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Abstract. Blockchain is like a digital ledger that is not owned or controlled by any single organization. Instead, it's spread out over 

many computers all around the world. This decentralization removes the need for middlemen when people communicate with each 

other. Thanks to platforms like Ethereum, which use blockchain technology, we can now not only do financial transactions but also 

create and run programs called Smart Contracts on the network. However, using these Smart Contracts comes with a cost. When 

they run, they consume resources on the Ethereum network, and users have to pay for this consumption with something called gas 

fees. These fees depend on how complex the operations in the contracts are. So, it's important to design Smart Contracts in a way 

that minimizes these gas costs. In this paper, we suggest methods for organizing Smart Contract to make them more efficient in 

terms of gas usage. By carefully planning how these contracts are structured and what they do, we can reduce the amount of gas 

needed to run them, making it cheaper and more efficient to use Smart Contracts on Ethereum. 
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1. Introduction 

 

The integration of blockchain technology into cryptocurrency trading has opened up new possibilities, 

especially with the emergence of the Ethereum network [1]. Ethereum goes beyond just digital currency—

it allows for broader applications, one of which is smart contracts [2]. These are like self-executing programs 

that run on the Ethereum blockchain without needing middlemen. Unlike regular software development, 

creating and using smart contracts on Ethereum isn't free. Each action on the blockchain comes with a cost. 

Smart contracts automate many tasks, from money transfers to agreements, and everything is recorded 

permanently on the blockchain. This change not only transforms how transactions work but also brings new 

concerns, especially around security and how transactions happen, which are different from regular software 

development practices. Using smart contracts can make processes smoother and ensure that records are 

transparent and can't be tampered with. However, there's a cost associated with executing them on the 

Ethereum network.  

This paper aims to explore the limitations encountered when developing and running smart contracts, 

specifically focusing on the Ethereum network. It also seeks to suggest a framework for smart contracts that 

would minimize execution costs. 
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2. Related Work 

 

T. Chen, X. Li, J. Luo, and X. Zhang [3] focus on an important issue: the problem of smart contracts 

failing to work properly on blockchain, especially Ethereum They point out how the written code bad can 

increase the cost of gas to fulfil smart contracts, of which The result can be excessively costly for users or 

developers By scrutinizing Solidity, the recommended Ethereum programming language on, the authors 

identify seven coding practices that consume a lot of gas, classify them into two groups and to address these 

inefficiencies they introduce a tool called GASPER It is designed to detect them actual gas consumption 

measures Preliminary analysis shows that a significant number of real-world contracts have these measures, 

which are found to be inefficient in about 93.5% of the cases. Their work is important because it reveals 

optimization issues in Solidity and provides practical solutions for identifying and solving these problems. 

But while there may be limitations to the tool’s ability to identify all gas-intensive systems and the 

challenges of optimizing existing contracts, their analysis provides a basis for improving the efficiency and 

cost-effectiveness of smart contract execution on Ethereum and possibly other blockchain platforms. 

Authors Ting Chen, Yuzheng Feng, Jihao Li, and Hao Zhou [4] introduced GasChecker, a sophisticated 

tool designed to identify codes in smart contracts that actually caused the excess gas Their contribution is 

to develop a new way of teaching ten dysfunctional systems with intelli- . Uses SE to identify them in 

contract bytecodes To efficiently handle the analysis of millions of contracts, Map-reduce program model 

and feedback based load balancing were used for equalization. The methodology proposed that GasChecker 

shows strong scalability, as demonstrated in extensive experiments. An empirical study of deployed smart 

contracts reveals widespread inefficiencies in code, with manual detection showing a low false positive rate 

of 2.5% Although GasChecker offers improvements great for in inefficient regulatory identification though 

because of the complexity of some contractual analyses and the resources used It can present limitations 

and yet remains an important tool for will make smart contract development and implementation more 

efficient and reliable. 

E.Albert, J.Correas, P.Gordillo, and A.Rubio [5] have collaboratively developed GASOL, a 

comprehensive tool for analysing and optimizing gas usage in Ethereum smart contracts. GASOL provides 

various cost models to accurately estimate gas consumption for different types of instructions in the 

Ethereum Virtual Machine (EVM). This allows users to assess both gas consumption and the frequency of 

bytecode instructions with precision. With its range of cost models, GASOL meets different needs, whether 

users want to analyse storage operations or evaluate the cost of specific lines of code. GASOL proves 

invaluable for developers in identifying inefficient storage patterns that can significantly impact gas usage. 

Additionally, it offers an optional automatic optimization feature for selected functions, simplifying the gas 

optimization process. Integrating GASOL into an Eclipse plugin for Solidity enhances the development 

environment by visually displaying gas and instruction bounds and facilitating the creation of gas-optimized 

Solidity functions. It's worth noting that while GASOL provides valuable insights and automation for gas 

optimization, its effectiveness may vary depending on the complexity and specific requirements of smart 

contracts. Therefore, additional validation and testing may be necessary to ensure optimal results across 

different contract scenarios. 

In their paper Tamara Brandstatter, Stefan Schulte, Jürgen Sito, and Michael Borkowski [6] explore ways 

to reduce gas taxes and make Solidity smart contracts more efficient they introduce 25 optimization methods 

and build a model which can recognize and be an active part of this development. When more than 3,000 

open-source smart contracts are analysed on etherscan.io, 471 entries are found in 204 contracts. Their work 

provides a systematic approach to improving Solidity smart contracts, potentially saving users a lot of 

money. However, some complications such as the complexity of certain processes and the risk of unintended 

consequences when simply changing contract law require further research to address those issues this to 

improve the effectiveness of the proposed methods. 

 

3. Background 
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3.1. Blockchain 

 

Blockchain is a game-changing technology that acts as a decentralized, shared digital ledger, allowing 

transactions to be tracked transparently across multiple computers This means that once a transaction is 

recorded, it cannot be changed without the consent of the entire network, due to its change logic It turns out 

revealed that subsequently all records are changed The idea of blockchain surfaced in 2008 when an 

individual or group using the name Satoshi Nakamoto published a paper on bitcoin.org. This paper 

introduced a novel payment system that does not rely on traditional financial intermediaries. In the case of 

Bitcoin, there are two key players in the blockchain network: users and miners. Users perform transactions, 

while miners maintain the integrity of the system by adding these transactions to the blockchain. Miners are 

motivated to participate because they can obtain updated cryptocurrencies by monitoring transactions. 

Bitcoin’s blockchain was the first example of this technology, adapted for cryptocurrency transactions. 

However, today there are many other blockchain platforms that serve different industries and needs. 

Examples include Ethereum [1], Corda [7], and Quorum [8], each of which offers unique features and 

capabilities beyond mere currency exchange. 

 

3.2. Smart Contract 

 

Smart Contracts were first thought up by Szabo in 1997 [9]. These contracts are like little computer 

programs that run on the Ethereum network. They can carry out specific tasks all by themselves once certain 

conditions are met, without needing any human to step in. Because they're on the blockchain, nobody can 

change them or stop them once they're running. It's like they're set in stone. And once a transaction happens 

with a Smart Contract, it can't be undone [2]. 

 

3.3. Polygon Blockchain  

 

Polygon [10] is a solution designed to make Ethereum, the popular platform for decentralized applications 

(dApps) and smart contracts, more efficient and user-friendly. It tackles issues like slow processing and 

high fees by working as a layer 2 scaling solution on top of Ethereum. At its heart, Polygon uses a system 

called Plasma, which creates additional chains connected to the main Ethereum chain. These extra chains, 

called "child chains," can handle transactions and smart contracts independently, easing the strain on the 

main Ethereum network and boosting its performance. Polygon also switches to a Proof of Stake (PoS) 

consensus mechanism, which is more environmentally friendly compared to Ethereum's current Proof of 

Work (PoW) mechanism. This change further improves scalability and sustainability. A standout feature of 

Polygon is its seamless integration with Ethereum. Developers can easily move their existing dApps and 

smart contracts to Polygon without extensive modifications, making it a convenient choice for creating 

scalable and efficient decentralized applications.  
 

3.4. Deployment cost of smart contract 
 

Usually, smart contracts are used to process financial transactions through rules defined in the code. These 

conventions can be written in a variety of programming languages, including those that are Turing-complete, 

meaning that any computation can be performed. These contracts are then converted into bytecode 

instructions and executed on the EVM [10]. EVM is more efficient in handling complex calculations. 

Solidity is a popular programming language for creating smart contracts, and each contract is compiled into 

bytecode instructions [11,12], or opcodes. It is important to consider that the consumption of these opcodes 

comes with a cost, and the Ethereum yellow-paper [13] provides detailed information on the value of each 

opcode Gas Tracker [5] is a tool for real-time data flow gas prices, which directly affects the speed of the 

transaction. (09 March 2024) Suggested fuel prices are subject to change and are detailed in the table 1 

below. 
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Table.1 Mandatory Fees in Ethereum (Gas price in Gwei) 

Price of Gas 

cost (Gwei) 

Deployment 

Cost ($) 

Speed of process 

75 6.50 Low - 3 mins: 0 secs 

75 6.50 Average - 3 mins: 15 secs 

76 6.66 High - 30 secs 

 

 

4. Proposed Method for Optimization Of Gas 

According to many studies explained in chapter 2, it is clear that poorly designed smart contracts can 

consume significant amounts of gas, with financial consequences say comes Currently to improve these 

contracts No standards are widely agreed upon, making customization difficult. Different aspects of smart 

contracts should be considered for possible code optimization. These include transforming data types, 

variable packing, managing memory and storage, handling constants, mappings, and arrays, optimizing 

repeat   

Optimizing smart contracts involves improving their structure and functionality, focusing on selecting 

suitable variable types and implementing functions efficiently. To achieve this, a systematic approach is 

necessary, outlined in a recommended sequence of steps or algorithm for writing smart contract source code. 

Figure 1 shows the process involves analyzing different application segments and performing specific 

optimization activities, each requiring a detailed description of the step-by-step actions to enhance smart 

contracts effectively active computations in loops, eliminating redundant code, and error handling effective 

strategies. 
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Fig. 1. Proposed Methodology for Gas Enhancement 

4.1. Data Type variable step 1 

4.1.1. uint256 and uint16 

Choosing the right data type for smart contracts is important for optimization, especially when it comes 

to reducing storage usage and gas costs in EVMs EVM works with 256-bit/32-byte words, so int256, uint256 

to make better use of the available space It is important to use data types such as, or bytes32. For integers, 

it is recommended to use uint256 to reduce gas costs. Using other types of uint requires conversion to 

uint256, which adds additional gas costs. Let us consider an example, we have two identical contracts, one 

using uint256 (Algorithm 1a) and the other using uint16 (Algorithm 1b) [2] When we compile and execute, 

we find that gas costs created for uint256 variables is gas 84,333. while the uint16 variables for was 85,533 

gas. Increased gas costs for the uint16 variable because operations associated with this data type require 

additional instructions. Converting 16-bit values to the EVM's original 256-bit format requires additional 

instructions, increasing the dispatcher's gas bill. 

Algorithm 1a 

1. contract AdditionExample { 

2. function addUint256(uint256 a, uint256 b) public pure returns (uint256) { 

3. // Adding two uint256 numbers 

4. return a + b; 

5. } 
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Algorithm 1b 

1. contract AdditionExample { 

2. function addUint16(uint16 a, uint16 b) public pure returns (uint16) { 

3. // Adding two uint16 numbers 

4. return a + b; 

5. } 

 

4.1.2. String vs Byte32 

In the first algorithm 2a, we use a string data type to hold the user’s name. Each character in a string 

requires additional storage, and can consume a lot of gas through actions such as inserting or retrieving a 

username, which can be as high as 358,191 due to the dynamic nature of the string Momma we don’t do it. 

Bytes32 is a fixed size array of 32 bytes, which means it has a fixed storage cost and can be more gas 

efficient than strings, which cost about 73,921 However, it is necessary that a string can be stored up to 32 

characters by bytes32 Its length is limited wom. Overall, although string enables information data to be 

handled, using bytes32 can provide gas efficiency and storage optimization, especially for smaller strings. 

Your smart contract of specific needs when making gas consumption, storage efficiency, and data suitability 

decisions for monitoring information data. 

Algorithm 2a 

1. contract StringExample { 

2. string public userName; 

3. function setUserName(string memory _name) public { 

4. userName = _name; 

5. } 

6. function getUserName() public view returns (string memory) { 

7. return userName; 

8. } 

9. } 

 

Algorithm 2b 

1. contract Bytes32Example { 

2. bytes32 public userName; 

3. function setUserName(bytes32 _name) public { 

4. userName = _name; 

5. } 

6. function getUserName() public view returns (bytes32) { 

7. return userName; 

8. } 

9. } 

 

4.1.3. Boolean 
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When it comes to optimizing smart contracts for gas costs and storage usage, the choice of data types also 

extends to simple Boolean values In Ethereum smart contracts, Boolean values are often represented by the 

uint8 data type, where 0 is false and 1 is true. There are a few advantages to using uint8 for Boolean values. 

First, it closely matches the 256-bit password-size of the Ethereum Virtual Machine (EVM), making it easy 

to add Boolean values to other data types in repositories Second, it's done functions of uint8 efficiently for 

EVM, of which The result reduces gas costs compared to using other data types or performing custom 

Boolean operations For example, let us assume a contract two identical ones each using the original Boolean 

flags, one using uint8 Algorithm 3a and the other using bool Algorithm 3b. The gas cost is lower for based 

Boolean variables, which occurs at 101745, compared to 82,527 for bool variables because the EVM is 

inherently more efficient with uint8 operations, while bool operations may require additional modifications 

or instructions for gas-. The cost is much higher. 

Algorithm 3a 

1. contract BooleanUint8 { 

2. uint8 public flag; 

3. function setFlag(bool _value) external { 

4. if (_value) { 

5. flag = 1; 

6. } else { 

7. flag = 0; 

8. } 

9. } 

10. function getFlag() external view returns (bool) { 

11. return flag == 1; 

12. } 

13. } 

 

 

Algorithm 3b 

1. contract BooleanBool { 

2. bool public flag; 

3. function setFlag(bool _value) external { 

4. flag = _value; 

5. } 

6. function getFlag() external view returns (bool) { 

7. return flag; 

8. } 

 

4.2. Variable packing step 2 

In the EVM, how you arrange variables in your smart contract can have a big impact on how efficiently 

storage space is used. Let's say we have three variables: a large one (a uint256), a medium-sized one (a 

bool), and a small one (a uint8).  If we declare these variables one after the other, starting with the 
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uint256, then the bool, and finally the uint8, each variable will take up its own chunk of storage, which 

could leave some space unused. This is shown in Algorithm 4a. But if we rearrange the order of 

declaration to put the smaller variables first (the bool and uint8), and then the larger one uint256, we can 

fit them all into the same storage chunk efficiently, as shown in Algorithm 4b.  

Algorithm 4a 

1. contract StorageExample { 

2. uint256 public num; 

3. bool public flag; 

4. uint8 public smallNum; 

5. } 

 

Algorithm 4b 

1. contract StorageExample { 

2. bool public flag; 

3. uint256 public num; 

4. uint8 public smallNum; 

5. } 

 

4.3. Memory and storage step 3 

As shown in algorithm 5 memory and storage are important concepts for data management. Memory is 

temporary storage that is only available during the execution of a task. They are used to store on-demand 

data for a short period of time and do not need to be permanently stored on the blockchain. In contrast, 

storage refers to a persistent cache of data that runs between function calls and is permanently stored on the 

Ethereum blockchain. Changes stored in memory are deleted when a job is completed, while changes stored 

in storage persist even after execution. In the provided Solidity example, the contract StorageExample shows 

how both memory and storage are used. The addDataToMemory function specifies memory usage by 

creating a temporary memory array tempData, adding data, and returning a value. This data is only available 

during the execution of a project and is not stored permanently on the blockchain. In contrast, the 

addDataToStorage function defines storage functionality by adding data to a data array, which is stored 

permanently in the blockchain. The getDataFromStorage function accesses the data structure and retrieves 

data from storage. It is worth noting that storage operations are more expensive in terms of gas consumption 

compared to memory operations. 

Algorithm 5 – Memory and storage 

1. contract StorageExample { 

2. uint256[] public data; // This array is stored in storage 

3. // Function to add data to the array stored in memory 

4. function addDataToMemory(uint256 _value) public pure returns(uint256) { 

5. uint256[] memory tempData; // Declaring a memory array 

6. tempData.push(_value); // Adding data to the memory array 

7. return tempData[0]; // Returning the data (not stored permanently) 
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8. } 

9. // Function to add data to the array stored in storage 

10. function addDataToStorage(uint256 _value) public { 

11. data.push(_value); // Adding data to the storage array 

12. } 

13. // Function to retrieve data from the array stored in storage 

14. function getDataFromStorage(uint256 _index) public view returns(uint256) { 

15. require(_index < data.length, "Index out of range"); 

16. return data[_index]; // Retrieving data from the storage array 

17. } 

18. } 

4.4. Constant step 4 

SSTORE and SLOAD are known to require a lot of resources when used in an Ethereum Virtual Machine 

(EVM). In design scenarios, it is often necessary to configure variables in the build or implementation phase 

and then make them immutable when interacting with the smart contract to address this, developers can use 

persistent or immutable variables has been used. This variable tells the Solidity compiler that the variable 

[17] will not change for the lifetime of the contract. Algorithm 6, constants are defined in the code using 

these variables. It is highly recommended that you use the constant keyword whenever possible to declare 

a constant in the code. This helps to save gas by reducing the number of times the SLOAD instruction is 

used, which can be expensive, costing 200 gas each time it's called. 

Algorithm 6 

1. contract MyContract { 

2. // Declaring a constant state variable 

3. uint256 constant MY_CONSTANT_VALUE = 100; 

4. // Function to read the constant value 

5. function getConstantValue() public view returns (uint256) { 

6. return MY_CONSTANT_VALUE; 

7. } 

8. } 

 

4.5. Mapping and array step 5 

Mappings, which work like hash tables or dictionaries in other programming languages algorithm 7a, are 

excellent for storing and retrieving key-value pairs efficiently. They're particularly useful when you need to 

organize data based on unique identifiers, such as Ethereum addresses. They offer efficiency and flexibility, 

making data management streamlined and keeping gas expenses relatively low. Arrays, on the other hand, 

store data sequentially algorithm 7b and are great for maintaining ordered collections. However, as the size 

of the array increases, so do the gas costs. While arrays might be suitable for smaller data types like uint8, 

they can become inefficient and costly for large datasets. In general, it's recommended to prioritize mappings 

due to their overall efficiency and flexibility. The gas cost for mappings is approximately 228,467, while 
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for arrays, it's around 145,188. However, arrays should still be considered carefully, especially when 

sequential storage is essential, and the increase in gas costs is acceptable. 

Algorithm 7a 

1. contract MappingExample { 

2. mapping(address => uint256) public balances; 

3. function deposit() public payable { 

4. balances[msg.sender] += msg.value; 

5. } 

6. function withdraw(uint256 amount) public { 

7. require(balances[msg.sender] >= amount, "Insufficient balance"); 

8. balances[msg.sender] -= amount; 

9. payable(msg.sender).transfer(amount); 

10. } 

11. } 

 

Algorithm 7b 

1. contract ArrayExample { 

2. uint256[] public numbers; 

3. function addNumber(uint256 _number) public { 

4. numbers.push(_number); 

5. } 

6. function getNumber(uint256 _index) public view returns (uint256) { 

7. require(_index < numbers.length, "Index out of bounds"); 

8. return numbers[_index]; 

9. } 

10. } 

 

4.6. Loops step 6 

Unlike conventional software, Ethereum contracts are limited in their performance due to gas costs. If gas 

runs out before a transaction is completed, the whole process stops. However, payments are still made for 

the parts of the transaction, even if all failed. That’s why it’s important to accurately predict how much gas 

you’ll need before you start working. Current methods often struggle to account for gas for loop operations 

because the number of times a loop will run can be unpredictable. About a quarter of all contracts are loops 

and they tend to use more gas than any other activity [14]. That’s why you need to carefully optimize your 

code, especially the parts that involve loops [3]. 

4.6.1. Minimize requests for resource intensive loop operations. 

Let’s us take example of two functions that illustrate different approaches to calculating the sum of 

elements in an array while minimizing the risk of expensive loop operations. The first function in algorithm 

8a, sum, uses a typical loop structure to go through the array and accumulate the sum. While straightforward, 
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this method can lead to high gas costs, especially for large arrays. To tackle this issue, the second function 

algorithm 8b, sumWithLimit, takes a more cautious approach. It employs a ̀ while` loop and explicitly checks 

both the iteration count and the array length against a predefined maximum threshold. This ensures that the 

loop terminates within a reasonable number of iterations. By doing so, the function prevents potential gas 

inefficiencies and reduces the risk of out-of-bounds access, thus enhancing the contract's reliability and cost-

effectiveness 

Algorithm 8a 

1. contract ExpensiveLoopExample { 

2. uint256 constant MAX_LOOP_ITERATIONS = 100; // Set a maximum number of iterations to 

prevent infinite loops 

3. function sum(uint256[] memory data) public pure returns (uint256) { 

4. uint256 total = 0; 

5. // Instead of using a loop, directly calculate the sum 

6. for (uint256 i = 0; i < data.length; i++) { 

7. total += data[i]; 

8. } 

9. return total; 

10. } 

11. } 

 

Algorithm 8b 

1. contract ExpensiveLoopExample { 

2. uint256 constant MAX_LOOP_ITERATIONS = 100; // Set a maximum number of iterations to 

prevent infinite loops 

3. function sumWithLimit(uint256[] memory data) public pure returns (uint256) { 

4. uint256 total = 0; 

5. uint256 iterations = 0; 

6. // Explicitly check for the array length to avoid going beyond the array boundaries 

7. while (iterations < data.length && iterations < MAX_LOOP_ITERATIONS) { 

8. total += data[iterations]; 

9. iterations++; 

10. } 

11. return total; 

12. } 

13. } 

 

4.6.2. Constant result of a loop 

Taking an example given in algorithm 9 of a contract with a function called constantOutcomeLoop. Inside 

this function, there's a for loop that runs exactly 10 times. In each iteration, a variable called sum adds up 

the value of the loop counter i. Since the number of iterations is fixed, and the operations inside the loop are 

straightforward (just adding the loop counter to the sum), the result of this function will always be the same, 
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no matter when or how many times it's called. This pattern is handy when you need your smart contract to 

produce consistent and dependable results every time it's executed 

Algorithm 9 

1. contract ConstantLoopExample { 

2. function constantOutcomeLoop() external pure returns (uint256) { 

3. uint256 sum = 0; 

4. // Loop for 10 iterations 

5. for (uint256 i = 0; i < 10; i++) { 

6. sum += i; 

7. } 

8. return sum; 

9. } 

10. } 

 

4.6.3. Loop fusion technique 

Loop fusion is a technique where multiple tasks are combined into a single efficient process. In the 

provided in Algorithm 10, we have a scenario created in the LoopFusionExample contract. This contract 

contains two arrays: data1 and data2, which are filled with random values. The objective is to manipulate 

these arrays and store the outcomes in two separate arrays: results1 and results2. Typically, one would 

iterate through each array separately, performing calculations in distinct loops. However, loop fusion allows 

us to merge these steps into a unified operation. In the processData function, loop fusion is implemented. 

This function simultaneously traverses both data1 and data2 arrays. During each iteration, calculations are 

performed on elements from both arrays, and the results are stored in their corresponding result arrays 

Algorithm 10 

1. contract LoopFusionExample { 

2. uint256[] public data1; 

3. uint256[] public data2; 

4. uint256[] public results1; 

5. uint256[] public results2; 

6. constructor() { 

7. // Initialize data arrays with some values 

8. data1 = [1, 2, 3, 4, 5]; 

9. data2 = [6, 7, 8, 9, 10]; 

10. } 

11. function processData() public { 

12. // Loop fusion: Combine two loops into one 

13. // Initialize result arrays with the same length as data arrays 

14. results1 = new uint256[](data1.length); 

15. results2 = new uint256[](data2.length); 

16. // Iterate over data1 and data2 in a single loop 
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17. for (uint256 i = 0; i < data1.length; i++) { 

18. // Perform some computation on data1 element 

19. results1[i] = data1[i] * 2; 

20. // Perform some computation on data2 element 

21. results2[i] = data2[i] * 3; 

22. } 

23. } 

24. } 

 

4.6.4. performing iterative calculations in a loop 

The provided algorithm 11 contains two functions: calculateSum and calculateProduct, both designed to 

operate on arrays of unsigned integers. In the calculateSum function, the algorithm starts by setting a 

variable sum to zero. Then, it loops through each element of the array using a for loop. Within this loop, 

each element is added to the sum. After processing all elements, the final sum value is returned. Similarly, 

the calculateProduct function initializes a variable product to one and iterates through each element of the 

array using a for loop. Within the loop, each element is multiplied with the product. After processing all 

elements, the final product value is returned 

Algorithm 11 

1. contract CalculationLoop { 

2. function calculateSum(uint256[] memory numbers) public pure returns (uint256) { 

3. uint256 sum = 0; 

4. // Loop through the array and calculate the sum 

5. for (uint256 i = 0; i < numbers.length; i++) { 

6. sum += numbers[i]; 

7. } 

8. return sum; 

9. } 

10. function calculateProduct(uint256[] memory numbers) public pure returns (uint256) { 

11. uint256 product = 1; 

12. // Loop through the array and calculate the product 

13. for (uint256 i = 0; i < numbers.length; i++) { 

14. product *= numbers[i]; 

15. } 

16. return product; 

17. } 

18. } 
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4.6.5. Comparison with unilateral outcome in each iteration of the loop 

In Algorithm 12, named OneSidedComparison, illustrates a scenario where a loop is used to go through 

an array of numbers and count how many of them exceed a particular threshold.  When the contract 

initializes, it sets up an array of integers. The purpose of the function countGreaterTha is to determine the 

number of elements in the array that are higher than a specified threshold.  In the loop, each element of the 

array is compared to the threshold using the expression numbers[i] > threshold. This comparison is termed 

as one-sided because it only results in true when the current number being evaluated is greater than the 

threshold; otherwise, it automatically yields false.  As a result, there's no explicit need to handle the situation 

where the comparison is false, as the counting mechanism solely focuses on the true outcomes 

Algorithm 12 

1. contract OneSidedComparison { 

2. uint[] public numbers; 

 

3. constructor() { 

4. // Initialize the array with some numbers 

5. numbers.push(5); 

6. numbers.push(10); 

7. numbers.push(15); 

8. numbers.push(20); 

9. numbers.push(25); 

10. } 

 

11. function countGreaterThan(uint threshold) external view returns (uint) { 

12. uint count = 0; 

13. for (uint i = 0; i < numbers.length; i++) { 

14. // Compare if the number is greater than the threshold 

15. if (numbers[i] > threshold) { 

a. count++; 

16. } 

17. } 

18. return count; 

19. } 

20. } 

 

4.7. Function step 7 

The number of services included in a contract significantly affects the amount of money charged to 

execute the contract. This is because more work usually means more warnings, which in turn leads to more 

gas. Programs in Solidity can have different modes of identification: external, public, internal, and private. 

External transactions can only be invoked from other contracts, while public transactions can be invoked 

both internally and externally. Calling a public function requires memory allocation, which is a resource-

intensive operation. This means that calling public functions takes gas because the input parameters need to 
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be copied into memory automatically. When comparing external and internal functions, it is generally better 

to use internal functions whenever possible. This is because internal function calls are translated into simple 

jumps in the Ethereum Virtual Machine (EVM), which reduces gas consumption while directly referring to 

the rest of the internal function calls [15] 

4.7. Short-circuiting step 8 

Short circuit is an essential concept in logical expressions, allowing for efficient evaluation by stopping 

computation as soon as the outcome is clear. This is particularly useful in conditions where certain 

operations may be unnecessary or potentially risky if executed needlessly.  In Algorithm 13 provided, named 

ShortCircuitExample, the function divideIfBNonZero demonstrates short-circuiting by only performing the 

division a / b if the variable b is non-zero. If b equals zero, the evaluation immediately stops without 

attempting the division operation. This prevents a potential division by zero error and optimizes the code's 

execution. Similarly, the function doSomething showcases short-circuiting within an OR (||) condition. If a 

> b is true, the condition b == 0 will not be evaluated due to short-circuiting, as the overall result of the OR 

condition is already known to be true 

Algorithm 13 

1. contract ShortCircuitExample { 

2. uint public a = 5; 

3. uint public b = 0; 

4. uint public c = 10; 

5. function divideIfBNonZero() public view returns (uint) { 

6. // If b is zero, no need to proceed with the division 

7. if (b != 0 && a / b > 2) { 

8. return a / b; 

9. } else { 

10. return 0; 

11. } 

12. } 

13. function doSomething() public view returns (bool) { 

14. // Short-circuiting in an OR condition 

15. if (a > b || b == 0) { 

16. return true; // If a > b, b == 0 will not be evaluated due to short-circuiting 

17. } else { 

18. return false; 

19. } 

20. } 

21. } 

 

4.9. Error handling step 9 

As shown in algorithm 14, ErrorHandlingExample, different methods are demonstrated to ensure the 

reliability and security of the smart contract functions.  Firstly, let's look at the withdraw function. This 
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function makes use of require statements to set specific conditions before allowing a withdrawal. It ensures 

that only the contract owner can initiate withdrawals and that the withdrawal amount is greater than zero. If 

either condition is not met, the transaction is reversed with an appropriate error message. This helps prevent 

unauthorized access or invalid withdrawals. Secondly, the divide function shows how to prevent division 

by zero errors. It checks if the divisor (b) is not zero before performing the division operation. If b is zero, 

indicating a division by zero scenario, the transaction is reverted with a custom error message. This ensures 

the integrity of computations by avoiding potential arithmetic exceptions. Lastly, the assertExample 

function demonstrates an assert statement used for internal consistency checks within the contract. This 

function verifies that a specific condition (a being greater than or equal to b) holds true. If the assertion fails, 

indicating a critical logical error within the contract code, the transaction is reverted. This prevents 

potentially erroneous or unexpected behaviour, maintaining the contract's internal consistency and 

reliability. These error handling methods, including require, revert, and assert, are essential tools in Solidity 

programming 

Algorithm 14 

1. contract ErrorHandlingExample { 

2. address public owner; 

 

3. constructor() { 

4. owner = msg.sender; 

5. } 

 

6. // Function to demonstrate require statement for input validation 

7. function withdraw(uint256 amount) external { 

8. require(msg.sender == owner, "Only the owner can withdraw"); 

9. require(amount > 0, "Withdrawal amount must be greater than zero"); 

 

10. // Transfer ETH to the caller 

11. payable(msg.sender).transfer(amount); 

12. } 

13. // Function to demonstrate revert statement for custom error message 

14. function divide(uint256 a, uint256 b) external pure returns (uint256) { 

15. require(b != 0, "Division by zero error"); 

16. return a / b; 

17. } 

18. // Function to demonstrate assert statement for internal consistency checks 

19. function assertExample(uint256 a, uint256 b) external pure returns (uint256) { 

20. assert(a >= b); // Assertion fails if a is not greater than or equal to b 

 

21. return a - b; 

22. } 

23. } 
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4.10. Unused code problem step 10 

4.10.1. Dead code 

In algorithm 15, dead code refers to sections of code that are essentially useless because they can never 

be executed. This often happens due to unreachable blocks or unused variables or functions. In the contract 

named DeadCodeExample, there's a function called deadCodeFunction (). Inside this function, there's a 

conditional statement that will always result in false. This means that the code inside this condition will 

never run, making it dead code. Additionally, the contract includes a variable named deadCodeVariable that 

is declared but never used elsewhere. This also qualifies as dead code. Identifying and removing dead code 

is important for keeping contracts clean and efficient. It helps reduce unnecessary gas consumption during 

deployment and execution, and makes the code easier to read and maintain for developer 

Algorithm 15 

1. contract DeadCodeExample { 

2. address public owner; 

3. uint256 public value; 

4. constructor() { 

5. owner = msg.sender; 

6. } 

7. // Function to set the value 

8. function setValue(uint256 _newValue) external { 

9. require(msg.sender == owner, "Only the owner can set the value"); 

10. value = _newValue; 

11. } 

12. // This function is dead code because it's unreachable 

13. function deadCodeFunction() external { 

14. // This condition will always evaluate to false 

15. if (1 == 2) { 

16. // This code block will never be executed 

17. value = 100; 

18. } 

19. } 

20. // This variable is dead code because it's declared but never used 

21. uint256 public deadCodeVariable; 

22. } 

 

4.10.2. Opaque  

In Algorithm 16, OpaquePredicateExample, an opaque predicate is demonstrated within the 

opaquePredicate function. Initially, the contract defines a utility function, isPrime, to determine whether a 

given number is prime.  However, the key focus is on the opaquePredicate function, which employs an 

opaque predicate to obscure its behaviour. Within this function, two conditions are evaluated: whether the 

input number is prime (isInputPrime) and whether its last digit is 7 ((_input % 10 == 7)). However, the 
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function's return statement only yields true if both conditions are met simultaneously. This combination of 

conditions creates an opaque predicate, as the outcome of the function becomes less predictable without 

knowing the input. While such obfuscation techniques can enhance security by making code analysis and 

reverse engineering more challenging, excessive use of opaque predicates can complicate code 

maintenance and introduce potential vulnerabilities.  

Algorithm 16 

1. contract OpaquePredicateExample { 

2. // Function to determine if a given number is prime 

3. function isPrime(uint256 _number) public pure returns (bool) { 

4. if (_number <= 1) { 

5. return false; 

6. } 

7. if (_number <= 3) { 

8. return true; 

9. } 

10. if (_number % 2 == 0 || _number % 3 == 0) { 

11. return false; 

12. } 

13. for (uint256 i = 5; i * i <= _number; i += 6) { 

14. if (_number % i == 0 || _number % (i + 2) == 0) { 

a. return false; 

15. } 

16. } 

17. return true; 

18. } 

 

19. // Function demonstrating an opaque predicate 

20. function opaquePredicate(uint256 _input) public pure returns (bool) { 

21. // Check if the input number is prime 

22. bool isInputPrime = isPrime(_input); 

 

23. // Opaque predicate: Return true only if input is prime AND its last digit is 7 

24. return isInputPrime && (_input % 10 == 7); 

25. } 

26. } 

 

4.11. Unused variables step 11 

Unnecessary or unused variables refer to variables within smart contracts or functions that don't serve any 

meaningful purpose or contribute to the code's functionality. These variables can lead to bloated code, higher 

gas costs, and confusion for developers.  During the initial deployment of the smart contract, an unnecessary 

variable called `owner` was introduced in Algorithm 17. This resulted in a gas consumption of 541,774 
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units, reflecting the additional cost incurred due to the unused variable. Recognizing this redundancy, an 

optimization was performed by removing the `owner` variable in algorithm 18. As a result, the gas 

consumption during deployment decreased to 492,784 units.  This reduction in gas usage demonstrates the 

impact of eliminating unnecessary variables on the efficiency and cost-effectiveness of smart contract 

deployment. By simplifying the code and removing extraneous components like the `owner` variable, 

developers not only improve readability and maintainability but also reduce unnecessary expenses 

associated with deploying and executing smart contracts on the Ethereum blockchain 

 

Algorithm 17 - Unused variable present 

1. contract MyToken { 

2. string public name; 

3. string public symbol; 

4. uint8 public decimals; 

5. uint256 public totalSupply; 

 

6. // Unnecessary variable 

7. address public owner; 

 

8. mapping(address => uint256) public balanceOf; 

 

9. constructor(string memory _name, string memory _symbol, uint8 _decimals, uint256 _totalSupply) 

{ 

10. name = _name; 

11. symbol = _symbol; 

12. decimals = _decimals; 

13. totalSupply = _totalSupply; 

14. balanceOf[msg.sender] = _totalSupply; 

 

15. // Unnecessary variable assignment 

16. owner = msg.sender; 

17. } 

 

18. function transfer(address _to, uint256 _value) public returns (bool success) { 

19. require(balanceOf[msg.sender] >= _value); 

20. require(balanceOf[_to] + _value >= balanceOf[_to]); 

 

21. balanceOf[msg.sender] -= _value; 

22. balanceOf[_to] += _value; 

 

23. return true; 

24. } 

25. } 
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Algorithm 18 - unused variable removed  

1. contract MyToken { 

2. string public name; 

3. string public symbol; 

4. uint8 public decimals; 

5. uint256 public totalSupply; 

 

6. mapping(address => uint256) public balanceOf; 

 

7. constructor(string memory _name, string memory _symbol, uint8 _decimals, uint256 _totalSupply) 

{ 

8. name = _name; 

9. symbol = _symbol; 

10. decimals = _decimals; 

11. totalSupply = _totalSupply; 

12. balanceOf[msg.sender] = _totalSupply; 

13. } 

 

14. function transfer(address _to, uint256 _value) public returns (bool success) { 

15. require(balanceOf[msg.sender] >= _value); 

16. require(balanceOf[_to] + _value >= balanceOf[_to]); 

 

17. balanceOf[msg.sender] -= _value; 

18. balanceOf[_to] += _value; 

 

19. return true; 

20. } 

21. } 

 

4.12. Optimization enabling step 12 

Where even small improvements can significantly impact the cost of implementing smart contracts, it is 

important to apply compiler optimization to the source code compilation process This optimization should 

be coupled with the development environment used function for compilation optimization, such as the 

Remix IDE [16] However, it is important to note that this optimizer feature may not be automatically 

enabled each time it is compiled, so manual installation is required for optimal performance.  

The source code for the methodology using solidity is share in GitHub1.  

 

 
1 https://github.com/RahulTharammal/Smart-Contract-Execution-Costs-Techniques-for-Cost-Optimization-on-

Blockchain-Networks 
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Table II gives examples of how smart contract source code can be improved by following the guidelines 

outlined in this paper. These improvements are explained through steps 1 to 12. 

Table.2 Difference between enhanced and not enhanced gas cost with recommend contract structure 

Improvement 

content 

Enhanced gas  Not Enhanced gas % 

Data type variable uint256 = 84,333 

Boolean = 82527 

Byte32 = 73,921 

uint16 = 85,533 

Boolean = 101745 

String =358,191 

33.23 

Variable packing Order of setting variables: 

bool = 82527 

uint256 = 84,333 

uint8 = 43761 

Order of setting variables: 

uint256 = 152548 

uint8 = 85533 

bool = 101745 

38.11 

Memory and 

storage 

Transaction from memory 

= 195036 

Transaction from storage = 200612 2.78 

Constant Declared with constant = 

35085 

Declared without constant = 71288 50.7 

Mapping and array Function with array = 

145188 

Function without array = 228467 36.42 

Loops Transaction cost = 180847 Transaction cost = 231041 21.71 

Short-Circuit Execution cost = 168585 Execution cost = 170148 0.9189 

Error handling Execution cost = 344925 Execution cost = 354833 2.79 

Unused code Transaction cost = 152011 Transaction cost = 172154 11.69 

Unused variable Execution cost = 492784 Execution cost = 541774 9.94 

 

5. Conclusions 

This study focused on creating more efficient smart contract source code, particularly targeting areas that 

often lead to high gas costs, such as loops and data types. The main goal was to provide developers with a 

structured approach to building smart contracts. By examining previous research on gas usage in smart 

contract publishing and execution, it's clear that the efficiency of development largely depends on 

developers' choices. This paper aims to offer guidelines for creating efficient and cost-effective smart 

contracts. It emphasizes the complexity of programming smart contracts compared to traditional languages 

and stresses the importance of careful analysis and optimization techniques to reduce execution costs. 

References 

 
[1]. “Ethereum development documentation | ethereum.org,” ethereum.org. https://ethereum.org/en/developers/docs/ 

(accessed Mar. 10,2024). 

[2]. “Introduction to Smart Contracts — Solidity 0.8.11 documentation.” 

https://docs.soliditylang.org/en/v0.8.11/introduction-to-smart-contracts.html (accessed Mar. 10,2024). 



22 
 

[3]. T. Chen, X. Li, L. Wang, and X. Zhang, Under-optimized smart contracts devour your money. 2017. doi: 

10.1109/saner.2017.7884650. 

[4]. T. Chen et al., “GasChecker: Scalable analysis for discovering Gas-Inefficient smart contracts,” IEEE Transactions on 

Emerging Topics in Computing, vol. 9, no. 3, pp. 1433–1448, Jul. 2021, doi: 10.1109/tetc.2020.2979019. 

[5]. E. Albert, J. Fernández, P. Gordillo, G. Román-Díez, and A. Rubio, “GASOL: Gas Analysis and Optimization for 

Ethereum Smart Contracts,” in Lecture Notes in Computer Science, 2020, pp. 118–125. doi: 10.1007/978-3-030-45237-

7_7. 

[6]. T. Brandstätter, S. Schulte, J. Cito, and M. Borkowski, “Characterizing efficiency optimizations in solidity smart 

contracts,” 2020. https://www.semanticscholar.org/paper/Characterizing-Efficiency-Optimizations-in-Solidity-

Brandst%C3%A4tter-Schulte/4996b77267bdac740cca27067b6af286e786a252 

[7]. “Corda | The open permissioned distributed application platform,” Corda, Sep. 25, 2023. https://corda.net/ (accessed Mar. 

10,2024). 

[8]. [ “Consensys - A complete suite of trusted products to build anything in web3,” Consensys. https://consensys.io/ (accessed 

Mar. 10,2024). 

[9]. “Szabo, N. (1997) Formalizing and Securing Relationships on Public Networks. First Monday, 2, 1 September 1997. - 

References - Scientific Research Publishing.” https://www.scirp.org/reference/referencespapers?referenceid=1522947 

[10]. “Web3, aggregated.” https://polygon.technology/ (accessed Mar. 10,2024) 

[11]. L. Marchesi, M. Marchesi, G. Destefanis, G. Barabino, and D. Tigano, “Design patterns for gas optimization in 

Ethereum,” 2020. https://www.semanticscholar.org/paper/Design-Patterns-for-Gas-Optimization-in-Ethereum-

Marchesi-Marchesi/7640ec77712479d9e9214bc5ccc1642786b9ea2a 

[12]. “Solidity by Example — Solidity 0.8.25 documentation.” https://docs.soliditylang.org/en/latest/solidity-by-example.html 

(accessed Mar. 10,2024) 

[13]. “ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER,” 2019. 

https://www.semanticscholar.org/paper/ETHEREUM%3A-A-SECURE-DECENTRALISED-GENERALISED-

LEDGER/da082d8dcb56ade3c632428bfccb88ded0493214 

[14]. C. Li, S. Nie, Y. Cao, Y. Yu, and Z. Hu, “Dynamic gas estimation of loops using machine learning,” in Communications 

in computer and information science, 2020, pp. 428–441. doi: 10.1007/978-981-15-9213-3_34. 

[15]. “Expressions and Control Structures — Solidity 0.8.25 documentation.” https://docs.soliditylang.org/en/latest/control-

structures.html (accessed Mar. 10,2024) 

[16]. “Remix - Ethereum IDE.” https://remix.ethereum.org/#lang=en&optimize=false&runs=200&evmVersion=null (accessed 

Mar. 10,2024) 

[17]. “Contracts — Solidity 0.8.11 documentation.” https://docs.soliditylang.org/en/v0.8.11/contracts.html (accessed Mar. 

10,2024) 


