
Data Science 0 (0) 1 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

DWAEF: A Deep Weighted Average
Ensemble Framework Harnessing Novel
Indicators for Sarcasm Detection

Richa Sharma a,∗, Simrat Deol b, Udit Kaushish c, Prakher Pandey d and Vishal Maurya e

a Department of Computer Science, Keshav Mahavidyalaya, University of Delhi, India
E-mail: richasharma@keshav.du.ac.in; ORCID: https://orcid.org/0000-0002-4472-1681
b Department of Computer Science, Keshav Mahavidyalaya, University of Delhi, India
E-mail: simrat205711@keshav.du.ac.in
c Department of Computer Science, Keshav Mahavidyalaya, University of Delhi, India
E-mail: udit205805@keshav.du.ac.in
d Department of Computer Science, Keshav Mahavidyalaya, University of Delhi, India
E-mail: prakher205723@keshav.du.ac.in
e Department of Computer Science, Keshav Mahavidyalaya, University of Delhi, India
E-mail: vishal205750@keshav.du.ac.in

Abstract. Sarcasm is a linguistic phenomenon often indicating a disparity between literal and inferred meanings. Due to its
complexity, it is typically difficult to discern it within an online text message. Consequently, in recent years sarcasm detection
has received considerable attention from both academia and industry. Nevertheless, the majority of current approaches simply
model low-level indicators of sarcasm in various machine learning algorithms. This paper aims to present sarcasm in a new light
by utilizing novel indicators in a Deep Weighted Average Ensemble-based Framework (DWAEF). The novel indicators pertain
to exploiting the presence of simile and metaphor in text and detecting the subtle shift in tone at a sentence’s structural level. A
Graph Neural Network (GNN) structure is implemented to detect the presence of simile, Bidirectional Encoder Representations
from Transformers (BERT) embeddings are exploited to detect metaphorical instances and Fuzzy Logic is employed to account
for the shift of tone. To account for the existence of sarcasm, the DWAEF integrates the inputs from the novel indicators. The
performance of the framework is evaluated on a self-curated dataset of online text messages. A comparative report between
the results acquired using conventional features and those obtained using proposed indicators is provided. The encouraging
findings produced after applying DWAEF demonstrate that the proposed method surpasses the outcomes of previous research
that made use of primitive features.

Keywords: Sarcasm Detection, Deep Ensemble Learning, Weighted Average Ensemble Model, Graph Neural Networks, BERT,
Fuzzy Logic

1. Introduction

Natural languages have evolved gracefully over time all around the globe. Various nuances of a lan-
guage allow humans to put forth their views on myriad topics with ease and creativity. The use of figu-
rative language by native speakers is one such medium of expressing opinions [1]. Sarcasm, interlaced
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with irony and wit, affords both sharpness and subtlety to convey contempt. Automatic detection of sar-
casm in the text is one of the critical challenges faced by researchers in the field of sentiment analysis.
Sensing the negative connotation in a sentence containing positive words is required to detect sarcasm in
an effective manner. Primitive computational models developed for sarcasm detection made use of prim-
itive features such as n-grams, punctuation and intensifiers and exploited machine learning algorithms
for classification purposes. To identify sarcasm in text, the research proposes a Deep Weighted Aver-
age Ensemble-based Framework (DWAEF). The proposed framework makes use of three indicators to
produce competent results. These indications concern utilising the presence of simile and metaphor in
text and identifying small shifts in tone between the constituent clauses of a sentence. The framework
leverages deep learning components, namely Graph Neural Network (GNN) [2] and Bidirectional En-
coder Representations from Transformers (BERT) [3] based embeddings to detect simile and metaphor
respectively and Fuzzy Logic [4] to apprehend polarity shifts between the constituent clauses of a sen-
tence. Finally, the outputs of the three components are provided to a Weighted Average Ensemble Model
(DWAEF) an ensemble structure comprising Attentive Interpretable Tabular Learning (TabNet), One-
Dimensional Convolutional Neural Networks (1-D CNN) and MLP-based learners. The results obtained
using the ensemble method are thoroughly compared with results obtained solely using base learners
and meta learners classification models. With the accuracy of 92.01% achieved by DWAEF, the pro-
posed ensemble-based approach surpasses the results obtained during earlier studies based on the usage
of primitive features only. The main contributions of this study are summarized below:

(1) Leveraging key linguistic features, namely- simile, metaphor and constituent clauses of a sentence
for sarcasm detection that, to the best of the authors’ knowledge, have not yet been used together
for this purpose

(2) Implementing GNN in the framework to detect the presence of simile in a text on the basis of a
sentence’s dependency tree

(3) Exploiting BERT embeddings to detect the presence of metaphor in a text
(4) Capturing the shift in polarity of a sentence’s constituent clauses using fuzzy-logic
(5) Harnessing ensemble structure of various machine learning and deep learning algorithms for facil-

itating sarcasm classification task.

The rest of the paper is organized as follows. Section 2 discussed the earlier research done in the field of
sarcasm detection. Section 3 puts forth the motivation behind the proposed study. Section 4 presents and
describes the proposed methodology. Section 5 describes the experiments and gives a detailed analysis
of the results obtained. Section 6 concludes the paper.

2. Related Work

Detection of sarcasm is a challenge for humans and for machines, even more so. As a result, it has
gained popularity in many NLP applications. An extensive survey of the literature brought to light that
researchers have mainly employed the following approaches to detect sarcasm.

• Machine Learning Methods: The common form of sarcasm consists of a positive sentiment sit-
uation followed by a negative sentiment situation. The study in [5] discussed an algorithm that
automatically learns positive and negative sentiment phrases from sarcastic tweets. In [6] authors
surveyed several machine learning algorithms to classify the sarcastic tweets and found that a com-
bination of SVM and CNN resulted in higher prediction accuracy. Researchers in [7] applied KNN,
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RF, SVM, and ME classifiers on the following features- sentiment related, syntactic and semantic,
punctuation-related and pattern-related. As per their results, the RF classifier outperformed all ap-
plied models with the highest accuracy of 83.1%. In [8], the researchers harvested sarcastic tweets
with the help of hashtags such as #not, #sarcasme and divided them into tweets containing user
mentions and tweets that do not. A trained machine learning classifier, Winnow2 [9] was then em-
ployed to segregate tweets aimed at specific users from those that were not. In [10], the researchers
included extra-linguistic information and employed Binary Logistic Regression with l2 regulariza-
tion and achieved a gain in accuracy as compared to purely linguistic features in sarcasm detection.
In [11], authors used unigrams, bigrams and trigrams to create more general sarcasm indicators
which in turn resulted in a 75% precision and 62% recall score for a bootstrapping classifier. Au-
thors of [12] tried identifying sarcastic messages with the help of machine learning algorithms and
presented a comparison of the performances of machine learning techniques and human evaluators.

• Deep Learning and Transformer based Methods: Researchers in recent studies have employed
various neural network techniques such as CNN and LSTM along with different word embeddings
viz. Word2Vec, FastText and GloVe on the Reddit Corpus. They accounted for the impact of vary-
ing epochs, training size and dropout on the performance [13–15]. In [16], the study implemented
BERT, ROBERTa, LSTM, Bi-LSTM and Bi-GRU models for detecting sarcasm in text. They con-
cluded that the transformer-based ensemble performed better than the baseline models scoring 0.43
on F1-score. Authors in [17] used an ensemble of LSTM, GRU and Baseline CNNs to detect sar-
casm in online text and concluded using a weighted average ensemble resulted in better results.
However, the approach used by the researchers failed to detect sarcastic tweets written in a very po-
lite way. In [18], the researchers used four component methods namely LSTM, CNN-LSTM, SVM
and MLP on the Reddit and Twitter datasets resulting in F1-scores of 67% and 73% respectively.

• Graph Neural Networks based Methods: Recent studies have made extensive use of word em-
beddings in deep neural networks for various natural language processing tasks (NLP). However,
there is a growing demand for modelling text data as graphs. In comparison to revolutionary neural
networks such as Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), CNN,
and BERT, the graphical representation of text allows for more efficient extraction of semantic and
structural information. Therefore, numerous researchers have investigated graph-based methods
and their application to NLP problems. The first graph attention-based model to identify sarcasm
on social media was proposed in [19]. The graph model captured complex relationships between
a sarcastic tweet and its conversational context by modelling a user’s social and historical context
together. Graph Neural Network (GNN), a modern class of networks applied on graph-structured
data [20], has found application in the field of sarcasm detection. In [21], a Graph Convolutional
Network (GCN) was used to capture global information features in a satirical context and a Bidirec-
tional Long Short-Term Memory (Bi-LSTM) was implemented to capture the sequence features of
the comments. The two sets of results were combined and evaluated using a conventional classifier
which in turn yielded an accuracy of 73.57%. Later, The authors in [22] proposed an Affective De-
pendency Graph Convolutional Network framework to detect messages with implied contradictions
and incongruity.

Apart from the state-of-the-art technology, many researchers have investigated the use of different fea-
tures in text data and different methodologies for detecting sarcasm. The article [23] provides a detailed
literature survey on sarcasm detection. Additionally, it provided a detailed analysis of the set of features
used for sarcasm detection. Subsection 2.1 discusses the types of feature sets used in sarcasm detection
and how researchers have employed them in past studies.
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2.1. Types of Primitive Feature Sets Used in Sarcasm Detection

Previous works on sarcasm detection made use of low-level features such as n-grams, punctuation,
intensifiers and so forth. Some of the primitive features such as punctuation count, count of mixed-case
words, count of repeated words and letters, presence of intensifiers and presence of interjections are later
used in this research as part of feature set preparation. The primitive features used in sarcasm detection
can be broadly classified into:

(1) Lexical Features: This feature set includes text properties such as unigrams, bigrams, n-grams,
skip-gram, hashtags, etc. The study in [11] used unigrams, bigrams and trigrams to create more
general sarcasm indicators thereby improving the precision and recall of their bootstrapping clas-
sifier. Researchers in [10] created binary indicators of lower-cased word unigrams and bigrams
along with brown cluster unigrams and bigrams which grouped words used in similar contexts into
the same cluster. The authors of [5] extracted every unigram, bigram, and trigram that occurred
immediately right after a positive sentiment phrase in a sarcastic tweet.

(2) Pragmatic Features: These are some of the main features used for sarcasm detection in text. They
include emoticons, smileys, number of hashtags, replies, and so forth. The study in [7] included
the count of positive, negative and sarcastic emoticons. The authors of [24] considered the effect
of sentiment contained in hashtags by developing a set of rules around the number of hashtags and
their polarity. Researchers in [12] took into account the sentiment of replies to the user.

(3) Hyperbole Features: These features include intensifiers, interjections, quotes, punctuation and so
forth. Researchers in [10] created a binary indicator for the presence of 50 intensifiers retrieved
from Wikipedia. The authors of the study in [25] opined that writers often use sarcasm-based
writing styles to compensate for the lack of visual or verbal cues. The authors in [26] accounted
for uppercase and lowercase characters along with the repetition of punctuation marks.

(4) Contextual Features: These features comprise extra components, outside the realm of formal lin-
guistics, used frequently in a sentence, especially in online messages. The researchers in [8] har-
vested a large number of sarcastic tweets with the help of hashtags such as #not,#sarcasme and
divided them into tweets containing user mention and tweets that do not. In [10], the researchers
emphasized extra-linguistic information from the context of a tweet in the form of ‘Author Fea-
tures’, ‘Audience Features’, ‘Environment Features’ and ‘Tweet Features’ and achieved gains in
accuracy compared to purely linguistic features in sarcasm detection.

The previous research and development in the field of sarcasm detection prompted the authors of this
paper to take on this problem and address its concerns at a new level. The following section describes
the impetus behind the present study.

3. Motivation

This section explains the rationale for delving into the complexities of sarcasm detection using similes,
metaphors, and the clausal structure of a sentence. Subsection 3.1 discusses similes in literature and
forms the base for the proposed methodology for its computational detection. Subsection 3.2 introduces
and explores metaphors in literature thereby building the foundation for its computational detection.
Subsection 3.3 deliberates upon a sentence’s clausal structure as well as the polarity change from one
clause to another. 3.4 lays the motivation for using deep learning methods in an ensemble structure.
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Table 1
Examples and constituent components of a simile

Simile Tenor Vehicle Property Event

Her voice is as smooth as silk. Her voice silk Smoothness is

A sweet voice carolling like a gold-
caged nightingale

sweet voice gold-caged
nightingale

The property here is implicit,
left for the reader to infer

carolling

Her grandmother’s love story was
as old as the hills.

grandmother’s love
story

hills old was

A slow thought that crept like a cold
worm through his brain.

slow thought cold worm The property here is implicit,
left for the reader to infer

crept

3.1. Simile

A simile as mentioned earlier is a figurative device used to draw comparisons between two unlike
things. Its presence is always explicitly indicated with the usage of “like” or “as”. A simile consists
of the following four key components-Tenor, Vehicle, Property, Event and Comparator [27]. Table 1
provides examples of similes along with its constituent components. This study proposes the presence of
a simile as a potential marker for sarcasm in the text as its presence in a sarcastic remark may accentuate
the hidden emotion. For instance, “Of course they were invited! They are always as welcome as a skunk
at a lawn party” implies that the subject’s presence is actually not appreciated. Here the comparison “as
welcome as a skunk at a lawn party” represents the undesirability and vileness of the subject. Another
potential example of a sarcastic remark embedding a simile is “Asking politicians to give up a source of
money is like asking Dracula to forsake blood” wherein the speaker mocks politicians’ flaws by drawing
analogies to Dracula. The computational detection of simile relies on the syntactical dependency tree of
a sentence, which is described in more detail in section 4.

3.2. Metaphor

A metaphor is a figure of speech that compares two unrelated ideas. At the basic linguistic level, both
metaphor and simile involve the juxtaposition of two concepts. However, metaphors lack the usage of
“like” or “as” while drawing the comparison. For example, the two statements, “Mary is a rock” and
“Mary is like a rock” will be inferred by the reader in the same sense about Mary’s personality [28].
The only difference between the statements is that the former statement is a metaphor and the latter is a
simile. The difference lies in the presence of the comparator “like” in one and its absence in the other.

A metaphor also arises when seemingly unrelated properties of one concept are seen in terms of
the properties of some other concept. Metaphorical utterances in sarcastic remarks in certain situations
are common. For example, “You are the cream in my coffee” when used sarcastically implies that the
hearer has fallen short of the speaker’s affection [29]. Another example of such an utterance is, “I am
not saying that I hate you, what I am saying is that you are literally the Monday of my life.” wherein
the speaker indirectly expresses his hate towards the listener by comparing the latter’s presence in the
former’s life as depressing and unwanted as Monday. Since comparison is drawn between two distinctive
entities, computing cosine similarity between the subject and object of comparison forms the bases for its
computational detection. This study facilitates the detection of only two types of metaphorical sentences
out of the three mentioned by [30]. Table 2 provides a summary of the two types.
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Table 2
Types of metaphors addressed in this study and their examples

Metaphor Type Relationship Example

Type I Subject IS A object phrase; 1. Mary is a rock.
(X is Y) 2. He is the sugar in my coffee.

3. That fella is the raspberry seed in my wisdom
tooth.

Type II Verb acting on Noun phrase; 1. My car drinks gasoline.
(X acts on Y) 2. He planted good ideas in their minds.

3. Inflation has eaten up all my savings.

Table 3
Distinctive subtleties between main and subordinate clauses

Sentence Main Clause Separator Sub-ordinate
Clause

She had a long career but she is remembered for
one early work.

She had a long career but -

She is remembered for one early
work

I first saw her in Paris, where I lived in the early
nineties.

I first saw her in Paris where (where) I lived in
the early nineties

If it looks like rain, a simple shelter can be made
out of a plastic sheet.

A simple shelter can be made out of
the plastic sheet

if (if) it looks like
rain

3.3. Clauses

Clauses are a group of related words which unlike phrases have a subject and a verb. A clause can be
a part of a sentence or be a complete sentence in itself. All sentences have at least one main clause. The
main clause is a clause that can stand alone as an independent complete sentence. On the other hand,
a subordinate clause is a clause that cannot stand as an independent complete sentence by itself. It is
typically introduced with a subordinating conjunction and is dependent on the main clause. Consider the
examples taken from an article1 given in Table 3 elaborating the distinctive subtleties between a main
clause and a subordinate clause. Sarcasm, in its prevalent form, exists as the disparity of sentiments. This
disparity can further take up two forms [9]:

(1) A shift from positive polarity to negative polarity: In this type, sarcastic sentences contain positive
expressions followed by negative expressions. Consider the sarcastic sentence, “Thank you, officer,
now that you have my license I can’t drive” where the main clause “Thank you officer” has a
positive connotation and the subordinate clause “now that you have my driving license I can’t
drive” has a negative connotation.

(2) A shift from negative polarity to positivity polarity: In this type, sarcastic sentences contain neg-
ative expressions followed by positive expressions. For instance, “I hate my sister because she
cooks so well” wherein the main clause “I hate my sister” holds a negative connotation and the
subordinate clause “because she cooks so well” holds a positive connotation.

To cater to such types of situations, this research proposes to measure the polarity shift from the main
clause of a sentence to the subordinate clause of a sentence at various degrees as a potential indicator of

1https://www.lexico.com/grammar/clauses
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Primitive Feature
Extraction

Feature Extraction 

Detection of Simile
using GNN 
Framework 

Detection of
 Metaphor using

BERT Embeddings 

Detection of Shift 
in Polarity of
 Clauses using
 Fuzzy-Logic 

Final Sarcasm 
Detection 

Dataset
Preparation 

Data
Preprocessing 

Manual
Annotation 

 DWAEF
FRAMEWORK

Fig. 1. The Methodology

sarcasm. The significance of fuzziness comes into play while dealing with ambiguities surrounding how
positive or negative a stand-alone clause can be. Its amalgamation with the computational detection of
polarity shift may result in efficient results.

3.4. Motivation behind using a Deep Ensemble Structure

Current cutting-edge research studies utilise geometric deep learning, BERT, and Fuzzy-Logic. This
study combines these techniques into a single framework in order to produce competent results. Further-
more, most authors have employed conventional machine learning classifiers for evaluation purposes,
whereas ensembles of deep learning algorithms (TabNet, CNN, and MLP) are employed in this research.
One of the most significant issues with conventional machine learning techniques is that they frequently
fail to capture the underlying characteristics and structure of the data. Consequently, poor performance
is observed when these algorithms are applied to datasets that are highly imbalanced, high-dimensional,
and noisy. [31]. Therefore, it is essential to construct an efficient model, particularly for complex tasks
such as sarcasm detection. Ensemble learning is one of the approaches. Ensemble learning strategies
combine multiple machine learning algorithms to produce poor predictive outcomes. These results are
then fused together to generate more accurate solutions. Any ensemble framework comprises a col-
lection of base learners and meta learners. Base learners, also known as weak learners, are machine
learning classifiers whose predictions are combined with those of other weak learners to compensate
for their weaknesses. The meta learner or strong learner is the combined learnt model. The promising
results obtained by past researchers with different ensemble structures for sarcasm detection motivated
the authors of this work to implement a deep ensemble framework DWAEF. The framework is compre-
hensively described in the forthcoming section.

4. Methdology

The methodology followed by this research is elaborated in Fig. 1. A detailed description of dataset
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Twitter

34%

SARC 32%

NewsHeadline

34%

(a) composition of the curated dataset

Sarcastic

53%

Non-Sarcastic

47%

(b) distribution of Sarcastic and
non-sarcastic sentences across the

dataset

Fig. 2. Description of the curated dataset

preparation is provided in subsection 4.1. Once the data has been collected, it goes through several stages
of preprocessing to remove redundancy which is further elaborated in subsection 4.2. The pre-processed
data is then annotated by four expert linguists with 100% agreement that the dataset consisted of both
sarcastic and non-sarcastic sentences. Following this, the pre-processed and correctly labelled data goes
through the feature extraction process wherein along with the indicators proposed by this research, prim-
itive features are also extracted. Followed by feature set preparation, the results are obtained using two
ensemble frameworks. Each module portrayed in Fig 1 is explicated in the forthcoming subsections.
Subsection 4.3 discusses the primitive feature set preparation. Subsection 4.4 discusses the detection of
novel features viz, simile, metaphor and change in the polarity of a sentence’s constituent clauses.

4.1. Data Set Preparation

The researchers of this work prepared a dataset of 2891 sentences. Out of these, 1538 were sarcastic
and were compiled from various sources- i) 520 sentences were extracted from Twitter with hashtags-
#sarcasm, #not, #sarcastic, #irony, #satire; ii) 520 were taken from the NewsHeadline dataset curated by
[32]; iii) remaining 498 were taken from the SARC dataset curated by [33]. The 1353 non-sarcastic sen-
tences were compiled from Twitter and the NewsHeadline dataset. Further, four expert linguists indepen-
dently performed annotation to ensure that 1538 were actually sarcastic and the rest were non-sarcastic.
After preprocessing, the dataset was reduced to 2889 sentences. The composition of the dataset and the
distribution of sarcastic and non-sarcastic sentences are illustrated in Fig 2

4.2. Data Preprocessing

Since the data on Twitter is full of redundancy due to the rampant usage of slang, hashtags, emoticons,
alterations in spelling, loose usage of punctuation, and so forth, the following data pre-processing steps
were performed:

(1) Duplicate tweets and re-tweets were also dropped.
(2) Hashtags were completely removed.
(3) Tweets containing URLs were dropped.
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(4) Emojis were removed from the text.
(5) The occurrences of the following punctuation marks [‘.’, ‘?’, ‘*’, ‘!’, ‘,’] were first counted and

then the data was freed of irrelevant punctuation marks.

4.3. Primitive Features

The primitive features used by this study include various features explained earlier in section 2. The
said feature set consists of punctuation count, count of mixed-case words, count of repeated words and
letters, presence of intensifiers and presence of interjections. Each one of the aforementioned features is
comprehensively explained below.

(1) Punctuation Count: The punctuation marks are sometimes overdone to indicate sarcasm. For ex-
ample, to emphasise a point, users use an asterisk (‘*’). To represent a pause, an ellipsis (‘. . . ’) is
used and a bunch of exclamatory marks (‘!!!’) indicate exclamatory utterances [25]. Thus, each of
the aforesaid punctuation marks along with some more [‘.’, ‘?’, ‘*’, ‘!’, ‘,’] were counted as one of
the features.

(2) Count of mixed-case words: This feature set includes counting the occurrence of mixed-case words
in the text.

(3) Count of repeated words and letters: Users also tend to repeat letters in words to over-emphasize
parts of the text. A similar pattern can be observed in the case of words. As a result, the number of
repeated letters and repeated words were counted and used as a set of 2 individual features.

(4) Presence of intensifiers: Intensifiers or hyperbolic words are generally adverbs or adjectives which
strengthen the evaluative utterance of a sarcastic remark. Consider the utterances were taken from
[34], “‘fantastic weather’, ’when it rains’” and “weather is good when it rains”. Both utterances
may literally convey a positive outlook of the speaker. However, sensing the context, the utterance
with the word fantastic can easily be identified as sarcastic. For this study, a list of commonly used
intensifiers was retrieved from Wikipedia2 and used to check the presence of intensifiers in the
tweets.

(5) Presence of interjections: Interjections are words or phrases primarily used in a sentence to convey
emotions. For instance, “aha”, “yay”, “oh”, “nah”, “yeah”, “wow”, and so forth are some of the
commonly used interjections. A list of interjections was retrieved from an article3 and was used to
check the presence of interjections in tweets.

(6) Number of times words having opposite polarities come together: This feature captures the contrast
between two words having opposite polarities.

(7) Length of the largest sequence of words with polarities unchanged
(8) Count of positive and negative words

4.4. Frameworks for Proposed Features

4.4.1. GNN Framework for Simile Detection
For the purpose of this research, a simile is detected on the basis of its syntactical pattern using GNN

Fig. 3 presents dependency trees of two sentences containing similes. The dependency trees were created
using Stanford NLP Group’s CoreNLP server [35]. A GNN-based text classification model is used to

2https://en.wikipedia.org/wiki/Intensifier
3https://www.english-grammar-revolution.com/list-of-interjections.html

https://en.wikipedia.org/wiki/Intensifier
https://www.english-grammar-revolution.com/list-of-interjections.html
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Fig. 3. The dependency trees depicting the syntactic dependency between various components of a simile.

INPUT GRAPH GraphSAGE LAYERS AVERAGE POOLING+MLP

PREDICTION OUTPUT

Graph Construction Module Graph Embedding Module Graph Prediction Module

GRAPH ENCODED MATRIX

Fig. 4. The GNN framework for simile classification.

learn the dependency structure of similes. The entire set-up for the simile classification model consists
of a Graph Construction Module, a Graph Embedding Module and a Prediction Module. Each of the
modules is implemented using Graph4NLP library [36]. The modules are elaborated thoroughly below
and the entire framework is summarized in Fig. 4.

(1) The Graph Construction Module: The graph construction module focuses on building a syntactic
dependency tree-based static graph for each of the texts in the dataset. All of the dependency trees
are built using Stanford NLP Group’s CoreNLP server. Dependency relations from the dependency
parsing trees are converted into dependency graphs. 3000 sentences consisting of both similes and
non-similes are collected to train the model. Fig. 5 illustrates a series of initialization preprocessing
steps that the raw data goes through before being passed to the Graph Embedding Module. The
steps are:

• build_topology: This module builds a syntactic dependency text graph for each of the data items
in the raw dataset.

• build_vocab: This module is responsible for building vocabulary out of all tokens appearing in
the data items.

• vectorization: This module is the lookup step, responsible for converting tokens from ASCII
characters to word embeddings
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PROCESS

COLLATE
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Fig. 5. Dataset preprocessing workflow.

Once the initialization is complete, the data items are collated into the batch data which will be
used for runtime iteration over the entire dataset.

(2) The Graph Embedding Module: The authors of this research implemented Bi-Fuse GraphSAGE
[37], a GNN framework for inductive representation learning of graphs which is used to generate
low-dimensional vector representations for nodes. This module implements the message passing
and aggregation operations. After the message passing and aggregation of the messages, the em-
bedding of nodes is updated and the final output i.e the encoding matrix of the graph is used as
inputs to the prediction module to predict target objects. The mathematical operation of Graph-
SAGE is given below:

h(k+1))
N(v) = aggregate(hk

v,∀v ∈ N(v)) (1)

h(k+1)
v = σ(Wk · concat(hk

v, h
(k+1)
N(v) + b)) (2)

h(k)v = norm(hk
v) (3)

The embedding generation process takes the entire graph G(V, E) and features for all nodes, xi ∈ V
as input. In each iteration from k=0 upto k=K where k denotes the current step in the loop and
h(k)v denotes a node’s representation at that step, K signifies the number of aggregator functions
and Wk denotes set of the weight matrices in each iteration. First, each node v ∈ V aggregates the
representations of the nodes in its immediate neighbourhood, as represented by equation 1, into a
single vector h(l+1)

N(i) . After the aggregation of the neighbouring feature vectors, GraphSAGE con-

catenates the node’s current representation hk
v, with the aggregated neighbourhood vector h(k+1)

N(v) ,
given in equation 2 and this concatenated vector is fed through a fully connected layer with a non-
linear activation function represented by σ, following which each current node’s representation is
normalised as illustrated by equation 3.
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Fig. 6. The framework for metaphor detection.

(3) The Prediction Module: The prediction module consists of an average pooling layer with 300
hidden units and an MLP classifier which produces predicted labels. In case of a presence of a
simile is detected the framework predicts label ‘1’ and in case of a non-simile, the framework
predicts label ‘0’. The said trained framework is saved for predicting the presence of a simile on
the sarcasm dataset. The training and validation accuracy and loss curves are discussed in section
5.

4.4.2. Bert-based Structure for Metaphor Detection
The detection of metaphors is achieved by generating BERT embeddings. Fig. 6 illustrates the frame-

work used for detecting the presence of a metaphor and Fig. 7 illustrates the BERT-based network used
for generating the embeddings with the hidden layer representations in red. For the BERT base, each
encoder layer outputs a set of dense vectors.

Each vector contains 768 values each of which is nothing but contextual word embeddings. Initially,
each sentence is split into two halves. For sentences of type I, phrase A consists of the subject and phrase
B consists of the object. On the other hand, for sentences of type II, phrase A consists of a verb which
acts on a noun phrase represented by phrase B. BERT-based embeddings are generated for both phrases
A and B and cosine similarity is calculated. The entire process can be summarized as follows:

Detecting Type-1 Metaphors:
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Fig. 7. BERT-based network used for generating embeddings.

(1) All the sentences in the dataset are first tokenized using spaCy.
(2) The sentences are then split into two phases: one containing the subject of comparison and the

other containing the object of comparison.
(3) Dense contextual embeddings are constructed for each of the phrases. The last_hidden_state tensor

from the BERT model is extracted to quantify textual similarity. This vector is then moulded by a
pooling operation that takes the mean of all token embeddings and compresses them into a single
vector space representing a single phrase. Furthermore, the cosine similarity between the two vector
spaces of the phrases is calculated. Following multiple trials, a threshold value of 0.7 was chosen
to determine the presence or absence of a metaphorical instance in a sentence. A cosine similarity
larger than 0.7 accurately indicated the lack of a metaphorical statement, whereas one less than 0.7
suggested its presence.

Detecting Type-2 Metaphors:

(1) All the sentences in the dataset are first tokenized using spaCy.
(2) All the sentences are split into two phrases: one containing the personified verb and the other

containing the object of comparison.
(3) For each of the phrases, dense contextual embeddings are generated and textual similarity is mea-

sured in terms of cosine similarity.

4.4.3. Fuzzy Logic-based Approach for Capturing Polarity Change in Clauses
The following steps were performed to detect sarcasm in the form of disparity of sentiments in clauses:
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Table 4
The degree of each sentiment along with the corresponding polarity percentage associated with it

Sentiment Degree Range

Positive Weakly Positive 0-35 %
Moderately Positive 25-75 %
Strongly Positive 68-100 %

Negative Weakly Negative 2-34%
Moderately Negative 25-73 %
Strongly Negative 68-100 %

Neutral Weakly Neutral 1-35%
Moderately Neutral 25-73 %
Strongly Neutral 68-100 %

(1) Tokenization: All the pre-processed textual data is first tokenised using spaCy’s NLP object.
(2) Separation of clauses: To find the polarity of a sentence’s constituent clauses, a sentence is first

separated into clauses. This is done in two ways. All the sentences are checked for the presence
of separators from the following list [’after’, ’before’, ’as soon as’, ’while’, ‘when’, ‘as’, ‘be-
cause’, ‘since’, ‘if ’, ‘provided that’, ‘as long as’, ‘unless’, ‘although’, ‘though’, ‘even though’,
‘then’, ‘which’, ‘who’, ‘that’, ‘whose’, ‘and’, ‘but’, ‘&’]. If a sentence does not contain any of the
separators mentioned then splitting of the sentence is done on the basis of two markers. The first
marker is the subject of the sentence with syntactic dependency “nominal subject (nsubj)”. The
second marker is the last occurrence of any preposition in a sentence. It is marked with syntactic
dependency “preposition (prep)”. These markers divide the sentence into three parts, the first part
spans from the beginning of the sentence to the first marker (“nsubj’), the second part spans from
the first marker(“nsubj”) to the second marker(“prep”) and the third part spans from the second
marker(“prep”) to the end of the sentence. For example, the sentence, “You’re everything I want in
someone, I don’t want anymore.” splits into “You’re everything I want” and “in someone I don’t
want anymore”. Another example would be, “Right before I die I am going to swallow a bag of
popcorn kernels to make the cremation a bit more interesting.” splits into “Right before I die”, “I
am going to swallow a bag of popcorn kernels” and “to make the cremation a bit more interesting”.

(3) Computing the polarity of clauses: For finding the polarity of a sentence’s constituent clauses,
pysentimiento [38] is used. pysentimiento is a python toolkit for sentiment analysis and text clas-
sification. It is a transformer-based open-source library. It uses BERTweet [39] as a base model
in English. The list of constituent clauses is taken for each sentence and the polarity score corre-
sponding to each clause in the form of positive, negative and neutral proportions is obtained.

(4) Applying Fuzzy Logic to eliminate overlapping sentiment classes: In each sentence, every clause
has three sentiment proportions i.e., positive, negative and neutral. To determine the overall po-
larity of a clause Fuzzy-Logic has been implemented using Simpful [40]. Although pysentimiento
provides sentiment proportions for the positivity, negativity and neutrality of a clause, it does not
provide any valuable information about the degree (weak, moderate, strong) of each sentiment.
This study uses fuzzy logic to determine the overall polarity of the clauses with the help of a set of
rules based on the projected degree of each sentiment. The degree of each sentiment viz. Positive,
negative and neutral have been devised using the assumed ranges given in Table 4. The trapezoidal
membership function is used to define a non-polygonal fuzzy set for each sentiment viz. positive,
negative and neutral. Fig. 8 (a,b,c) illustrates various inputs for each sentiment.
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(a) The inputs for the neutral sentiment (b) The inputs for the negative
sentiment

(c) The inputs for the positive sentiment (d) The fuzzified output

Fig. 8. Fuzzy inputs for neutral, negative and positive sentiments

Following is the set of fuzzy rules:

(a) IF (Neutral IS Weak_Neutral) AND (Negative IS Weak_Negative) AND (Positive IS Moderate_Positive) THEN
(Output IS positive)

(b) IF (Neutral IS Weak_Neutral) AND (Positive IS Weak_Positive) AND (Negative IS Moderate_Negative) THEN
(Output IS negative)

(c) IF (Positive IS Weak_Positive) AND (Negative IS Weak_Negative) AND (Neutral IS Moderate_Neutral) THEN
(Output IS neutral)

(d) IF (Positive IS Weak_Positive) AND (Negative IS Moderate_Negative) AND (Neutral IS Moderate_Neutral) THEN
(Output IS negative)

(e) IF (Negative IS Weak_Negative) AND (Positive IS Moderate_Positive) AND (Neutral IS Moderate_Neutral) THEN
(Output IS positive)

(f) IF (Neutral IS Weak_Neutral) AND (Negative IS Moderate_Negative) AND (Positive IS Moderate_Positive) THEN
(Output IS positive)

(g) IF (Neutral IS Strongly_Neutral) AND (Negative IS Weak_Negative) AND (Positive IS Weak_Positive) THEN
(Output IS neutral)

(h) IF (Positive IS Strongly_Positive) AND (Negative IS Weak_Negative) AND (Neutral IS Weak_Neutral) THEN
(Output IS positive)

(i) IF (Negative IS Strongly_Negative) AND (Neutral IS Weak_Neutral) AND (Positive IS Weak_Positive) THEN (Out-
put IS negative)

The fuzzified output is presented in (d) part of Fig. 8. Defuzzification is then applied to get the final
polarity output.

(5) Checking for the disparity of sentiments: The total number of clauses with positive, neutral, or
negative sentiment labels are counted and utilised to account for polarity shifts from negative to
positive or positive to negative. If such a shift occurs, the function returns ’1’; otherwise, it returns
’0’.
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4.5. The Deep Weighted Average Ensemble Framework

DWAEF, the proposed Deep Weighted Average Ensemble-based Framework, is a three-tiered struc-
ture. It is comprised of three base learners: a TabNet [41], a 1-D CNN and a Multi Layer Perceptron.
The curated dataset is used to pre-train the three models. During training, each of the base learners re-
ceives the outputs of the GNN-based simile detection framework, the BERT-based metaphor detection
framework, and the Fuzzy-based polarity shift detection framework. Next, the predictions produced by
each module of the ensemble are weighed. Based on the Dirichlet distribution, a weight optimisation
search is carried out along with a randomised search on the dataset. The previously trained models, a
TabNet [41], a 1-D CNN and an MLP, are added to the Dirichlet Ensemble Object. After the model is
fitted using the Dirichlet Markov Ensemble Method, its resulting accuracy is acquired. No meta-learner
is used in this ensemble method.

The findings that were achieved through the utilisation of the suggested methodology are reported in
section 5.

5. Evaluation, Results and Analysis

This section examines the results acquired by employing different techniques on the dataset. The
purpose of the proposed methodology is to efficiently detect sarcasm in online text using the presence of
figurative comparisons, i.e., similes and metaphors and shifts in polarity of the text’s constituent clauses.
This segment is organised as follows: Subsection 5.1 discusses the accuracy vs epochs and loss vs epoch
curves for the GNN framework. The accuracy score obtained during experimentation with different
threshold values by the BERT-based Metaphor Detection Framework is discussed in subsection 5.2. The
confusion metrics for the fuzzy-based approach are presented in subsection 5.3. Subsection 5.4 discusses
the results obtained using DWAEF, the deep weighted average ensemble model.

5.1. Results obtained by the GNN-based Simile Detection Framework

The GNN framework described in section 4.4.1 was pre-trained on a dataset of 3000 sentences, out of
which roughly 50% were similes, and the rest 50% were non-similes. This pre-trained framework was
then tested on the main collated sarcasm dataset to extract the presence of a simile as one of the features.
With a batch size of 32, the model was executed for 100 epochs. The rest of the hyperparameters are
given in Table 5. The training and validation curves of the proposed framework are illustrated in Fig.
9. It is evident from both curves that the framework is free from both overfitting and underfitting. The
testing accuracy obtained using the proposed GNN framework for simile detection was 99.22% using
GloVe word embeddings. The state-of-the-art results ensured accurate detection of the simile for the
main sarcasm dataset.

5.2. Results obtained by the BERT-based Metaphor Detection Framework

Before settling on the best threshold value to assess the existence or absence of a metaphorical instance
in a sentence, several values were tested. The various values tested and the accompanying accuracy
values are listed in Table 6. It is clear that at a threshold value of 0.7, the most accurate predictions were
achieved for both type 1 and type 2 metaphors. Thus, a cosine similarity of more than 0.7 accurately
indicates the absence of a metaphorical remark, whereas a cosine similarity of less than 0.7 indicates its
presence.
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Fig. 9. Training and validation curves of the GNN Framework for simile detection

Table 5
Hyperparameter settings for the GNN framework

Parameter Value

Seed 1234
Batch size 32
Epochs 100
Learning rate 0.01
Learning rate patience 2
Learning rate reduce factor 0.5
Hidden layers 300
Drop out 0.3
Graph pooling avg_pooling
Optimizer Adam
Loss Cross Entropy
Activation ReLU

Table 6
Various Threshold Values and the Corresponding Accuracy Values

Threshold value Accuracy
Type1 Type2

0.3 0.72 0.60
0.4 0.62 0.60
0.5 0.70 0.68
0.6 0.78 0.66
0.7 0.82 0.78

5.3. Results obtained by the Fuzzy-based Polarity Shift Detection Framework

The confusion matrix shown in Fig. 10 depicts the performance of the Fuzzy-based Framework. In
the matrix, there are four distinct combinations of expected and actual values. It is evident from the
matrix that the framework properly identified the variations in polarity that actually indicated sarcasm
at the clausal structural level of 1309 sentences. Additionally, 125 incorrect sentences were identified
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Fig. 10. Confusion matrix for the Fuzzy-based Polarity Shift Detection Framework

as true. On the other hand, it also correctly identified the lack of a tone change in 1228 sentences but
failed to recognise a polarity shift in 127 sentences. It is obvious from the matrix that the framework
made accurate predictions for 87.81% of the whole dataset. While 91.28% of all predicted true classes
were predicted actually true, 85.22% of all real true classes were predicted true by the framework. One
of the reasons for the state-of-the-art outcome is the usage of fuzzy rules to cope with uncertainties over
whether a solitary sentence is positive or negative.

5.4. Results obtained by DWAEF

DWAEF’s performance is assessed in two stages. In stage 1, the results are obtained by the DWAEF
base learners (TabNet, 1-D CNN and MLP) individually vs the DWAEF, using only the primitive fea-
tures. In stage 2, the results are obtained by the same models using a combination of both primitive
features and proposed features. Table 7 gives the corresponding hyperparameter settings for each of
the models used in DWAEF and the results are displayed in Table 8. In each case, combining primi-
tive features with the proposed features yielded superior outcomes. A more detailed comparison report
is summarised in Table 9, where the researchers compared the accuracies of the three most powerful
and widely used traditional machine learning classifiers, Random Forest (RF), Support Vector Machine
(SVM), and AdaBoost (AB), using a combination of the proposed features and primitive features, with
the accuracies of the DWAEF base learners and the overall accuracy of DWAEF.

Table 9 summarizes accuracy scores obtained by all models using proposed features in combination
with primitive features. It can be inferred that the DWAEF outperforms all the models used in this study
in terms of accuracy. Also, the proposed features of this research, viz, presence of figurative comparisons,
i.e., simile and metaphor and shift in polarity of a sentence’s constituent clauses, successfully aid in
better detection of sarcasm in online text messages. The detection of sarcasm has also been boosted by
switching to a deep weighted average ensemble framework because the framework assigns each base
member’s share of the prediction weight based on how well it performed individually during training.
Moreover, Researchers in [17] fell short of detecting sarcasm in sentences written in a formal and polite
tone. However, including the proposed novel indicators successfully detected sarcasm in such sentences.
Table 10 presents some of them.



Sharma et al. / Running head title 19

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Table 7
Hyperparameter settings for TabNet, 1-D CNN and MLP used in DWAEF

Model Hyperparameter Settings

TabNet Optimizer: Adam
Learning Rate: 0.001
step_size:10
Gamma:1.4
Mask_type: entmax

1-D CNN Seed:1234
Learning rate: 0.0025
Dropout rate: 0.8
Loss: sparse categorical cross entropy
Optimizer: SGD

MLP Activation: ReLU
Alpha: 0.00025
hidden_layer_sizes: (200,150,100,50,25)
learning_rate: adaptive
Solver: Adam
max_iter: 200
random_state: 25

Table 8
Accuracy scores for TabNet, 1-D CNN, MLP and DWAEF

Stage TabNet 1-D CNN MLP DWAEF

Stage 1: Primitive features only 76.80 75.03 64.09 78.00
Stage 2: Primitive features + proposed features 89.80 87.07 85.21 92.01*

Table 9
Summary of accuracy scores of all classifiers

Model Accuracy Score(%)

RF 81.37
SVM 78.58
AB 81.13
MLP 85.21
TabNet 89.80
1-D CNN 87.07
DWAEF 92.01

Table 10
Examples of Correctly Classified Sentences Written in a Polite/Formal Tone

Sentences Novel Indicator Present Classification
Result(%)

Everyone has a photographic memory, some
just don’t have film.

Metaphor 1

When it comes to finding a good place to eat
you can’t doubt her choice, she’s a connoisseur
of food no wonder why she eats like a pig.

Simile, Clauses 1

No, you’re right, we should just put the men-
tally ill down like dogs if they do something in-
appropriate.

Simile 1
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6. Conclusion and Future Work

Detection of sarcasm poses one of the leading challenges in sentiment analysis, as a single sarcastic
remark can influence sentiment analyzers to produce undesirable results. Primitive techniques used in
sarcasm detection used low-level features and traditional machine learning algorithms.

The study looked into sarcasm detection with a new perspective. It proposed DWAEF, a deep-weighted
ensemble-based framework for sarcasm detection. The framework utilized figurative speech components
mainly, the presence of simile, the presence of metaphor and the change in the polarity of a sentence’s
constituent clauses using deep learning techniques. The predictions done by the above modules were
then fed into DWAEF, which comprised a 1-D CNN, a TabNet and an MLP as its base learners.

Based on the results, it can be concluded that combining the proposed indicators with the primitive
features achieved better results across all classifiers. It was seen that the proposed ensemble frame-
work performed better as compared to traditional machine learning classifiers. The proposed technique
achieved the highest accuracy of 92.01% when proposed indicators were combined with primitive fea-
tures and evaluated using a weighted average ensemble of deep learning algorithms.

The study employed various state-of-the-art tools and techniques; still, the proposed framework may
be made to improve the model’s characteristics and efficiency. In future, the authors plan to incorporate
more advanced tools in the framework and equip it to perform cross-lingual and multimodal predictions.
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