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Abstract. Sequential pattern mining is one of the data mining tasks used to find the subsequences in a sequence 

dataset that appear together in order based on time. Sequence data can be collected from devices, such as 

sensors, GPS, or satellites, and ordered based on timestamps, which are the times when they are 

generated/collected. Mining patterns in such data can be used to support many applications, including weather 
forecasting and transportation recommendation systems. Numerous techniques have been proposed to address 

the problem of how to mine subsequences in a sequence dataset; however, current traditional algorithms ignore 

the temporal information between the itemset in a sequential pattern. This information is essential in many 

situations. For example, doctors, even if they know a symptom B will appear after symptom A for a specific 

disease, must know the time interval of when symptom B is expected to appear to reduce the disease's risk and 
provide a suitable treatment. Considering temporal relationship information for sequential patterns raises new 

issues to be solved, such as designing a new data structure to save this information and traversing this structure 

efficiently to discover patterns without re-scanning the database. In this paper, we propose an algorithm called 

Minits-AllOcc (MINIng Timed Sequential Pattern for All-time Occurrences) to find sequential patterns and 
the transition time between itemsets based on all occurrences of a pattern in the database. We also propose a 

parallel multi-core CPU version of this algorithm, called MMinits-AllOcc (Multi-core for MINIng Timed 

Sequential Pattern for All-time Occurrences), to deal with Big Data. Extensive experiments on real and 

synthetic datasets show the advantages of this approach over the brute-force method. Also, the multi-core CPU 

version of the algorithm is shown to outperform the single-core version on Big Data by 2.5X.  

Keywords. Data mining, Sequential pattern mining, Timed sequential patterns, Singe-core and multi-core 

processor.  
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1. Introduction 

Sequential pattern mining (SPM) [1] analyzes a sequence database, which contains 

sequences of events that are ordered based on the times when the events occurred or 

collected, called timestamps, to discover sequential patterns. These sequential patterns 

are those time-ordered events that frequently occur in the sequence database. An example 

of a sequential pattern is “Patients of heart attack have cholesterol first, then 

uncomfortable pressure, then abdominal pain.” SPM has been used in many real-life 

application areas such as weather prediction [3] and [23], illness symptom pattern 

prediction [16], network intrusion detection [26], educational data mining [5], and 

customer shopping behaviors [1]. For example, in healthcare applications, with 

sequential patterns discovered from a sequence database containing illness symptom 

occurrence, we can answer questions like “in which order do the symptoms of a heart 

attack frequently occur?” Similarly, in weather prediction, with sequential patterns 

discovered from a sequence database recording past tornado events, we can answer 

questions like “what is the order of the cities that are hit by a tornado frequently?” An 

example of this is that in the state of Oklahoma in the U.S.A., during the tornado season, 

tornadoes tend to hit three cities, Oklahoma City, Moore, and Norman, in that order. 

However, the existing works in SPM, such as [13],[25], and [34], tried to improve the 

efficiency of techniques to discover the frequent sequential patterns but discard the time 

dimension completely. The timestamps are used to order events within a sequential 

pattern, but the transition time between these events is not shown in the discovered 

sequential patterns. In many applications, it is important to know the time interval [min, 

max] events in a frequent sequential pattern discovered, which we call a timed sequential 

pattern. For example, knowing when the following symptom of a heart attack will occur 

helps healthcare providers in forming diagnoses, providing treatments at the right time, 

and intervening early in critical cases. Similarly, we may want to have a frequent timed 

sequential pattern that shows that after a tornado hits Oklahoma City, within 10 to 15 

minutes later, the tornado will hit Moore, and then within 3 to 5 minutes later, the 

tornado will hit Norman. Knowing the temporal information (the time intervals of event 

occurrences) in frequent sequential patterns will help preparing a safety plan to reduce 

damages and loss.  

 

 
 

As shown in Fig. 1, we have the historical health data consisting of the temperature 

(T) and blood pressure (BP) of four patients (P) who had a heart attack. The time was 

 

 
 

Fig. 1. Patients' historic health information and discretize data 



recorded every time the measurement of temperature or blood pressure was taken for a 

patient as shown in the second column. Since a sequential pattern mining algorithm does 

not deal with continuous data, we need to apply a discretization technique to segment the 

data into classes that have similar features to fall within the same group. For instance, 

the blood pressure (BP) has five levels [4]: (1) Normal (BP < 120), (2) Elevated (120 ≤ 

BP ≤ 129), (3) High Stage 1 (130 ≤ BP ≤ 139), (4) High Stage 2 (140 ≤ BP ≤ 180), and 

(5) Crisis (BP >  181). Therefore, we added a column next to each measurement that 

contains the equivalent class ID and refers to the blood pressure with the abbreviation 

BP followed by the ID of the class into which the blood pressure falls. Back to the blood 

pressure levels, we can see that the last column has the blood pressure Class 3 in the first 

tuple because the value 131 belongs to Class 3 (High Stage 1). We grouped the tuples in 

Fig. 1 by Patient ID as shown in Fig. 2, which represents the timed sequence Database.  

The first tuple displays all the symptoms of patient P1 ordered based on the timestamps. 

A timed sequential pattern that we want to discover is about the symptoms that 

frequently occur among patients and the typical transition times between the symptoms 

(in terms of days in our example). The following is the format of a pattern called a Timed 

Sequential Pattern (TSP) that would be discovered in this study: 

TSP = < {T1, BP3} [2,7] {T2}> 

 

This TSP has two itemsets: itemset 1 consisting of two items T1 and BP3, and 

itemset 2 consisting of item T2. Itemset 2 occurs within 2 to 7 days after itemset 1. In 

our notations, all items enclosed within braces {} occur at the same time and constitute 

an itemset, and the square brackets [min, max] indicate the time duration to move from 

one itemset to the next. In this algorithm, the time duration represents the temporal 

relation [min, max]. Thus, the given example TSP shows that frequently when patients 

have a temperature falling in the Class 1 (T1) and a blood pressure falling in the Class 3 

(BP3), then within 2 to 7 days, the patients will have a temperature in the Class 2 (T2). 

If we apply traditional sequential pattern mining, then this sequential pattern will only be 

< {T1, BP3} {T2}>, which does not include the transition time [2, 7].  

Incorporating the temporal information in a sequential pattern raises additional 

challenges for mining compared to regular sequential pattern mining. First, while both 

sequential pattern mining and timed sequential pattern mining need to find out whether 

a pattern occurs in some tuples of a database, timed sequential pattern mining also needs 

to find out how many times the pattern occurs in each tuple to compute the temporal 

relationship between the item3sets in the pattern. Suppose we have a tuple of a patient 

that has all the measurements within six months and the following symptoms occurring 

many times: low temperature followed by high blood pressure after some time. Since the 

timed sequential pattern mining problem wants to know when the high blood pressure 

 
Fig. 2. Sequence records 

 

 



occurs, it is not sufficient to find only the first position of this symptom and report the 

temporal relation. For example, from Fig. 2, we can observe that the fourth patient, P4, 

has the following symptoms based on the timestamp order: the temperature from Class 

1 and the blood pressure from Class 2 {T1, BP2} followed by the temperature from Class 

1 and the blood pressure from Class 3 {T1, BP3} followed by the temperature from Class 

2 and the blood pressure from Class 3 {T2, BP3}. The tuple for this patient is: P4 = < 

{T1, BP2}, {T1, BP3}, {T2, BP3}>. To find the temporal relation between the two 

symptoms {T1} and {BP3} (for the pattern denoted as < {T1} [] {BP3}>), we need to 

do the following as shown in Fig. 3: 

1- Find the timestamp difference t1 between the first occurrence of T1 and the first 

occurrence of BP3 (solid arrows). 

2- Find the timestamp difference t2 between the first occurrence of T1 and the second 

occurrence of BP3 (dotted arrows). 

3- Find the timestamp difference t3 between the second occurrence of T1 and the first 

occurrence of BP3 (dashed arrows). 

4- Find the minimum timestamp difference and the maximum timestamp difference 

among t1, t2, and t3. 

5- Produce the temporal relation as [min, max]. 

 

 
So, to find all possible occurrences of a pattern, the naïve method is to scan each 

tuple until the end in the database. However, a sequential pattern mining algorithm will 

stop checking the rest of a tuple in the database as soon as the pattern is found. In contrast, 

timed sequential pattern mining requires checking all the tuples in the database. First, it 

is necessary to consider all possible occurrences of the pattern and all the different 

timestamps of each occurrence and find the temporal relation. After the temporal relation 

is found for one patient, we need to check the temporal relation for the same symptoms 

among all patients. The final interval [min, max] represents the minimum and maximum 

time difference among all patients in the database.  

This leads to the second challenge of timed sequential pattern mining, which updates 

the temporal relation between itemsets as soon as a pattern is found. When a timed 

sequential pattern is defined, it means that the ratio of tuples that contain this pattern is 

greater than or equal to a user-defined threshold. Then, when we want to extend that 

pattern to include more symptoms; it does not mean that the pattern must appear at the 

same tuples because some tuples may not carry it anymore. Accordingly, the time 

relation is not valid anymore, and we need to update that relationship based on the new 

timestamps of the new tuples. Let us suppose that we have the timed sequence pattern < 

{T1, BP3} [t1, t2] {T1}>. From Fig. 1, we can observe that P1 (Tuples 1 and 3) and P2 

(Tuples 4 and 5) have these symptoms. So, t1 and t2 are calculated based on the 

timestamps associated with these symptoms in these tuples. When the pattern is extended 

 
Fig. 3. All possible occurrences of the symptom {T1} {BP3} 

in P4 

 



to be < {T1, BP3} [t1, t2] {T1} [t3, t4] {T1, BP1}>, we can observe that the records of 

P2 do not carry this pattern and only P1 had these symptoms. Therefore, the t1 and t2 

must be updated based on the timestamps associated with symptoms in Tuples 1 and 3 

(not also Tuples 4 and 5). The brute force technique needs to scan the database again to 

update the temporal relation of the pattern. Thus, for every pattern, we need to scan the 

entire database many times to make sure that we have the correct temporal relations.  

The contributions of this paper are the following: 

1. The idea of incorporating transition time between item sets in a sequential 

pattern indicates all possible time occurrences of the pattern within the whole 

timed sequence database. The time can be any descriptive statistic based on the 

user's preference, such as range, average, etc. 

2. The parallel implementation of the Minits-AllOcc algorithm can help when 

dealing with Big Data. 

3. The extensive experiments compare the single-core algorithm against the multi-

core algorithm on real and synthetic datasets. 

The remainder of the paper is organized as follows: Section 2 reviews the related 

work. Section 3 introduces and defines the timed sequential pattern mining problem. 

Section 4 explains how the algorithm works. The results of performance evaluations on 

different datasets are given in Section 5. Finally, Section 6 concludes the paper and 

discusses future work. 

 

2. Problem Definition  

In this section, we review the definitions of the sequential pattern mining problem 

and introduce new definitions for the timed sequential pattern mining problem. Recalling 

the traditional sequential pattern mining problem [1], we define an itemset I as a set of 

items, such that I ⊆ X, where X = {x1, x2, . . . xl} is a set of items in the database. A 

sequence (tuple) s is an ordered list (based on timestamps) of item sets. A sequence A = 

<{a1}, {a2}, …{an}> is contained in another sequence B = <{b1}, {b2}, …{bm}> and B 

is a super-sequence of A if there exists a set of integers, 1≤ j1 < j2 <…< jn ≤ m, such 

that𝑎1 ⊆ 𝑏𝑗1 , 𝑎2 ⊆ 𝑏𝑗2 , … , 𝑎𝑛 ⊆ 𝑏𝑗𝑛.  

A sequence database S is a set of sequences (tuples) <sid, si> where sid is a 

sequence identifier and si is a sequence. A tuple <sid, si> is said to contain a sequence 𝛼 

if 𝛼 is a sub-sequence of si. Since our problem also considers the temporal data, we 

incorporate timestamps explicitly in the database and introduce new definitions.  

 

Definition 1. A timed event is a pair e = (I, t), where I am an item set that occurs at 

the timestamp t. We use e. I and e.t to indicate, respectively, the itemset I and the 

timestamp t associated with the event e. The list of events that is sorted in the timestamp 

order is called a timed sequence TS = <{e1}, {e2}, ... , {en}>, such that ei.x ⊆ I (1 ≤ i ≤ 

n). A timed sequence database TSDB is a set of sequences <TS_id, TS> where TS_id is 

a timed-sequence identifier and TS is a timed sequence. 

 

Example 1. (Running Example) The timed sequence database in Fig. 4 is used as 

an illustrative example in this paper. For simplicity, we will use letters to refer to items 



that represent different properties of objects in the database (e.g., temperature and blood 

pressure for patients), and integer numbers to refer to timestamps that represent the times 

when those properties are collected. In this example, there are four timed sequences with 

IDs from TS1 to TS4. Each timed sequence consists of a set of events ordered in the 

events’ timestamps. For example, TS1 consists of two events: the first event {a, b, 5}, 

which occurred at timestamp 5, followed by the second event {d, g, 12}, which occurred 

at timestamp 12. 

 

Definition 2. Given a sequence A = <{I1}, {I2}, …{In}> and a timed sequence TS = 

<{𝑒1}, {𝑒2}, … , {𝑒𝑚}>, the All-time Occurrences of A in TS in the timed sequence 

database TSDB is defined as an ordered list of indices 1≤ j1 < j2 < …< jn ≤ m, such that: 

𝐼1 ⊆ 𝑒𝑗1 . 𝐼, 𝐼2 ⊆ 𝑒𝑗2 . 𝐼, … 𝐼𝑛 ⊆ 𝑒𝑗𝑛 . 𝐼. The delta 𝛥 is defined as𝛥 = 𝑒𝑝.𝑗𝑖−1 . 𝑡 − 𝑒𝑝.𝑗𝑖 . 𝑡. 

 

Example 2. Let sequence A = <{a}{b}> and timed sequence TS4 = < {a, 10}, {b, f, 

19}, {d, 20}, {b, 30}>, as shown in Fig. 4. The indices of the events for the first 

occurrence of sequence A in TS4 are {e1, e2}, as shown by the solid arrow in Fig. 5. The 

delta 𝛥 is the difference between the timestamps of these two consecutive events, which 

is e1.t1 = 10 and e2.t2 = 19. Thus, the 𝛥 = 19 – 10 = 9.  Then, the second occurrence of 

sequence A in TS4, as shown by the dotted arrow in Fig. 2, has the events’ indices {e1, 

e4}. The delta 𝛥 is the difference between the timestamps of these two consecutive events, 

which is e1.t1 = 10 and e4.t2 = 30. Thus, the 𝛥 = 30 – 10 = 20. Similarly, we can find the 

rest of the All-time Occurrence. The support of a sequence A in a sequence database, or 

a timed sequence database, is the percentage of the number of sequences in the database 

that contains A, such that sup(A) = (#sequences that contain A / #sequences in DB) *100. 

If the support of sequence A is greater than or equal to a user-defined threshold called 

minimum support (min_sup), then it is called a sequential pattern [1].  

 

Definition 3. A sequence A is called a timed sequential pattern TSP if and only if 

it is a sequential pattern and accompanied by temporal relationships 𝜏i between item 

sets where it represents any descriptive statistic, such as an average of transition time or 

range, calculated based on the values of the delta 𝛥. TSP is denoted as: TSP = <{I0} [𝜏1] 

{I1} [𝜏2] {I2}…… [𝜏n] {In}>. For brevity, in the rest of this paper, when we mention a 

pattern, we refer to a timed sequential pattern. 

 

Example 3. Let us assume the min-sup =50%; since the support of sequence A= 

<{a}{b}> is 50%, the sequence is a sequential pattern. In this paper, we assume that a 

user chooses the temporal relation to be presented as a range of time [min, max]. Thus, 

the timed sequential pattern version is <{a} [9, 20] {b}>. The timed sequential patterns 

thus are sequential patterns that satisfy the min_sup condition and include the transition 

times between item sets. 



 

 
 

3. Related Works 

Sequential pattern mining was first introduced in [1], where three algorithms, 

AprioriSome, DynamicSome, and AprioriAll, were proposed to discover sequential 

patterns. AprioriAll is the basis of many other efficient algorithms that have been 

proposed to improve its performance. Those algorithms inspired [27] to propose a 

technique to generate fewer candidates called GSP. Since all algorithms were based on 

the Apriori algorithm, they were classified as Apriori-based algorithms. Other algorithms, 

such as SPADE [34], adopted a vertical ID-list database format that reduces the number 

of database scans. In contrast, pattern-growth-based algorithms, such as FreeSpan [13] 

and PrefixSpan [25], use database projection, making them more efficient than other 

Apriori-based algorithms, mainly when they deal with an extensive database. These 

algorithms generate a smaller database for their next pass because the sequence database 

is projected into a set of smaller databases, and then sequential patterns in each of them 

are explored. Thus, they are more efficient. More literature reviews about the state-of-

the-art sequential pattern mining algorithms can be found in [9]. 

Recently, with the existence of a large volume of data in many applications, several 

sequential pattern mining algorithms have been proposed to efficiently handle large 

databases consisting of vast amounts of sequences using different platforms. For example, 

[15] uses the multi-core processor architecture to implement pDBV-SPM to improve 

processing speed for mining sequential patterns. Ha-GSP [22] adopts the principles of 

GSP and implements them on the Hadoop platform for solving the limited computing 

capacity and inadequate performance with massive data of the traditional GSP. MR-

PrefixSpan [31] uses the MapReduce platform to implement the parallel version of 

 
       Fig. 4. An Example of Timed Sequence Database 

 

            
          Fig. 5. All-time Occurrence of A in TS4 

 



PrefixSpan to mine sequential patterns on a large database. More literature reviews about 

the state-of-the-art parallel sequence mining algorithms are in [10]. 

Previous algorithms represent the traditional technique of sequential mining 

patterns; however, the researchers studied if the same dataset can be used to extract more 

informative patterns.  Thus, more techniques have been proposed to find more exciting 

extensions of sequential patterns and here examples of those patterns but not to exclude 

others. One of these patterns is closed sequential patterns [35,36] that mine not all 

subsequences but only closed  subsequences, which those containing no super sequences 

with the same support. This solved the efficiency problem of dealing with the tremendous 

number of frequent subsequences for using a very low minimum support threshold or 

mining very long sequences. Other interesting patterns are negative sequential patterns 

[37,38,39,40]. The idea of positive (traditional) sequential patterns focuses on finding 

the positive occurrences correlation between items in a dataset. In contrast, the negative 

occurrences correlation, or absence, between items is more interesting in some practical 

applications. High-utility sequential patterns [41, 42, 43] is another type of sequential 

patterns dealing with a quantity of an item in the dataset. The traditional problem of 

sequential patterns considers only if an item appears in an itemset of a sequence or not. 

The goal of High Utility Sequential patterns HUSP is discovering subsequences having 

a utility (importance) greater than or equal to a minimum utility threshold in a 

quantitative sequential database.  Periodic sequential patterns [44,45,46] is also can be 

considered as extension of sequential pattern mining by taking duration as a set of 

partitioned sequences. So, periodic pattern mining is still finding patterns that regularly 

appear in the time-series database but recurring in specific time interval (e.g., every 

Friday). This research concentrates on the traditional (positive) sequential patterns type. 

Objects have an ordinal correlation in a sequential pattern based on the timestamp 

precedence. We can obtain a sequence by sorting all these objects based on the order of 

their timestamps. Because finding frequent itemsets in the association rule mining tasks 

discards the ordering of items, some techniques such as [24] take advantage of sorting 

items based on the timestamp. They discover different patterns that represent the 

different orderings of the items. For example, the general episode is a sequence with 

objects A, B, and C where A must occur first, but B and C can occur in any order. 

However, the serial episode is a sequence with objects A, B, and C where A must occur 

first, then B, and then C. However, the time between itemsets is still discarded, and they 

use the time as a gap constraint between itemsets in an episode. So, an expiry constraint 

TX is another input besides the sequence database and min_sup threshold. The Tx is an 

additional control with the support threshold, which specifies that the appearance of 

symbols in an episode occurs no further than TX time units apart from each other. Some 

techniques were proposed to specify some timing constraints, such as the time gaps 

between adjacent item sets in sequential patterns. For example, [4] modifies the Apriori 

[1] and PrefixSpan [25] algorithms to discover the time-interval sequential patterns that 

satisfy the interval duration boundaries. The I-PrefixSpan algorithm in [4] has another 

input called a set of time-intervals TI, where each time-interval has a range. [14] extends 

that work and proposes two algorithms: MI-Apriori and MI-Prefix. The time intervals 

incorporated in the patterns reveal the time between all pairs of items in a pattern; these 

patterns are called multi-time-interval sequential patterns. A list of intervals (ti3, ti2, ti1) 

before item d in a pattern like <a ti1, b, (ti2, ti1), c, (ti3, ti2, ti1), d> means the intervals 

between items a, b, and c and item d are ti3, ti2 and ti1, respectively. In educational data 

mining, a ti-pattern model [5] is built based on the I-PrefixSpan algorithm to consider 

the time between students' activities. So, again, the inputs of this model are a temporal 



sequence database and a set of time-intervals (Is, Imn, Ih, Id, Iw, Imt), which refer to seconds, 

minutes, hours, days, weeks, and months. For example, one-time intervals were Ih 

meaning the model will find the activities of students with a gap value between one hour 

and one day. After the model is applied to a group of students who enrolled in 

mathematics and computer science program in Learning Management System, one of the 

time-interval patterns (ti-pattern) was found: <Lab {1,3} Ih Lab {2,3} Ih Lab {2,3,4} >, where 

Lab {1,3} means either Lab1 or Lab3. The experts can observe that some students work 

sequentially on several exercise sheets from this pattern. Since the students spend this 

gab, it means that the students dig deep into their work. Also, [2] extracts the sequential 

patterns of diseases from a medical dataset within user-specified time intervals. CAI-

PrefixSpan [19] is proposed to apply the confident condition from association rules 

besides the support condition to filter the timed sequential patterns. The advantage of this 

is that the decision-makers can be confident about the possibility of an event happening 

within a certain time interval. 

The drawback of these methods is that their results will miss some frequent patterns that 

do not fulfil the time range constraint. To decide if a pattern is common, two conditions 

must be satisfied: the support of the pattern must be greater than or equal to the min_sup, 

and the time ranges between the item sets in the pattern must lie within the defined time 

intervals. Therefore, if a pattern fulfils the first condition, which means it is common but 

does not fulfil the second condition, the algorithm will not report it. 

[11] incorporates the temporal dimension in the sequential pattern by defining temporally 

annotated sequences (TAS), and [12] proposes the Trajectory Pattern algorithm (T-

pattern) to extract a set of TAS to produce trajectory patterns with a fixed amount of time 

to travel between places. The algorithm only works for one-dimensional data. Also, the 

times between events in a trajectory pattern are strict, which does not consider the variety 

of the traveling time spent between locations by using different transportation modes, for 

example. [33] relaxes the travel time so that it is a realistic range for traveling time. The 

algorithm still cannot deal with multidimensional data because it deals with only 

locations in trajectory data. Also, all the previous techniques do not consider all possible 

occurrences of a pattern in an individual sequence in a database, which means the 

temporal relations are calculated based on only the first occurrence of a pattern. The issue 

of calculating the time intervals of the first occurrence of a pattern and ignoring other 

occurrences is addressed in [21]. However, this approach is beneficial for only a few 

applications. For example, if a developer wants to evaluate the ease of use of a navigation 

system, the time of moving from A to B is tested when the users visit those locations for 

the first time. In contrast, in other applications, such as the healthcare application 

described in Section 1 above, we must consider all possible occurrences to provide 

accurate time intervals.  

There also exist works that consider other issues related to time-interval sequential 

patterns. FARPAMp (Fast Robust Pattern Mining with information about prior 

uncertainty) [30] can deal with timestamp uncertainties. This issue may occur if two 

events A and B happen during a time interval that can be overlap. This leads to the 

possibility of event A appearing before event B or vice versa. So, the approach is focused 

on using time points instead of intervals and fitting probabilistic models for the errors in 

the timestamps around these time points. It is an interesting research issue; however, this 

is outside the scope of our research. We are addressing the issues of finding all possible 

occurrences of timed sequential patterns and producing the most updated temporal 

relations between itemsets in the discovered patterns. 



To the best of our knowledge, there is no existing algorithm that can find the complete 

set of timed sequential patterns, in which each pattern includes the itemsets that occur in 

time order and the transition times between them. 

4. The Proposed Algorithm: Minutes-AllOcc 

We propose an algorithm called Minits-AllOcc to discover the complete set of timed 

sequential patterns, which is already frequent candidates, from a timed sequence database. 

We have the following subsections that describe the algorithm: Section 4.1 introduces 

the core data structure of the algorithm; Section 4.2 gives a brief overview before the 

details of the algorithm are explained step by step in Section 4.3; Section 4.4 analyzes 

the time complexity of the algorithm, and Section 4.5 proposes enhancements to improve 

the efficiency of the algorithm. 

 

4.1. Occurrence Tree (o-Tree) 

A data structure called the occurrence tree (O-tree) is proposed to represent all 

possible occurrences of a pattern in a particular timed sequence in TSDB. This tree is the 

essence of the algorithm because it helps generate timed sequence patterns without 

scanning the timed sequence database many times. In the tree, the timed sequence ID 

(TSID) is stored as the root. The rest of the nodes stores an event ID eID and its timestamp 

eID.t. A node can have multiple parent nodes and multiple child nodes.  The information 

associated with the link between a parent node and a child node represents the difference 

Δ between the timestamps of the two nodes: parent and its child. The structure of the tree 

is shown in Fig. 6. For example, when the TS3 in Fig. 4 is scanned, three occurrence 

trees for item, a, b, and d are created from the timed sequences <{a,2},<{a,b,19},{d,25}>. 

Since the candidate sequence <{a}> appears twice in TS3, its O-tree in Fig. 7 has two 

nodes connected to the root. The first one represents the first occurrence at the first event 

e1 with its timestamp, and the second represents the 

 

  

 
 

Fig. 6. Occurrence tree data structure 



second occurrence at the second event e2 with its timestamp. However, the sequence 

<{a} {a}> appears once in TS3 that has two nodes too, but one is connected to the root 

and the other is connected to the other node via a link Δ. The link holds the difference 

between the parent and child timestamps 19-2=17. 

 

Since each sequence has an O-tree for each timed sequence in TSDB that contains 

it, the sequence will have a collection of O-trees that identify its occurrence in the whole 

TSDB. Thus, we give the following definition. 

Definition 4. Given a sequence A and timed sequence database TSDB, A-Forest is 

a collection of all O-trees that identify all possible occurrences of sequence A in TSDB. 

Fig. 8. demonstrates the forest of four sequences, <{a}>, <{b}>, <{a} [9, 20] {b}>, and 

< {a, b}>. Each forest is surrounded by a dotted rectangle, which has a group of O-trees 

that indicates all time occurrences of a sequence in TSDB. 

4.2 Overview 

Given a TSDB and a min_sup threshold, the main goal of Minits-AllOcc is to find 

the complete set of the timed sequential patterns in the TSDB such that each pattern’s 

support is greater than or equal to the min_sup threshold. To achieve this goal, Minits-

AllOcc utilizes the forests to store all the required information from the TSDB and  

 

 

  
 

 

uses them to mine the patterns without having to scan the TSDB many times. The 

following steps are performed:  

1) Scan TSDB to build an Ij-forest for each distinct item Ij. 

2) Find frequent 1-items by counting the number of O-trees in each forest, compare 

it against the min_sup threshold, and remove the infrequent 1-items. 

3) Merge all O-trees with the same TSID (root node) from different forests to build 

a new forest for a candidate sequence. It should be noted that there are two relations 

 
Fig. 8. Merging O-trees of <{a}> and <{b}> to generate 

< {a, b}>-forest and <{a}[9, 20]{b}>-forest 

 



between itemsets considered while merging the steps: event-relation and sequence-

relation, which are defined as follows:  

Definition 5. Given two itemset X and Y, it is said that X and Y have an Event-

relation e-relation between them, denoted as < {X, Y}> if X and Y occur in the same 

event. For example, assume that we have the following timed sequential pattern = < 

{High temperature, High blood pressure} [2,3] {low temperature}>. It means that the 

patient has both high temperature and high blood pressure simultaneously, and after 2 to 

3 days, the patient has a low temperature. 

Definition 6. Given two itemset X and Y, it is said that X and Y have a Sequence-

relation s-relation between them, denoted as <{X} {Y}> if X and Y occur in two 

different events and the event of X occurs before the event Y. For example, suppose that 

we have the following timed sequential pattern = < {High temperature} [4,6] {High 

blood pressure} [2,3] {low temperature}>. It means that the patient has only a high-

temperature symptom. Then after 4 to 6 days, the patient has the high blood pressure 

symptom. Later, after 2 to 3 days, the patient has a low-temperature symptom. 

4) Count the number of O-trees in each forest, compute the support, and compare it 

against the min_sup threshold to find the sequential patterns among candidate sequences. 

By performing step 4, Minits-AllOcc avoids scanning the whole TSDB for each 

candidate to calculate its support.  

5) Compute the temporal relation of the suffix (the new appending part of the 

pattern) if the candidate sequence is frequent. Then, update the temporal relation of the 

prefix (the previous part of the pattern) and generate a timed sequential pattern. 

6) Repeat Steps 3, 4, and 5 until the algorithm cannot identify any new timed 

sequential pattern. Minits-All Occ's pseudo-code is presented in Fig. 9. 

 

4.3 The Details of the Minits-AllOcc Algorithm   

This section describes the five steps presented in the previous section 4.2 in detail 

using the running example shown in Fig. 4. The algorithm scans the TSDB tuple by tuple 

and builds the associated forest for each item by adding the occurrence trees O-tree (lines 

1-19). As shown in Fig. 7, for example, after the algorithm finishes scanning the TSDB, 

the <{a}>-the forest has three O-trees because the sequence <{a}> appears in three timed 

sequences: TS1, TS3, and TS4. Each O-tree captures all occurrences with their 

timestamps of an item and in a particular TS. Thus, in TS1, we have one node that shows 

the item a appears in the first event in TS1, and its timestamp is 5. To know the support 

of distinct items, the algorithm counts the number of O-trees in each forest and compares 

it against the min_sup threshold. If the support of a forest, which also represents of 

distinct item's support, is less than the threshold, the forest is removed (lines 20 -27). The 

two sequences <{e}> and <{f}> are not frequent because their forests have only one tree, 

which means they appear only in one TS; therefore, their support is 25%. Consequently, 

two sets are formatted: TSP and -TSP. The first set of TSP contains the complete, timed 

sequential patterns. It will be updated periodically as a new timed sequential pattern is 

discovered. The second set is 1-TSP, which contains only the timed sequential patterns 

of length 1, which will be used as a seed set to extend the patterns in further steps. Both 

sets TSP and 1-TSP have these values {<{a}, {b}, {d}, {g}>} (lines 24-25). The next 

step is generating candidates by merging the O-trees of all 1-timed sequential patterns by 

calling the function find-TSPs (lines 30). The mechanism of merging trees is as follows: 

if the relationship is an s-relation, the appended node must have an event ID ei that is 

greater than the event ID in the parent node (i.e. comparing the event IDs in the two 

nodes) (line 57). Then, the link holds the difference between the timestamps of the parent 



and their child (line 59). In contrast, if the relationship is an e-relation, the appended node 

must have the same event ID ei as its parent (line 53). For instance, the forests of the two 

candidates <{a}[ ]{b}>, which represents an s-relation, and <{a, b}>, which represents 

an e-relation, are shown in Fig. 8. The first <{a}[ ]{b}>-forest has two O-trees that are 

generated by combining the <{a}>-forest and the <{b}> -forest. Even though both the 

forests have an O-tree that has a root TS1, the O-tree of <{b}> does not contain a node 

that has an event ID greater than e1; thus, it is removed from the <{a}[ ]{b}>-forest. In 

contrast, the node e2 from the <{b}>-the forest is attached to the node e1 from the <{a}>-

forest and the Δ is calculated 

between those nodes, which is 19-2 =17. However, the node that has e2 from the 

<{a}>-forest does not connect to any node. Since the algorithm is looking for all possible 

occurrences of sequence <{a}[ ]{b}>, the node e1 in TS4 is connected to the two nodes, 

which have the event IDs e2 and e4, from the <{b}> O-tree, and each link between the 

parent node e1 and child node e2 and child node e4 carries the difference between the 

timestamps of the two connected nodes. Because in this example, we consider a temporal 

relation as a range [min, max], the algorithm chooses the minimum and maximum values 

among all the O-trees in the <{a}[ ]{b}>-forest, which is [9, 20].  The second <{a, b}>-

the forest has two O-trees that are generated by combining the <{a}>-forest and the 

<{b}> -forest. The difference between the s-relation case and the e-relation case when 

we merge the trees is the condition of appending nodes. Since this is an e-relation, all 

added nodes must have the same event ID ei as their parents. Also, the Δ is always 0 

because the nodes have the same timestamps. Both patterns <{a} [9, 20] {b}> and <{a, 

b}> are considered to be timed sequential patterns and they are added to TSP set because 

their supports are 50% (line 69-76). We calculated the support using the below formula: 

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒) = 
𝑂𝑡𝑟𝑒𝑒𝑠 ∈ 𝑡ℎ𝑒𝑓𝑜𝑟𝑒𝑠𝑡

𝑡𝑖𝑚𝑒𝑑𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 ∈ 𝑇𝑆𝐷𝐵 ∗ 100
 

These two timed sequential patterns are added into TSP = 

{<{a}>,<{b}>,<{d}>,<{g}>,<{a} [9, 20] {b}>, <{a, b}>} The algorithm repeats the 

same steps, by calling function find-TSPs recursively in line 37, to extend the pattern by 

merging O-trees, generating candidates, finding TSPs, and computing temporal relations 

until no more TSPs can be found. 

As shown in Fig. 10, pattern <{a} [9, 17] {b} [1, 6] {d}> result from merging 

between <{a} [9, 20] {b}>-forest and <{d}>-forest. The forest consists of only the O-

trees that representing the candidate, then the support is calculated. Since the support is 

50%, the time between the prefix <{a} [ ] {b}> and suffix <{d}> is calculated as defined 

before (the range [min, max]). The TSP set is updated to be {<{a}>, <{b}>, <{d}>, 

<{g}>, <{a} [9, 20] {b}>, < {a, b}>, <{a} [9, 17] {b} [1, 6] {d}>}. As it is noted, the 

temporal relation between item sets {a} and {b} in the two patterns <{a} [9, 20] {b}> 

and <{a} [9, 17] {b} [ ]{d}> changed. 

Minits-AllOcc continues repeating the steps until the complete set of TSPs is 

discovered. The reader can verify that the TSPs in this example is = 

{<{a}>,<{b}>,<{d}>,<{g}>,<{a} [9, 20] {b}>, <{a} [6, 23] {d}>, <{b} [1, 7] {d}>, 

<{a, b} [6, 7] {d}>, <{a} [9, 17] {b} [1, 6] {d }>}. 



 
 

4.4 Analysis of Minits-AllOcc 

In this subsection, we discuss the worst-case time complexity of the Minits-AllOcc 

algorithm. We have: 

 

In this subsection, we discuss the worst-case time complexity of the Minits-AllOcc 

algorithm. We have: 

• S(m), where | S | = the number of timed sequences TS in TSDB. 

• E(r), where |E| = the maximum number of events in a timed sequence. 

• I(c), where |I| = the maximum number of items in an event.  

• G(s), where | G |= the number of singleton items in TSDB. 

• N , where | N| = the number of all possible candidates 

 

We start with the first part of the algorithm that needs to check each Timed Sequence 

S in TSDB, each event E inside that S, and each item inside that E to build the forest (line 

1 -19), which cost O(S*E*I). If it is the first time to read an item, that means its forest 

does not exist. So, we need to build it from scratch and start counting the number of O-

trees inside that forest. Otherwise, we just need to update the forest by adding the new 

O-tree into an existing forest and update the number of O-tress inside that forest, which 

cost O(log N). Therefore, the total amount of work performed by the end of (line 19) is 

O (S *E*I*log N). 

 

To keep only frequent candidate sequences and remove infrequent ones, the 

algorithm calculates the support for each forest (line20 - 27) and adds the frequent 

candidate sequences into the TSP-set. So, the total amount of work performed by the end 

of (line 27) is O(G+log I) because the number of forests is equal to the number of 

singleton (distinct) items in TSDB and removing O-trees for any infrequent sequence is 

log I . 

 
Fig. 10. Merging <{a}[9, 20]{b}>-forest  and <{d}> to 

Generate <{a}[9, 17]{b}[1, 6] {d}>-forest 
 



After that, the algorithm extends the patterns to generate more candidates by calling 

the function Find_TSP() (line 30). The function tries to combine each item in the 1-TSP 

set to generate 2-length candidate sequences, for example at the first call. The prefix is 

the previous k-1-timed sequential patterns, and the suffix is an item from the 1-TSP set. 

The function will append the suffix to the prefix and check the support of the new 

candidate sequence to decide if it can be considered as a timed sequential pattern or not. 

First, we need to find the time complexity of internal functions, then, we will compute 

the time complexity of the whole Find_TSP() function.  

 

The Find_TSP()  function calls another function called Merge_Trees ( ) (line 43), 

sends the forest of the prefix (previous timed sequential pattern), and the 1-TSP to build 

the forest for each new candidate sequence considering the different types of 

relationships, either it is an s-relation or e-relation. In line 47, the function picks an 

occurrence tree pt from the forest of the prefix and compares it with all occurrence trees 

st for each 1-length timed sequential pattern (line 48), which cost S*G. If two occurrence 

trees with the same root TSID have been found, the function checks if the event ID of 

each leaf node from both trees is the same ID or the event ID in the suffix node is greater 

than the ID in the prefix node (line 53 and 57), which needs to check all events in both 

tress E2. Also, this function updates the content of the forest by adding appropriate O-

trees and calculating the differences ∆ between nodes if the relation type is s-relation. 

After that, in line 69, each candidate's support is calculated by counting the number of 

trees in its forest. If the candidate is frequent, then after each itemset, the temporal 

relation is inserted, which cost E. The total amount of work done by Merge_Trees ( ) is 

O(log N*S*G* E3).  

Recursively, for each frequent 1-item in the suffix list, in which the time complexity 

is O(G), the function Find_TSP( ) is called (line 37) until no more candidates can be 

generated. In the worst case, the function is re-called until the length of a candidate is 

equal to the length of the longest timed sequence in TSDB, so it is O(E). Thus, the total 

amount of work done by Find_TSP( ), ended by line 42, including the work done by 

nested function Merge_Trees( ), is  O(log N*S*G2* E3).. Because we are considering all 

possible combinations between any k-1 sequential patterns, where k >=2,  and 1-

sequential patterns, the algorithm returns to line 30 and tries another combination 

between two items in the 1-TSP set. Thus, besides the time complexity of calling 

Find_TSP( ), the algorithm combines all items, so O(G). The total amount of work done 

by the end of (line 32) is  O(log N*S*G3* E3). 

The work done by this algorithm for each subsection is O (S *E*I*log N) + O(G+log 

I)+ O(log N*S*G3* E3). We conclude that the overall worst-case time complexity of this 

algorithm is O(log N*S*G3* E3). 

 

 

4.5 The proposed Enhancement 

In this section, we describe some effective mechanisms to improve the efficiency of 

Minits-AllOcc. 

 

4.5.1 Pruning the forest  



This technique defines a sequence's forest after merging the O-trees. So, when 

those O-trees are used in the next step for generating candidates, they carry only the 

necessary information and, therefore, save space by removing some nodes and save time 

by avoiding traversing needless branches in trees. Any branch in an O-tree that does not 

have a new appended node will be removed after the merging step is executed. Fig. 11 

represents the idea by marking the deleted branch of O-trees with a cross symbol. For 

example, the O-tree that has a TS3 root that results from merging TS3 O-tree from <{a}> 

and <{b}>-forests. Since there is no appended node to the right branch of <{a}>-forest, 

this node is removed from <{a} [9, 20] {b}>-forest. Those branches do not exist anymore 

in the O-trees. 

 
 

4.5.2 Using frequency matrix 

 

With this technique, we avoid generating unnecessary candidates, thereby reducing 

the number of forests. For example, the algorithm uses the 1-sequence-forests to generate 

2-sequence candidates, then keeps frequent candidates and removes infrequent ones.  

Since all required information is already available in the forest, we build a frequency 

matrix for each sequence to indicate the frequent candidates. For example, the frequency 

matrix of <{a}> pattern is shown in Fig. 12. The two different relations, events, and 

sequences (the rows) and all 1-timed sequential patterns that can be combined with {a} 

(the columns) are considered. The cells under <{b}> column represent the frequency of 

the two relations between <{a}> and <{b}>. This frequency is calculated from the forests 

of those patterns, as shown in Fig.7. For an s-relation, there are two O-trees (TS3 and 

TS4) in which the <{a}> and <{b}> occur at different timestamps within the same timed 

sequence. For e-relation, there are two O-trees (TS1 and TS3) in which the <{a}> and 
<{b}> occur at the same timestamps within the same timed sequence. From the matrix, 

we can infer that <{g}> is not frequent either with an s-relation or e-relation; thus, we do 

not need to build the forest of sequence <{a}[ ]{g}> or <{a, g}>.  

 

 
 

Fig. 11. Pruning the Original <{a} [9,20] {b}>-forest and 

< {a, b} >-forest in Fig. 10 
 



 
 

4.5.3 Using multi-core CPUs 

Another enhancement is using multi-core CPUs for implementing Minits-AllOcc, which 

we call MMinits-AllOcc. The independent jobs that can be done at the same time are 

finding all possible candidates, merging O-trees for those candidates, and deciding if they 

are frequent or not. A queue holds all jobs. As soon as one thread becomes idle, the next 

job in the queue is assigned to it and this reduces the execution time of the algorithm. 

For instance, in the beginning, the algorithm scans the TSDB to build the forest for each 

item and finds that <{a}>, and <{b}> are frequent. In the serial version, the algorithm 

starts with the pattern <{a}> and keeps extending it until no more patterns can be found 

that have prefix <{a}>. Then, it starts with the pattern <{b}> and does the same thing. 

With the multi-core version, the algorithm inserts patterns <{a}>, <{b}> into the queue, 

as shown in Fig. 13, and works on generating their candidates at the same time. Then, 

the candidates, <{a} [ ]{a}>, <{a}[ ]{b}>,….etc., will be inserted into the queue to let 

any idle threads work on calculating their supports and report any of them as a time-

sequential pattern. If one of these threads is done, then the pattern is extended by finding 

other candidates, <{a}[ ]{a}[ ]{a}>, <{a} [ ]{b}[ ] {b}, etc., and then inserting them into 

the queue. Those candidates wait to be assigned to an idle thread again. This process is 

kept going until no more jobs remain in the queue.  

 

 
Fig. 12. Frequency Matrix for <{a}> 

 

 

 
 

 
 

Fig. 13. Multi-core implementation  
 



5. Performance Analysis 

In this section, we describe the environment of experiments and report the evaluation 

results of testing the algorithms that are implemented in single-core CPUs (Minits-

AllOcc) and multi-core CPUs (MMinits-AllOcc). Different parameters are considered 

when these experiments are conducted on real and synthetic datasets. After running many 

experiments, we have found that MMinits-AllOcc on a multi-core performed Minits-

AllOcc on a single-core. 

5.1.  Experiment Setup 

All experiments were performed on a computer with a 2.10 GHz Intel Xeon(R) 

processor with 64 gigabytes of RAM, running Ubuntu 18.04.1 LTS CPU with 12 cores. 

The Minits-AllOcc and MMinits-AllOcc algorithms are implemented in Java 1.8.  

 

5.2 Datasets and Experimental Parameters  

 

We use two real-life, T-Drive [17] [18] and Oklahoma Mesonet [3], [23], and synthetic 

datasets. The first real dataset T-Drive is a collection of trajectories gathered by 

Microsoft Research Asia after tracking the movements of 10,357 taxis in Beijing, China 

for one day. The dataset contains the following attributes: User ID, timestamp, latitude, 

and longitude, as shown in Fig. 14. For example, Taxi 1 has a sequence that contains 

many events to represent its movements. An event (2008-10-23 02:53:04, 39.93, 116.31) 

refers to timestamp, latitude, and longitude, respectively. Since the sequential pattern 

mining algorithm cannot deal with continuous data, we discretized the data first by using 

a density-based clustering algorithm called Density-Based Spatial Clustering of 

Applications with Noise (DBSCAN) [7], and the results of the discretized sequences are 

shown in Fig. 15. Taxi 1 has a sequence that contains events in terms of clusters ID. For 

instance, event (2008-10-23 02:53:04, C1) refers to timestamp, and cluster Id, 

respectively. DBSCAN generates several clusters that contain the close points and 

replaces the latitude and longitude of a point with a cluster ID (Ci). For more details, we 

refer the readers to [20] 

 

 

 

 
Fig. 14: Sequential database for the T-Drive dataset before 

discretization by DBSCAN 

 
 

 
Fig. 15: Sequential database for the T-Drive dataset after 

discretization by DBSCAN 

 



The second real data set from Oklahoma Mesonet is a world-class network of 

environmental interventions by a group of scientists from the University of Oklahoma 

(UO) and Oklahoma State University (OSU) for weather monitoring stations. This 

network was established on January 1, 1994 and consists of 120 stations covering each 

of Oklahoma's 77 counties. The measurements are packaged into "observations" every 5 

minutes, then the observations are transmitted to a central facility every 5 minutes, 24 

hours per day year-round. The dataset contains the following attributes: county ID, 

timestamp, air temperature, rainfall, wind, and moisture-humidity, as shown in Fig. 16. 

We discretized the data first by using well-known scales in Meteorology.   

For air temperature, the index heat [32] is used to have the nine categories based on 

the temperature degree intervals in Fahrenheit: T1 (Extremely hot) [>54],T2 (Very hot) 

[53, 46], T3 (Hot) [46, 39], T4 (Very warm) [38, 32], T5 (Warm) [31, 26], T6 (Cold) [25, 

0], T7 (Very cold) [0, -10], T8 (bitter cold) [- 11,  -29], and 9 (Extreme cold) [> -30]. 

The recurrence interval [28] is used to categorize the rainfall based on the probability 

that the given event will be matched or exceeded in any given year. For example, there 

is a 1 in 50 chance that 6.60 inches of rain will fall in X County in a 24-hour period 

during any given year. The classes are: R1 (1 year) [1.16– 1.36], R2(2 years) [1.37-1.69], 

R3(5 years) [1.70-1.98], R4(10 years) [1.99-2.36], R5(25 years) [2.37–2.64], R6(50 

years) [2.65–2.90], and R7(100 years) [2.90-3.15]. For wind, the Beaufort scale [29] 

defines 12 classes based on the speed of wind as: W0 (Calm) [<0.3], W1 (Light Air [0.3–

1.5],W2 (light Breeze) [1.6–3.3], W3 (Gentle Breeze) [3.4- 5.5], W4 (Moderate Breeze) 

[5.5-7.9], W5 (Fresh Breeze) [8.0–10.7], W6 (Strong Breeze) [10.8–13.8], W7 (Near 

Gale) [13.9–17.1], W8 (Gale) [17.2–20.7], W9 (Strong Gale) [20.8–24.4], W10 (Storm) 

[28.4], W11 (Violent storm) [28.5–32.6], and W12 (Hurricane) [>= 32.7]. The last 

attribute, humidity (moisture), has 3 categories based on the "dew point" temperature [6]: 

H1 (Uncomfortably dry) [0 – 20], H2 (Comfortable) [20 -60], and H3 (Uncomfortably 

wet) [60-100]. The results of the discretized sequences are shown in Fig. 17. 

 

 
The synthetic dataset was generated by using a tool provided by the SPMF Library 

[8]. Also, we set several parameters to conduct the experiments on the dataset. There are 

two types of parameters: static and dynamic parameters. The values of the static 

parameters are not changed in experiments. In contrast, the values of the dynamic 

parameters are changed from one experiment to another. In this experiment, we have four 

dynamic parameters. The first one is the minimum support threshold (min_sup). It is a 

user-defined threshold that applies to finding all timed sequential patterns in a timed 

sequence database TSDB. The second parameter is the number of timed sequences TS in 

TSDB (#Seq), which refers to the number of tuples in the database. 

 
         Fig. 16: Sequential database for the Oklahoma 

Mesonet dataset before discretization 

 

 
Fig. 17: Sequential database for the Oklahoma Mesonet 

dataset after discretization 
 



The third parameter is the length of TS in TSDB, which can also be represented as 

the number of events per TS (# Events). The last parameter is the number of items in 

each event (#items). It should be noted that the timestamp is a fixed attribute in all events. 

When it is said that the number of items per event is 3, for instance, it signifies three 

items plus the timestamp. We study the effects of all four parameters shown in Table 1 

on the synthetic dataset. However, for the T-Drive dataset, the only valid dynamic 

parameter, that is shown in Table1 is the min-sup. Thus, all other three parameters are 

static. Now, we explain the range of the parameters and the default values of this analysis, 

as summarized in Table 1. When the experiment was conducted, we chose various values 

of one parameter within its range and assigned the default value to the other parameters. 

The min-sup parameter has a range of 20% to 80% with the default value = 50%, which 

is the median of the interval. The range of the number of timed sequences parameters is 

from 1 to 100,000, and its median value of 50,000, is the default value. For the number 

of events per sequence, the default value is 25 because the range is from 5 to 50. The 

number of items in the last parameter range has been set at 1 to 10 items per event; thus, 

the default value is 5, which is the median. 

 
 

5.3Competing Algorithms  

 

Since no existing algorithm can discover the timed sequential patterns and consider All-

time Occurrences, we cannot compare Minits-AllOcc against any technique. We will 

compare it against MMinits-AllOcc.  

 

 

5.4 Evaluation Metrics  

 

The evaluation metrics include two measurements: (1) Execution Time (ET) of 

algorithms (Minits-AllOcc, and MMintis-AllOcc) and (2) Number of Patterns (#patterns) 

that are generated by these algorithms. 

 

 

5.5 Experimental Results  

In this section, we present the performance of the two algorithms, Minits-AllOcc and 

MMinits-AllOcc, in terms of execution time (ET) and the number of discovered patterns 

(#patterns) for the real and synthetic datasets.  

 

5.5.1 Accuracy  

To validate that Minits-AllOcc always gives the same sequential patterns in terms 

of the numbers and contents, excluding the temporal relation, PrefixSpan was used [25]. 

PrefixSpan was chosen because it is one of the well-known algorithms for discovering 

sequential patterns. It has been proven to produce complete and correct sequential 

Table 1. Parameter List for the Synthetic Dataset 

 
 



patterns. First, all temporal relations were removed from the patterns that were generated 

by Minits-AllOcc. Next, these patterns were compared to the patterns that were generated 

by PrefixSpan to make sure that each sequential pattern generated by PrefixSpan has a 

matching one generated by Minits-AllOcc and MMinits-AllOcc. For example, a 

sequential pattern X= <{a} {b} {a, b}> was generated by PrefixSpan, and a timed 

sequential pattern Y= < {a} [2, 5] {b} [3, 7] {a, b}> was generated by Minits-AllOcc 

and MMinits-AllOcc. We took away the temporal relations from Y and compared them 

with pattern X. In case the order of at least one item set was different, the pattern X was 

not matching the pattern Y. For instance, Z= <{b} [2, 5] {a} [3, 7] {b, a}> was not 

matching pattern X because the item <{b}> occurred before <{a}>. However, within the 

last itemset {a, b} the order did not matter because all the items appeared at the same 

timestamp. At the end of this experiment, we found that the two algorithms—Minits-

AllOcc and MMinits-AllOc—discovered the exact patterns that were produced by 

PrefixSpan. All algorithms produced the complete and correct set of sequential patterns.  

 

5.5.2 Execution Time  

 

The execution time was recorded from the moment that a dataset had been read to the 

moment that an algorithm produced the timed sequential patterns. Table 2 shows the 

average performance of the two algorithms: Minits-AllOcc and MMinits-AllOcc. The 

execution time (ET) of MMinits-AllOcc decreases by 50% to 60% for T-Drive, 

Oklahoma Mesonet, and synthetic datasets, respectively, compared to the execution time 

of Minits-AllOcc.  

 

 

5.5.3 Impact of Minimum Support  

In this set of experiments, we compared execution time (ET) and the number of 

patterns (#patterns) for different values of  

 
minimum support threshold (min_sup) for datasets T-Drive, Oklahoma Mesonet, 

and synthetic. From Fig. 18 (a), Fig. 19 (a) and Fig. 20 (a), we can see that when the 

minimum support increased, the execution time of all algorithms decreased. This is 

because the algorithms generate fewer timed-sequential patterns when the min-sup 

is high, because of fewer candidate sequences that satisfy the min-sup condition.  

With a large amount of data and discovered timed sequential patterns, MMinits-

AllOcc outperformed Minits-AllOcc, as shown in Fig. 18(a), Fig. 19(a) and Fig. 

20(a). Therefore, multi-core CPUs ought to be used when the size of the timed 

sequence database is large. 

Table 2. Average Execution Time ET and #patterns  

 



The multi-core CPU version was also efficient when we had low min-sup. As 

shown in Fig. 19(a), and 20 (a), the ETs of both Minits-AllOcc and MMinits-AllOcc 

were very close when the min-sup was greater than 60%. This is because the number 

of candidate sequences, and thus the number of timed sequential patterns, was 

getting smaller, so most of the threads were idle. Therefore, MMinits-AllOcc did not 

need to use all the available threads and behaved almost like a single-core version 

Minits-AllOcc. Another observation was made based on the number of timed 

sequential patterns that were generated by these algorithms. All algorithms 

discovered the same number of patterns; thus, their curves were overlapping in Fig. 

18(b), 19(b), 20(b), 20(d), 21(b), and 21(d). When the min-sup increased, the number 

of timed sequential patterns decreased because the patterns that satisfied the min-

sup condition became fewer. By increasing the threshold min_sup, the percentage 

of timed sequences in the timed sequence database that was supposed to contain a 

candidate sequence decreased, as shown in Fig. 18(b), Fig. 19(b), and Fig. 20(b). 

 

5.5.4 Impact of the Number of Sequences in the Database 

In this set of experiments, we compared the execution time (ET) and the number of 

discovered timed sequential patterns (#patterns) according to the number of the timed 

sequences (#Seq). From Fig. 20(c), we can see that when the number of timed sequences 

increased, the execution times of all algorithms increased. This is because the algorithms 

needed more time to check the extra timed sequences that were added to the timed 

sequence database to decide if they contained a timed sequential pattern or not. We 

observed that the number of timed sequential patterns, which were generated by these 

algorithms, increased when the number of timed sequences increased, as shown in Fig. 

20(d). The number of timed sequential patterns that were discovered by the algorithms 

also increased because the possibility of finding more patterns in the new timed 

sequences that satisfy the min-sup (50% as the default value) condition also increased. 

With an increased number of timed sequences in the database, the algorithms needed to 

check if some new patterns could occur and did not exist in the old timed sequences. 

Next, the algorithm checked their support against the threshold (min-sup). It is possible 

that the support of some old patterns in the database before new sequences was added 

did not satisfy the min-sup condition because they were not supported by enough timed 

sequences; but with a new timed sequence database, these patterns became timed-

sequential patterns. Thus, the number of newly discovered timed sequential patterns 

would increase. For example, if a database had 1,000 sequences in the synthetic dataset, 

the number of timed sequential patterns was 3,720, while the number of timed sequential 

patterns was 3,780 when the timed sequence database had 10,000 timed sequences. 

 

 

5.5.5 Impact of the Number of Events per Sequence 

Fig. 21(a) and (b) show the impact of the number of events (#Events) per timed 

sequence on the execution time (ET) and the number of discovered sequential patterns 

(#patterns). There was a strong relationship between the length of a timed sequence and 

the number of discovered patterns. Increasing the length of timed sequences (#Events) 

drove the discovery of more patterns because the algorithm could extend a pattern up to 

the length of the timed sequence. If we have a timed sequence that contains n events, we 

can discover a set of timed sequential patterns such that their length varies from 1 to n. 

Subsequently, the required time of discovering those patterns will increase as shown in 

Fig. 21 (a). 



 

5.5.6 Impact of the Number of Items per Event 

In the last experiment, we increased the number of unique items in each event. That 

means many new items appear in the timed sequence database TSDB which leads to 

detecting new timed sequential patterns. When the number of items increases, the number 

of possible combinations between those items to generate candidates also increases. Thus, 

the number of patterns increased, as shown in Fig. 21(d). Growing the length of events 

led to the growth of the number of candidates, which means the algorithms needed more 

time, as shown in Fig. 21(c), to check those events, generate candidates, and determine 

if they were timed sequential patterns and reported the temporal relations. 

 
 

 

 

 

 
 

 
Fig. 18. Parameter Study for T-Drive Dataset 

 

 
 

Fig. 19. Parameter Study for Oklahoma Dataset 
 



 
 

 

 

6. Conclusion and Future Work 

 

In this paper, we presented an algorithm called Minits-AllOcc, to discover timed 

sequential patterns TSP, which are sequential patterns that include the transition times 

between all timesets. A temporal relation in the timed sequential patterns is calculated 

after considering all possible pattern occurrences across the timed sequence database 

 
Fig. 20. Parameter Study for Synthetic Dataset 

 

 
Fig. 21.  Parameter Study for Synthetic Dataset 

 



TSDB. We implemented two versions of Minits-AllOcc: (1) Minits-AllOcc using single-

core CPUs, and (2) MMinits-AllOcc on multi-core CPUs. We conducted experiments to 

compare the accuracy and execution time of the algorithms. The experiments showed 

that the algorithms produced accurate patterns. Also, MMinits-AllOcc outperformed 

Minits-AllOcc when the dataset was enormous in size, in the length of timed sequences, 

or in the number of items per event. For future work, we plan to improve Minits-AllOcc 

to account for both long timed sequences and Dynamic Timed Sequence Database 

(DTSDB). The algorithm will be able to mine TSP without re-executing everything from 

scratch. 
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