and the rest of the data instances are inliers. The Thyroid dataset
contains information about the hypothyroid patient, where hyperfunction and subnormal functioning are
considered outliers, and the remaining instances are inliers. The Letter recognition dataset is a classifica-
tion dataset, and we use it as in Rayana et al. [40]. Satimage dataset is also a multi-class dataset, where
class 2 of 71 instances is labeled as an outlier. The Amsterdam Library of Object Images (ALOI) dataset
is a collection of images we use as given by Campos et al. [6].

5.2. Baseline Metrics

Addressing the challenge posed by highly imbalanced data is paramount in the outlier detection task.
In this realm, improving detection performance is the most necessary task. The Receiver Operating
Characteristic (ROC) curve stands out as the predominant evaluation measure in research literature [35].
A crucial metric derived from this curve is the area under the curve (AUC), which serves as a com-
prehensive indicator of overall performance. Unlike other metrics, AUC remains unaffected by specific
thresholds, directly reflecting the algorithm’s classification capability. Other than that, we use precision
[22, 34] (a high precision indicates low false positives) and recall [22, 34] (a recall indicates low false
negatives) metrics for calculating classification accuracy. For visualization, we use t-SNE plot using true
positives.

5.3. Outlier Detectors used for Comparison

In this paper, we consider six heterogeneous standard outlier detectors to check the effectiveness of
our decomposition approach as base detectors: IForest [28] as an ensemble-based method, PCA-based
outlier detector [41] as a linear model, kNN [9] as a distance-based method, LOF [4] as a density-
based method, COF [43], and COPOD [26] as a probability-based method for all datasets in Table 2.
Here, we use global and local outlier detectors to diversify our analysis. However, more outlier detectors
with different characteristics may be experimented with to check the effectiveness of the decomposition
strategy on outlier detection. We use the sci-kit library for k-means clustering, and pyod?® library for the
detectors.

5.4. Decomposition Results

Here, we demonstrate the effectiveness of our decomposition strategy using three widely used perfor-
mance measures, precision, recall, and ROC-AUC [35], as shown in Table 3 and Table 4, respectively.
As mentioned in the proposed methodology, we present the output of four different configurations of k&
(j € {2,3,4,5}). In Table 3 and Table 4, the best parameter-wise performance corresponding to each
dataset is boldfaced in the table.

The proposed decomposition strategy works pretty well in detecting outliers in the datasets. This is
evident in the results summarized in Table 3 and Table 4. Our data decomposition step gives the best
results in all four decomposition configurations (k) compared to those without data decomposition. In

3https://pyod.readthedocs.io/en/latest/index.html
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Table 3

Precision and Recall with the proposed decomposition strategy. The performance of detectors is shown in two ways: (a) Without
data decomposition and (b) with data decomposition.

Dataset Parameter IForest Data Decomposition
:2 k=3 k=4 k=5
Pendigits Precision 0.0071 0.0182 0.0202 0.0182 0.0182
Recall 0.3500 0.9000 1.0000 0.9000 0.9000
Pageblock Precision 0.3942 0.4173 0.3821 0.4693 0.5077
Recall 0.3857 0.4143 0.4107 0.4911 0.5321
Optdigit Precision 0.0498 0.1264 0.1453 0.1011 0.0954
Recall 0.1733 0.4400 0.5067 0.3533 0.3333
Waveform Precision 0.0345 0.0986 0.1130 0.1127 0.1145
Recall 0.1200 0.3400 0.3900 0.3900 0.4000
Thyroid Precision 0.1653 0.1667 0.1875 0.2271 0.1801
Recall 0.2233 0.2257 0.2533 0.3077 0.2439
Letter Precision 0.1062 0.2236 0.2422 0.2547 0.2840
Recall 0.1700 0.3900 0.3900 0.4000 0.4600
Satimage Precision 0.1188 0.1222 0.1205 0.1094 0.1094
Recall 0.9718 1.0000 0.9859 0.9859 0.9859
ALOI Precision 0.0331 0.0367 0.0371 0.0369 0.0379
Recall 0.1008 0.1207 0.1220 0.1214 0.1247

the Satimage dataset, many outlier data points generate separate sub-groups as the O-cluster satisfying
the case 1 condition after k = 3. In the Pageblock data, case 1 applies to a few clusters, and we detect
a few O-cluster in each value of K, where n; < 0.02N and consequently a; = z; VK. We can see
that detection performance after decomposition in the Pageblock dataset at k = 5 is best compared to
without data decomposition. For the rest of the datasets, there are no O-clusters. Data decomposition
works well, and superior performance is achieved in all the decomposition configurations. Meanwhile,
our decomposition strategy helps the detector to achieve a 100% recall rate in the Satimage (k = 2) and
Pendigit (k = 3) data, which shows the efficacy of our approach.

We have taken the ROC-AUC score in Table 4 and Fig. 4 as the parameter for checking overall perfor-
mance competency concerning four decomposition configurations. We can see that overall detection has
significantly improved using the data decomposition approach for the Pendigits, Optical digits, Wave-
form, Letter, and Ann-thyroid datasets. Fig. 4 exhibits the comparison of detectors’ outlier identification
capability with the proposed decomposition strategy in four configurations. Fig. 4(a), Fig. 4(b), and
Fig. 4(d) outline the superiority decomposition strategy for outlier detection against the alone use of
detectors, and it gives a clear visual picture of our method’s acceptability.
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Table 4

ROC-AUC score with the proposed decomposition strategy with varying k. The performance of detectors is shown in two ways:
(a) Without decomposition and (b) after decomposition. The variance of ROC-AUC in parentheses shows the stability of the
results. Bold fonts are the best values.

Dataset IForest Data Decomposition
k=2 k=3 k=4 k=5

Pendigits 0.8502 0.9659 0.9590 0.9639 0.9671
Pageblock 0.8855 0.8931 0.8800 0.8956 0.9199
Optdigits 0.6822 0.8759 0.8975 0.8994 0.8706
Waveform 0.6796 0.7668 0.6697 0.7307 0.8569
Thyroid 0.6340 0.6774 0.6957 0.7350 0.6819
Letter 0.6175 0.7499 0.8144 0.8139 0.8355
Satimage 0.9814 0.9984 0.9826 0.9958 0.9958
ALOI 0.5341 0.5478 0.5490 0.5458 0.5403

5.5. Comparative Analysis

We compare the data decomposition approach in Fig. 5 with state-of-the-art detectors using the ROC-
AUC curve. To have a broader compartive analysis with State-of-the-art (SOTA) methods, we take
Pageblock, Waveform, OptDigit, and ANN-Thyroid data. We have found that the data decomposition
approach is a strategic winner in detecting outliers in complex data patterns. Overall, we can say that
the data decomposition approach performs substantially better than the regular use of detectors. The
reasoning behind our claim is very subtle. First, detectors are more potent in filtering out outliers from
homogeneous sub-groups. Second, the learning complexity of data patterns is reduced due to breaking
them out into smaller and lower complex sub-groups. So, the decomposition strategy has the edge over
the raw use of the outlier detectors.

5.6. Visual Analysis

We present better visibility and solidify our method ‘s effectiveness by showcasing -SNE plot of true
outliers in comparative mode between without decomposition strategy and after decomposition of data.
t-SNE (#-distributed stochastic neighbor embedding) is a dimensionality reduction technique customarily
used for visualizing high-dimensional data in a lower-dimensional space, typically 2D or 3D. It preserves
the local structure of the data by modeling the similarities between data points in the high-dimensional
space and embedding them into a lower-dimensional space while minimizing the divergence between
their pairwise similarities. Fig. 6 represents ¢-distributed stochastic neighbor embedding (#-SNE) plots to
show the effectiveness of performances in the Waveform dataset. We conduct comparative performance
between the PCA-based outlier detector (without data decomposition) and after decomposition. Here,
we use the default value of perplexity (30) and iteration (1000) for all the plots. Fig. 6(a) and Fig.
6(b) display exclusively detected true-positive (TP) outliers by red dots. In the Waveform dataset, our
data decomposition approach detects 49 true outliers, and 12 are detected without data decomposition.
Evidently, data decomposition has the edge over the usual use of an outlier detector.
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True Positive Rate
True Positive Rate

False Positive Rate False Positive Rate

(a) Decomposition vs. Iforest (b) Decomposition vs. COPOD

1 —— LOF(AUC=0.6687)

(AUC=0.6743)
(AUC=0.6824)
(AUC=0.6825)
)(AUC=0.6813)

—— PCA(AUC=0.5229)

True Positive Rate
True Positive Rate

False Positive Rate False Positive Rate

(c) Decomposition vs. LOF (d) Decomposition vs. PCA

Figure 4. ROC-AUC score of IForest, kNN, LOF, and PCA after decomposition (AD) and without decomposition in different
configurations of k.

5.7. Empirical Results of Complexity Reduction

We also have experimented with the complexity reduction aspects by measuring the entropy of the
decomposed data, and We do the comparisons with the monolithic data so that we can have empirical
and logical proofs of our claim. We present the comparisons through Table 5. We do the decomposition
in four subgroups for all the datasets in this presentation. We observe that total entropy has been reduced
by the decomposition strategy significantly, as exhibited by looking at the numbers in Table 5. We can
see that five datasets show evidence of our claim, and two datasets (Pageblock and ALOI) show strong
support. So, complexity reduction is achieved in most of the data datasets by looking into the Total
(>~ Hi) compared with the Monolithic data (Hom).

It is evident from this empirical presentation that decomposition gives a boost to the detection process
by grouping the homogeneous points into subgroups, and this pattern modification gives a linear space or
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Figure 5. Comparative analysis of data decomposition for outlier detection with state-of-the-art detectors.
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Figure 6. -SNE plot for Waveform dataset. True outliers and inliers are presented by red and blue dots, respectively.

smooth ground to the detection process. Consequently, we detect more true positive outliers than without
the decomposition process. On the other hand, this process significantly reduces false classifications.
This observed reduction in false classification signifies the efficacy of the decomposition approach in
outlier detection by mitigating the erroneous classification and bolstering the reliability and accuracy of
of outlier detection process.

5.8. Discussion

From the results outlined above, we observe two primary categories of clusters emerge as the outcome
of decomposition: (I) O-cluster: a cluster of a few significant isolated data points that are potential can-
didates for outliers; and (ii) cluster with outliers and natural data points. In the first category, we do not
assign any detector to classify the data points as outliers further, as the clustering method does not force-
fully include isolated data points in the cluster. It is sufficient to consider them as outliers with 100%
probability. These data points are significantly dissimilar from the rest (Fig. 1), and data decomposition
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Table 5
A brief comparison of complexity reduction in the decomposed space with its monolithic space.

Dataset Monolithic Decomposed Data

Data(Hcom)

S1 S2 S3 S4 Total (3", Hy)

Pendigit 4330.01 1011.96 1481.12 629.98 1247.50  4370.56
Pageblock  2731.32 2257.79 3.82 276.65 15.26 2553.52
Optdigit 2260.39 456.88 458.26 634.95 716.97 2267.06
Waveform  1510.59 312.05 437.40 440.89 308.88 1499.22
Thyroid 3115.18 1731.47 388.57 872.52 214.74 3207.3
Letter 712.30 119.81 228.41 124.44 227.43 700.09
Satimage = 2583.37 773.95 963.19 813.78 28.53 2579.27
ALOI 22982.70 11216.30 1259.95 6938.37 251646  21931.08

alone is sufficient to separate outlier points into clusters. As our approach involves excluding isolated
outliers named after themselves, our primary goal is to maximize the utilization of patterns, not to ob-
ligate the use of all patterns. Additionally, groups of outliers produced due to systematic measurement
failure will form their own separate sub-group, which may be considerably distinct from other patterns
with the same classification. So, we can consider them as potential global outliers of distinct nature. The
handling of outliers is a topic that requires additional research. The second main category of clusters
requires assigning a detector to classify the class of the data points, as these categories of clusters may
consist of both standard and outlier data points. These clusters mainly contain local with few global
outliers, and detectors can only learn the patterns to classify the outlier class.

In this experiment, we analyze the pattern complexity using an entropy-based method for a better
understanding of our proposed approach in Table 5. Outcomes show massive support for our approach
that complexity in terms of entropy has reduced in the subgroups than in monolithic space, even for the
total entropy (3, Hy) of all subgroups. This signifies that the homogeneous pattern modification after
decomposition has made crucial improvements in pattern complexity reduction. This step boosts the data
decomposition method validation and enhances the acceptance in actual applications.

The sole purpose of the decomposition of input data is to improve the detection efficiency of the
detectors compared to regular methods. We also explain the decomposition strategy using the bias-
variance tradeoff [2]. As the decomposition strategy creates sub-groups, it helps the detectors perform
better by choosing appropriate sub-groups for learning, i.e., finding the best bias-variance tradeoff. The
entire input data model is a single decision tree with high variance and low bias. On the other side,
decomposition brings a set of potential decision trees. Each tree is less complicated than the entire input
data and has a lower bias and low variance. Bias might increase in the case of the O-cluster (Case 1), but
the criterion defined for O-cluster is not enough to have a high bias.

Our method is a generic approach to complex outlier detection problems where we use the decompo-
sition strategy of input space as a pre-processor to the outlier detectors. This method is applicable even
when we do not have enough prior knowledge of the input space, and clustering is a guiding princi-
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ple for decomposition. Though the k-means clustering algorithm is based on similarity measures, and it
depends on the judgment of the number of clusters (k), which is ill-defined. Here, our approach avoids
such biased factors. Instead, we decompose the input space based on the purpose of identifying unnatural
data points in sub-clusters. Our pre-processing approach works as a catalyst for the detector to maximize
performance, Table 4 and Fig. 4. We also explain theoretically and empirically how data decomposition
can reduce learning complexity and enhance classification accuracy. It is crucial to identify true outliers
rather than having false positives (When inliers are detected as outliers). The significance of our method
lies in there. Table 4, Table ??, and Fig. 6(b) suggest that our method increases the detection accuracy
of true outliers more than any other method. So, the above-outlined results and theoretical foundation
make our approach more relevant in the unsupervised outlier detection process. Our approach can work
well for a wide range of complex unsupervised problems where prior knowledge is not readily available
to analyze data patterns.

Further investigation is required to explore how clusters of outliers (Fig. 1) resulting from systematic

measurement failure can create distinct sub-groups that are notably isolated from other patterns of the
same class. This outcome gives a significant hint about possible outlier patterns in the data. Categoriza-
tion of such outlier patterns can be very valuable in the pattern recognition community. The handling
and understanding of these outliers remain a topic of ongoing study.
Limitations of Implementation: As stated above, the proposed approach is generic. However, the im-
plementation presented in this work is limited by (i) the decomposition, which is influenced by the
k-means clustering. Results may not be as good as above if the clustering is inaccurate. (ii) Since the
data decomposition approach limits the number of clusters (k), efficiency deteriorates after k = 5 for
most of the datasets. So, performance entirely depends on decomposition configuration or the number
of clusters (k).

6. Conclusion

In this paper, we proposed a new approach to outlier detection by data decomposition with k-means
clustering. Our approach is pragmatic in practical applications of complex data patterns. Our entire
framework of research is designed in two phases. In the first stage, we perform data decomposition to
partition input data into sub-groups. The second stage assigns the outlier detectors in the sub-groups
based on the criteria mentioned in the algorithm. Experiments indicate that our proposed approach out-
performs each dataset and each detector.

In the future, we would like to investigate other ways of decomposition with better partitioning condi-
tions for the sub-groups, which can be more suitable for outlier detection. A more robust decomposition
strategy is needed for this work’s future direction. We would also check the possible ways to use hierar-
chical decomposition for outlier detection.
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