O 0 J o U w N

B s D D D W W W W W W W W W W NNNNNNNNNN R R R R R R e e e
o s W NP O WV ®Jd oS W RO WO Jd o W N P O WO doUs W N R O

Data Science 0 (0) 1 1
10S Press

Arangopipe, a Tool for Machine Learning
Meta-Data Management

Jorg Schad ?, Rajiv Sambasivan * and Christopher Woodward *
4 ArangoDB

Abstract. Experimenting with different models, documenting results and findings, and repeating these tasks are day-to-day
activities for machine learning engineers and data scientists. There is a need to keep control of the machine-learning pipeline
and its metadata. This allows users to iterate quickly through experiments and retrieve key findings and observations from
historical activity. This is the need that Arangopipe serves. Arangopipe is an open-source tool that provides a data model
that captures the essential components of any machine learning life cycle. Arangopipe provides an application programming
interface that permits machine-learning engineers to record the details of the salient steps in building their machine learning
models. The components of the data model and an overview of the application programming interface is provided. Illustrative
examples of basic and advanced machine learning workflows are provided. Arangopipe is not only useful for users involved in
developing machine learning models but also useful for users deploying and maintaining them.

1. Overview

The outlook for the adoption of machine learning-based solutions into technology-enabled aspects of
business is strong[!]. This recent survey by McKinsey suggests that companies attribute their growth
to the adoption of Artificial Intelligence(Al) in their application software. The companies that see the
strongest growth are those associated with a core set of best practices and processes around develop-
ing and implementing Al-based solutions. Other surveys such as [2], [3] and [4] offer insights into
the current state of affairs in developing enterprise machine learning solutions. These surveys suggest
that reproducibility of results and tracing the lineage of activities performed on data science projects is
a pain point in operationalizing machine learning solutions. This is consistent with the technical debt
in the machine learning life-cycle discussed in [5]. One of the recommendations of [4] is the integra-
tion of open-source tools to circumvent these challenges. Reproducibility of results has plagued the
research community too. [6] is recent work that exemplifies the brittleness of results and the need to
promote rigorous methodology and tools to facilitate reproducible results. Therefore, tools that facilitate
reproducibility can benefit both the practitioner and the research community. Not surprisingly, tools and
methods to address this problem have attracted the attention of researchers in this area [7], [8], [9] and
[10]. Arangopipe is a solution that was developed to address this pain point leveraging the unique fea-
tures that a multi-model database supporting a graph data model offers in developing solutions for this
problem.

Much of model development for machine learning and data analytic applications involves analyzing
activities and findings that went into building earlier models, such as examining distribution characteris-
tics of features, effective modeling choices, and results from hyper-parameter tuning experiments. Simi-
larly, when these models are deployed, there is a frequent need to review data from previous deployments

2451-8484 © 0 — IOS Press and the authors. All rights reserved

O 0 J o U w N

BB B R R WWWWWwWwWw W NDNDNDNDNDDNDNDNDNDNND R R R R R R R R
o U w DR O VW 0oy U W N RO VW oY U WD RO VW Yy W NP O

O 0 J o U w N

B s D D D W W W W W W W W W W NDNNNNNNNN R R R R R R e e e
o s W NP O WV ®Jd oS W R O WO Jd o0 W N P O W ®doUs W N R O

2 J. Schad et al. / Arangopipe

to verify configuration and deployment steps. These activities are those associated with reproducibility
and traceability in surveys such as [4] and [2]. Therefore, applications and tools that record relevant in-
formation about machine learning model development tasks and facilitate the easy access and search of
this information are of importance to teams involved in the development, deployment, and maintenance
of machine learning applications. Arangopipe is a tool that provides these features. The process of de-
veloping and deploying machine learning models is often abstracted as a pipeline of activities. A graph
is a natural data structure to represent the activities in the pipeline. Many machine learning tools and
libraries routinely model the activities related to model development as a graph. There is great diversity
in the range of machine learning applications and the complexity associated with developing these ap-
plications. Consequently, there is great diversity in data that needs to be captured from the development
and deployment of these applications. A document-oriented data model is a good fit to accommodate
this diverse range of data capture. With a document-oriented data model, there is no need to define the
structure of the data before storing it. A database that permits both a graph and a document-oriented
data model is ideal to capture data from machine learning model development and deployment activity.
Arango DB provides these features. The rest of this article is structured as follows. In section 2, the
nature of data collected from machine learning projects is discussed. In section 3, a series of illustrative
examples illustrating the features of Arangopipe is provided. In section In section 4, work that is closely
related to the problem solved by Arangopipe is discussed. The details of building and testing Arangopipe
are discussed in section 5. In section 6, the salient observations and facts about using Arangopipe in data

science projects are summarized.

2. Data Science Workflow

Arangopipe provides a data model that permits the capture of information about activities performed
as part of a data science project. The information captured about the activity is also referred to as meta-
data about the activity. The reference data model for Arangopipe was developed after critically reviewing
the nature of meta-data captured across a range of projects from our own experience as well as standard-
ization efforts such as [11] and [12]. While these efforts aim to standardize the operations and the data
captured in productionalizing machine learning applications, it can be easily adapted thanks to the flexi-
bility of the graph data model. A schematic representation of the data model is shown in Fig. 1. A graph
data model is used to capture a comprehensive set and relations of activities that are performed in a data

science project.

O 0 J o U w N

BB B R R W WWWWwWw W W NDNDNDNDNDDNDNDNNDNDNND R R R R R R R R
o U w DR O VW 0oy U WD O vV oY U WD RO VW Yy W NP O

O 0 J o U w N

B s D D D W W W W W W W W W W NDNNNNNNNN R R R R R R e e e
o s W NP O WV ®Jd oS W R O WO Jd o0 W N P O W ®doUs W N R O

J. Schad et al. / Arangopipe 3

App. Admin

Fig. 1. Reference Arangopipe Schema

The purpose of each vertex type and its relevant relationships are as follows. Arangopipe provides
two interfaces to capture and track data science activities. These are the administrative interface and
the project interface. The administrative interface is called arangopipe admin and the project interface
is called arangopipe. The administrative interface is used to provision arangopipe for use in an organi-
zation. The project interface is used to capture data from project activities. To use Arangopipe in your
organization, the graph used to track machine learning and data science activities needs to be provi-
sioned. This graph is called Enterprise ML Tracker Graph and is provisioned using the administrative
interface. Machine learning and data science activities are organized by projects. The administrative in-
terface is used to add machine learning projects that need to be tracked. Each project can track multiple
model-building activities. A model is any data science activity that is tracked by the project. This can
include a wide range of tasks performed by the data science team, such as:

(1) Data analysis experiments to profile attribute characteristics in a dataset

(2) Experiments to evaluate candidate models for a particular machine learning task.
(3) Hyper-parameter tuning experiments.

(4) Experiments to evaluate data drift.

Machine learning models use a featureset to train the model. A featureset is constructed from
a dataset using transformations if required. A run captures the execution of a model. It links the inputs
and the outputs associated with the execution of a model. A run executes a model with a set of model
parameters. The model performance observed during the run is captured by the dev performance vertex
type. A model with an acceptable level of performance is deployed to production. A deployment is used
to capture such models. A deployment is created using the administrative interface. A deployment links

O 0 J o U w N

BB B R R W WWWWwWw W W NDNDNDNDNDDNDNDNNDNDNND R R R R R R R R
o U w DR O VW 0oy U WD O vV oY U WD RO VW Yy W NP O

O 0 J o U w N

B s D D D W W W W W W W W W W NDNNNNNNNN R R R R R R e e e
o s W NP O WV ®Jd oS W R O WO Jd o0 W N P O W ®doUs W N R O

4 J. Schad et al. / Arangopipe

the assets used by the deployed model. These include the dataset, the featureset, the model, and its model
parameters. As a deployed model serves requests, we get to observe its performance. This performance
is captured by the serving performance vertex type. See section 3 for the details of examples that illus-
trate how machine learning project activity can be captured with Arangopipe. It will be evident that each
of the illustrative examples represents an instance of the data model described above. An example of an
instance of this data model from a model-building experiment is shown in Figure 2.

(Feaureset B [Dataset
tag : Deployment_HPE_2019.07.19 to zmg,uqu) tag : Deployment_HPE_2019.0719 o 2019-06- 19)

4 Experiment N Deployment) (Model Params \
{28 : Deployment_HPE_2019.07-19 10 2019.06-19 | (@8 : Deployment HPE_2019-07-19 10 2019-06-19 alpha : 0.0006894243467609138

serving Perf

Lperiod 2019.07-19 t0 2015-06-19 rmse: 0 337snzafsrmu4J

C Dev Pert

(e v mmtomassmn i oot w0 o i

Nall I

Fig. 2. Model Building Activity as a Graph

The same data model can be used to capture the meta-data from a variety of common machine learning
experiments. Each of these examples follows the same template to capture meta-data. For new data
assets, the properties of the asset are defined as a document. The asset is then registered and linked to
the project. If it is an existing resource, it is retrieved using a search function and then its properties
are updated. The data model discussed above should be sufficient for the meta-data capture from a wide
range of experiments. However, if there is a need to introduce new elements into this data model for
a specific application, that is also possible. For example, if you need to track a new type of meta-data
for your machine learning experiments and you wish to capture this as a separate vertex type and create
edges from existing vertices to the new vertex type, that can be done. Note that no schema constraint
enforces the kind of data that you can capture with each vertex type described above. This benefit comes
from using a document-oriented model for node data. This feature can be exploited for the following
purposes. The same model vertex type can be used to capture models from multiple machine learning
libraries. The github repository for this project contains examples that illustrate the use of identical
workflow steps for model development tasks from different libraries such as scikit-learn, tensorflow,
and pytorch. The artifacts and results produced from modeling tasks can be stored as node data. These
results can be retrieved and re-materialized as programmatic objects. An example of this feature to store
and re-materialize results from Zensor Flow Data Validation is available in the Arangopipe repository.
In general, as long as the vertex data has a JSON representation and is not too large, for example, the
weights associated with a massive neural network, it can be captured as part of the vertex data. To
associate large data with vertices, the data can be stored in appropriate file formats such as HDF'5, and
the URL to the data file could be stored as a node property.

2.1. Software Implementation

Arangopipe consists of the following components:

O 0 J o U w N

BB B R R W WWWWwWw W W NDNDNDNDNDDNDNDNNDNDNND R R R R R R R R
o U w DR O VW 0oy U WD O vV oY U WD RO VW Yy W NP O

O 0 J o U w N

B s D D D W W W W W W W W W W NDNNNNNNNN R R R R R R e e e
o s W NP O WV ®Jd oS W R O WO Jd o0 W N P O W ®doUs W N R O

J. Schad et al. / Arangopipe 5

2.1.1. python-package interface

The python package is primarily meant for data scientists to track and log data science activities
they perform for projects. The package provides the administrative and project interfaces discussed
above. A project administrator should first provision Arangopipe for use in the organization using the
administrative interface. Provisioning sets up the database and graph to track machine learning projects
as well as the connection to the provisioned database. The administrator then adds projects that need to
be tracked to Arangopipe. At this point, project members can use the connection and project information
to start logging model development activities.

2.1.2. Arango DB

This is the database used with Arangopipe. Project administrators and personnel involved in deploying
and maintaining machine learning models can use the Arango Query Language (AQL) through the web
interface of Arango DB to run queries on the Arangopipe database if needed.

2.1.3. A Web User Interface

A web interface to track, view, and search for information about assets and model building activity is
provided. The web interface is primarily meant to be used by personnel deploying or managing machine
applications to obtain historic information about model development activity, deployments, serving per-
formance details, etc.

2.1.4. Container Images

Docker images of Arangoipe bundled with major deep learning toolkits, pyforch and tensorflow are
available. These images contain the above components along with pytorch or tensorflow. Since these
toolkits are widely used, data scientists and machine learning engineers can use these images to start
using Arangopipe in their organizations.

It is possible to use Arangopipe with Oasis, Arango DB’s managed service offering on the cloud. This
would require no installations or downloads. The details of doing this are provided in section 3.

A schematic illustration of how the components discussed above are used with Arangopipe and
ArangoDB is shown in Figure 3. An Arangopipe Administrator can use a Jupyter notebook to provi-
sion Arangoipe for a project. The administrator would use the administration interface for this purpose.
Project team members, for example, data scientists, can use a Jupyter notebook (or a python script) to
log meta-data about project activities using the arangopipe interface. This interface exposes two other
interfaces. The arangopipe_storage interface offers functionality related to capturing meta-data from
machine-learning pipeline activities in ArangoDB. The arangopipe_analytics interface offers function-
ality implemented with machine learning, such as methods to identify dataset drift. Dev-Ops personnel
involved in operationalizing machine learning applications can use the web user interface to look up
details of deployments or assets such as models or datasets. Arango DB offers an interface to develop
analytic applications with ArangoDB. These applications can generate machine learning meta-data, for
example, embeddings of graphs used in these applications. These applications can use the Arangopipe
methods to store this meta-data in ArangoDB.

O 0 J o U w N

BB B R R W WWWWwWw W W NDNDNDNDNDDNDNDNNDNDNND R R R R R R R R
o U w DR O VW 0oy U WD O vV oY U WD RO VW Yy W NP O

0 J o 0w N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

6 J. Schad et al. / Arangopipe

Dev- i Arangopipe
ops | e | Arang? pipe o

User
role:
operationalizing

ML apps i

api

Jupyter
| m— Notebook Arangopipe
Storage

Data
Scientist
role: i
Arangopipe
Analytics

develop
ML Jupyter
models) 'lotebook
)
Arangopipe = ArangoDB
Administrator Arangopie
role:
provision Adminstration
Arangopipe
projects. peango
Graph
Anlytics
API
Graph
Analytics
App
Developer Jupyter
Notebook
role @
develop ap
Graph Components
Analytic of Graph
applications Analyiics
API

Fig. 3. Using Arangopipe with Analytics Applications

For more information about these components or to evaluate Arangopipe, please visit the project
github repository [13]. The repository contains examples that illustrate the features of Arangopipe using
Google’s Colab [14] notebooks (see section 3). Working through these notebooks does not require the
installation of software on your machine. These examples use Oasis, a managed service version of
ArangoDB.

3. Illustrative Examples of Arangopipe

A comprehensive discussion of the advantages of using a graph data model to capture machine learn-
ing meta-data and a narrative detailing the progress of a data science project using Arangopipe is avail-
able in arangopipe-overview [15] and collaboration with arangopipe [16]. In this section, we present
examples that illustrate the key features of Arangopipe. These features are illustrated with model build-
ing activity using the California Housing dataset [17] from the CMU statlib repository [8]. Each section
below discusses a salient aspect of using Arangopipe with your model development efforts.

The basic template to use Arangopipe to capture machine learning meta-data from project activity is
as follows. The first step involves installing Arangopipe and the dependencies needed for the machine
learning project activity. An illustrative installation segment in a notebook is shown in Figure 4.

0 J o 0w N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

https://github.com/arangoml/arangopipe/blob/master/documentation/README.md
https://github.com/arangoml/arangopipe/blob/master/documentation/README.md
https://www.arangodb.com/2021/01/arangoml-series-multi-model-collaboration/
https://www.arangodb.com/2021/01/arangoml-series-multi-model-collaboration/

0 J o 0w N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

%scapture
1pip install python-arango
!pip install arangopipe==0.6.6.9.3

J. Schad et al. / Arangopipe 7

1pip install pandas PyYAML==5.1.1 sklearn2 hyperopt uuid datetime jsonpickle

Fig.

The second step is to provision

4. Installing Arangopipe in a Jupyter Notebook

Arangopipe for use with the project. This can be done with the admin-

istrative interface. An illustrative excerpt of code showing how this is done is shown in Figure 5

[1 from arangopipe.arangopipe storage
from arangopipe.arangopipe storage
from arangopipe.arangopipe storage
from arangopipe.arangopipe storage
mdb_config = ArangoPipeConfig()
msc = ManagedServiceConnParam()

.arangopipe_api import ArangoPipe

.arangopipe_admin_api import ArangoPipeAdmin

.arangopipe _config import ArangoPipeConfig
.managed_service_conn_parameters import ManagedServiceConnParam

conn_params = { msc.DB_SERVICE HOST : "arangoml.arangodb.cloud", \
msc.DB_SERVICE END POINT : "createDB",\
msc.DB_SERVICE NAME : "createDB",\
msc.DB_NAME: 'YOUR DATABASE NAME',\
msc.DB_USER NAME:'YOQUR USERNAME',\
msc.DB_PASSWORD: 'YOQUR PASSWORD',\
msc.DB_SERVICE PORT : 8529,\
msc.DB_CONN_PROTOCOL : 'https',\
msc.DB_REPLICATION FACTOR: 3}
mdb_config = mdb_config.create_connection_config(conn_params)
admin = ArangoPipeAdmin(reuse_connection = False, config = mdb_config) # Change reuse connection to True
ap_config = admin.get_config()
ap = ArangoPipe(config = ap_config)

Prints the temporary login credentials

These credentials are only valid for a short time
mdb_config.get _cfg()

Fig. 5. Provision Arangopipe

After provisioning Arangopipe

for a project, a project can register assets captured by the data model,

for example, a dataset, using Arangopipe. An illustrative excerpt showing registering a dataset is shown

in Figure 6.

ds info = {"name" : "california-housing-dataset",\

"description": "This dataset lists median house prices in Califoria. Various house f
eatures are provided",\

"source": "UCI ML Repository" }
ds reg = ap.register dataset(ds info)

Fig. 6. Register a Dataset

Alternatively, a project can retrieve an existing asset, for example, a dataset using a lookup method, as
shown in Figure 7 and then update its properties. In this scenario, a provisioned Arangopipe installation
is used for the model tracking activity.

0 J o 0w N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

O 0 J o U w N

B s D D D W W W W W W W W W W NDNNNNNNNN R R R R R R e e e
o s W NP O WV ®Jd oS W R O WO Jd o0 W N P O W ®doUs W N R O

8 J. Schad et al. / Arangopipe

admin = ArangoPipeAdmin(reuse_connection=True)
the_config = admin.get config()
ap = ArangoPlpe(config=the_config)
Read the wine-quality csv file (make sure you're running this from the root of MLflow!)
wine_path = os.path.join(os.path.dirname(os.path.abspath(__file_)),
"wine-quality.csv")
data = pd.read csv(wine_path)

ds_reg = ap.lookup_dataset("wine dataset")
fs_reg = ap.lookup_featureset("wine_no_transformations")

Fig. 7. Lookup a Dataset

The examples that follow illustrate the use of Arangopipe in a set of representative application scenar-
i0s.

3.0.1. Basic Workflow

Please see Arangopipe Basic Workflow [19] for an illustration of the basic workflow with Arangopipe.
It can be run as a colab notebook, so no installation is necessary to work through the notebook. The
notebook develops a Linear Regression model using the scikit-learn[20] library and logs the results
of the model development activity in Arangopipe. The notebook uses Arango DB’s managed service
offering, Oasis, as the database. The notebook execution begins with specifying a set of connection
parameters to connect to the ArangoDB database instance to be used with Arangopipe. A method call
is made through the administrative interface to provision the database for use with Arangopipe. This
connection information can be saved and reused in subsequent interactions with the Arangopipe database
instance. The project interface with which modeling activity is logged is then created with connection
information used in the provisioning step. The notebook illustrates the typical administrative and project
activities involved in using Arangopipe in a data science project.

3.0.2. Reusing Archived Steps

The sequence of steps illustrated with the basic workflow can be used to capture data science project
activities from a variety of tasks. Data scientists can store key results from model building experiments
in Arangopipe. These results can be programmatic artifacts, such as results from exploratory data analy-
sis or a hyper-parameter tuning experiment. A colleague can retrieve these artifacts from Arangopipe in
a subsequent session and re-materialize them as programmatic entities. Please see using Arangopipe
with TEDV for exploratory data analysis [21] for an example of performing this in an exploratory
data analysis task using tensor flow data validation tensorflow data validation. Please see perform-
ing hyper-parameter optimization with Arangopipe [22] for an example with a hyperparameter tuning
experiment. The capability to store node data as documents is exploited in these examples. Node data
and results from modeling are easily converted into JSON, which is the format that ArangoDB stores
documents in. Tools to serialize programmatic objects into JSON and conversely, create programmatic
objects from JSON, such as jsonpickle[23] are available. In some cases, like with TFDV, these are
available from the tool used for the machine learning task. In a subsequent project activity, these model
results can be retrieved from Arangopipe and re-materialized to programmatic objects native to the tool
library that created them. Excerpts illustrating this for the hyper-parameter tuning experiment are shown
in Figure 8 and Figure 9. The hyper-parameter tuning experiment stores the result of the experiment.
The result can be subsequently retrieved.

O 0 J o U w N

B N N S A O R O R O R O R O O O L O L O L B S S O S T T e e T e T e T e T]
o U w DR O VW 0oy U WD O vV oY U WD RO VW Yy W NP O

https://github.com/arangoml/arangopipe/blob/master/examples/Arangopipe_Feature_Examples.ipynb
https://colab.research.google.com/github/arangodb/interactive_tutorials/blob/master/notebooks/ML_Collab_Article/example_output/Arangopipe_Generate_TF_Visualization_output.ipynb
https://colab.research.google.com/github/arangodb/interactive_tutorials/blob/master/notebooks/ML_Collab_Article/example_output/Arangopipe_Generate_TF_Visualization_output.ipynb
https://www.tensorflow.org/tfx/data_validation/get_started
https://colab.research.google.com/github/arangodb/interactive_tutorials/blob/master/notebooks/ML_Collab_Article/example_output/ML_Collaboration_Hyperopt_Integration_output.ipynb
https://colab.research.google.com/github/arangodb/interactive_tutorials/blob/master/notebooks/ML_Collab_Article/example_output/ML_Collaboration_Hyperopt_Integration_output.ipynb

0 J o 0w N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

J. Schad et al. / Arangopipe 9

~ Convert Hyperopt Space to JSON

[] ruuid = str(uuid.uuid4().int)
frozen_space = jsonpickle.encode(space)
model_params = {"name": "Housing Price Regression Model Params",\
"hyperopt-space": frozen_space, "run_id": ruuid}

4

Store Results in Arangopipe

Note that we are tagging the run so that we can look up this run by the tag if we need to retrieve it from storage

[] model perf = {"best": jsonpickle.encode(best), "run_id": ruuid, "timestamp": str(datetime.datetime.now())}
run_info = {"dataset" : dataset[" key"],\
"featureset": fs_reg[" key"],\
"run_id": ruuid,\
"model": model reg[" key"],\
"model-params": model_params,\
"model-perf": model_perf,\
"tag": "Housing-Price-Hyperopt-Experiment",\
"project”: "Housing Price Estimation Project"}
ap.log_run(run_info)

Fig. 8. Store Hyper-Parameter Tuning Result in Arangopipe

“

What was the best the model from the previous run?

The tag (Housing-Price-Hyperopt-Experiment) that we applied while logging the previous experiment can be used to retrieve the results
associated with the previous run. For example, we may be interested in the best model and its parameters from the experiment we just
conducted.

[] mp = ap.lookup_modelperf ("Housing-Price-Hyperopt-Experiment”)

<

Note about lookups:

Check the return value of the lookup to see if you got a reference to what you were looking for. If what you are looking for was not found, you
will get a "None" for the return value.

[

mp = ap.lookup_modelperf("A non existent experiment in the database")
mp == None

True

mp = ap.lookup_modelperf("Housing-Price-Hyperopt-Experiment")

mp["best"]

"{"alpha": 2.4177502328996713e-05, "regressor_type": 0}'

Fig. 9. Subsequent Retrieval of Best Parameter Values

These examples illustrate another aspect of the utility of Arangopipe. Not all activities in a machine
learning project are targeted at developing a machine learning model. There is much effort expended in
activities like descriptive and exploratory analysis of the data, transforming the data to a form amenable
for model building, experiments to determine parameters for model building, etc. Meta-data from these
activities can also be captured by Arangopipe.

3.0.3. Extending the data model

It is possible to extend the Arangopipe data model to suit the custom needs that a project may have.
For example, if an organization would like to capture notebooks as a separate asset that is tracked, this
can be done. Please see the “Advanced Modeling” section of performing hyper-parameter optimization
with Arangopipe for an example illustrating this. Projects that need to change or define a different data
model in their projects can do so as illustrated in this example. This example illustrates the process of
adding a vertex to the data model to capture project notebooks. An excerpt illustrating the code segment
is shown in Figure 10.

0 J o 0w N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

https://colab.research.google.com/github/arangodb/interactive_tutorials/blob/master/notebooks/ML_Collab_Article/example_output/ML_Collaboration_Hyperopt_Integration_output.ipynb
https://colab.research.google.com/github/arangodb/interactive_tutorials/blob/master/notebooks/ML_Collab_Article/example_output/ML_Collaboration_Hyperopt_Integration_output.ipynb

0 J o 0w N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

10 J. Schad et al. / Arangopipe

~ Advanced Modeling Option

If you have the need to extend or customize the arangopipe schema, the API provides that capability. You can add vertex types and edge types.
In the context of this (hyperp experiment) the following example serves to illustrate this. If we want to save meta-data about
notebooks used for a project to a new graph vertex type, and, link the project to notebooks created for the project, the following code segment
illustrates how this can be done.

[] notebook_info = {"version”: "v1", "author": "John Doe", "name": "hyperopt integration.ipynb"}
if not admin.has_vertex('notebook'):
admin.add_vertex_to_arangopipe('notebook")
nb_info = ap.insert_into_vertex_type('notebook’, notebook info)
if not admin.has_edge('project_notebook'):
admin.add_edge_definition_to_arangopipe('project notebook', ‘project', 'notebook')
ap.insert_into_edge type('project notebook', project, nb_info)

{'_id': 'project _notebook/545953669-541953545",
‘“key': '545953669-541953545",
"“rev': '_bvZniMe--_'}

Fig. 10. Adding a Notebook Vertex to the Data Model

3.0.4. Experimenting and documenting facts about models and data

Documenting facts about models is a routine task for data scientists. The bias and variance of a devel-
oped model are of interest to data scientists on regression tasks. Please see using arangopipe to document
model bias [24] for an example showing how model bias can be captured and stored with Arangopipe.

3.0.5. Checking the validity and effectiveness of machine learning models after deployment

Data drift and concept drift are known issues with maintaining and managing machine learning so-
Iutions. Arangopipe provides an extensible method to check for dataset drift. To detect dataset drift, a
machine learning classifier is used to discriminate between the dataset used to develop the model and
the data the model is receiving. A reference implementation using a RandomForest [25] classifier is
provided. By implementing the abstract class, users can use the same idea, but use a different classifier
for the task. An excerpt illustrating the use of this feature is shown in Figure 11. Please see capturing
dataset drift with Arangopipe [26] for an example of using Arangopipe to evaluate data drift.

[] dfl = df.query("lat <= -119")
df2 = df.query("lat > -119")

Can we discriminate between the two?

Let's develop a classifier and see if we can

Using the dataset shift API

Ll

Here we use a random forest classifier and our Dataset Shift Detector to test our data and then print the returned score value.

[] from arangopipe.arangopipe analytics.rf dataset shift detector import RF DatasetShiftDetector

rfd = RF_DatasetShiftDetector()
score = rfd.detect_dataset_shift(dfl, df2)
print ("Detaset shift score : %2.2f" % (score))

Interpretation of the score reported by the shift detector

The API uses a classifier to discriminate between the datasets provided to it. The score reported by the API is the accuracy of the classifier to
discriminate between the datasets. Values close to 0.5 indicate that the classifier is not able to discriminate between the two datasets. This
could be interpreted as a situation where no discernable shift has occurred in the data since the last model deployment. Values close to 1
indicate that the dataset shift is detectable, and we may need to revisit modeling.

How the dataset shift affects the performance of the deployed model is problem-dependent. So we must assess the score in the context of a
particular application. Usually, we perform experiments to determine a threshold value of the dataset shift score; the score represents an
acceptable level of drift.

Fig. 11. Dataset Shift Detection with Arangopipe

0 J o 0w N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

https://colab.research.google.com/github/arangoml/arangopipe/blob/master/examples/Arangopipe_Feature_Example_ext1.ipynb
https://colab.research.google.com/github/arangoml/arangopipe/blob/master/examples/Arangopipe_Feature_Example_ext1.ipynb
https://colab.research.google.com/github/arangoml/arangopipe/blob/master/examples/Arangopipe_Feature_ext2.ipynb
https://colab.research.google.com/github/arangoml/arangopipe/blob/master/examples/Arangopipe_Feature_ext2.ipynb

O 0 J o U w N

BB s WWWWwWw W W W NN DN R R R R R R R
o U w NP O VW 0oy U WD RO v oY U Ww DOV oYy U WD PO

J. Schad et al. / Arangopipe 11

3.0.6. Using the Arangopipe Web User-Interface

The easiest path to exploring the Arangopipe Web-User-Interface is by running one of the Arangopipe
container images. Container images with pytorch[27] and tensorflow [28] are available. The project doc-
umentation [13] provides detailed instructions on launching one of these containers. After running the
docker image, the web-user interface should be accessible. The section “Arangopipe User Interface”
on the project documentation page provides information about the organization of the user interface and
the details of using key features like asset search and asset lineage tracking. The Arangopipe Web-User
Interface is primarily meant to be used by dev-ops personnel who operationalize machine learning ap-
plications. Searching for assets, tracing asset lineage, and obtaining information about past deployments
are common tasks for personnel involved in operationalizing machine learning models. It is also possible
to use AQL to query assets tracked by Arango DB. A comprehensive introduction along with detailed
examples of using AQL to create and update data stored in ArangoDB is available at the AQL web
page[29]. AQL queries may be executed from the Web-User-Interface. A detailed description of using
AQL with the web user interface is available at AQL web interface documentation[30]. Figure 12 shows
the web user interface that can be used to execute AQL queries.

aaaa

oooooooooooooo

Preview

s
Tooks_right & - ®

© [& "Ririh Shene s wine dotosett

SRAPHS 3 ReOVE d TN datasets
manual_labels e ©
queryNumDatasets e ©
@ame ©
query 2 ™o ©
v Hous query_3 e ©
query_4 Hme ©
s | mme ©
query_6 Eme ©

B Oelements @4970ms v - x

Fig. 12. Web User Interface

3.0.7. Storing Features From Model Development

Feature engineering is very important in many machine learning tasks (Domingos, 2012). Arangopipe
can be used to capture features generated from machine development. Graph embedding can be used to
obtain a Euclidean representation of graph-structured data. These embeddings can be used as features
in machine learning models. A variety of techniques exist to obtain these embeddings with each finding
favor in particular applications [31]. Please see IMDB-Networkx-ArangoDB-Adapter[32] for an exam-
ple of using Arangopipe along with the networkx adapter to store results from embeddings generated
from node2vec [33].

3.0.8. Support for R Models
Using the reticulate R package, it is possible to capture meta-data from R data science tasks in
Arangopipe. Please see an overview of reticulate [34] for information about this package and details

O 0 J o U w N

B e N N S O R O R O R N e O O N O L O L O L B O S S O S L T R e T e T e T e T]
o U w DR O VW 0o U WD O vV oY UWw D RO VW Yy W NP O

https://pytorch.org/
https://www.tensorflow.org/
https://github.com/arangoml/arangopipe/tree/master/documentation
https://github.com/arangoml/arangopipe/tree/master/documentation
https://github.com/arangoml/arangopipe/tree/master/documentation
https://www.arangodb.com/docs/stable/aql/
https://www.arangodb.com/docs/stable/aql/
https://www.arangodb.com/docs/stable/aql/invocation-with-web-interface.html
https://github.com/arangoml/networkx-adapter/blob/master/examples/IMDB_Networkx_Adapter.ipynb
https://rstudio.github.io/reticulate/articles/calling_python.html

O 0 J o U w N

B s D D D W W W W W W W W W W NDNNNNNNNN R R R R R R e e e
o s W NP O WV ®Jd oS W R O WO Jd o0 W N P O W ®doUs W N R O

12 J. Schad et al. / Arangopipe

of type conversion between R and python. Please see using R with Arangopipe [35] for an example of
illustrating the capture of meta-data from R model development activity with Arangopipe.

4. Related Work

Efforts to standardize operations and data related to managing meta-data from machine learning were
considered and are actively monitored in the development of Arangopipe. An example[36] illustrating
the use of the elements of ML Spec in an Arangopipe model is available. The Open Neural Network Ex-
change [37] is a standard for the development of interoperable machine learning models. This standard
defines a standard set of data elements and operations for a machine learning model. In this standard, as
well as in most machine learning model development tools, the computation associated with developing
the machine learning model is abstracted as a graph. Many tools to build data science pipelines such as
Airflow [38] and Luigi [39] model the pipeline computation as a graph. In particular, the computation
associated with the model or data science pipeline is expressed as a Directed Acyclic Graph. As execu-
tion flows through this graph, there is meta-data is produced. This is the meta-data that is captured by
Arangopipe. Since a graph is used to express computation, a graph data model is a natural fit to capture
meta-data about data science workflows. The meta-data are stored as documents in the nodes and edges
of the graph. If there is a need to enforce schema constraints on the meta-data obtained as the computa-
tion progresses, this can be done. If the nature of meta-data obtained from the computation is dynamic
and structural constraints for the data are not known apriori, the document-oriented storage model can
offer the flexibility to capture such data. There is no need to define constraints about the data before it is
captured as a document. In some data models, for example, the relational model, these constraints must
be defined before the system starts ingesting data. This implies that structural constraints of the meta-
data must be codified and set up before using the model to capture meta-data. The multi-model aspect of
ArangoDB that permits the use of both a graph and a document-oriented data model to capture data is,
therefore, a data model that provides both native expressiveness and flexibility for the capture of meta-
data from machine learning pipelines. For the reasons discussed in section 1, the need to develop tools
that facilitate reproducibility and tracking the provenance of models has attracted the attention of the re-
search community. [40], [41],[8], and [42] are tools developed to solve the reproducibility problem. We
believe that the graph and document-oriented storage models of ArangoDB offer considerable versatility
and flexibility in capturing and analyzing meta-data from machine learning pipelines. As discussed, the
provided data model was derived after reviewing solutions from our own experience, other solutions to
the problem, a survey of research on this problem, and standardization efforts related to this area. If ap-
plications or projects need to use a different data model or extend the provided data model, Arangopipe
provides methods for this purpose. As standardization efforts in this application area progress, new ideas
that need to be captured by the data model can be added using the provided python package.

5. Building and Testing

The project repository [43] provides detailed information on the various options to try Arangopipe
on a project. Arangopipe is open source, contributions are welcome! For details of building Arangopipe,
please see the build instructions [44]in the project repository. Unit tests that illustrate how each method
in Arangopipe is to be invoked are available [45]. For each method in the Arangopipe, a test case is
available. A review of the test cases should provide the complete details of invoking each method in

O 0 J o U w N

BB B R R W WWWWwWw W W NDNDNDNDNDDNDNDNNDNDNND R R R R R R R R
o U w DR O VW 0oy U WD O vV oY U WD RO VW Yy W NP O

https://github.com/arangoml/arangopipe/blob/master/examples/R_Example_Colab.ipynb
https://github.com/arangoml/arangopipe/blob/master/examples/MLSpec_AP_Example.ipynb
https://onnx.ai/
https://onnx.ai/
https://airflow.apache.org/docs/apache-airflow/stable/concepts.html
https://luigi.readthedocs.io/en/stable/execution_model.htmll
https://github.com/arangoml/arangopipe/tree/master/documentation/
https://github.com/arangoml/arangopipe/blob/master/documentation/build/maintainers.md
https://github.com/arangoml/arangopipe/blob/master/arangopipe/tests/CItests/arangopipe_testcases.py

0 < o 0w N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

J. Schad et al. / Arangopipe 13

the Arangopipe. New users of Arangopipe can use the test cases as a reference for logging their project
activity with Arangopipe. To facilitate exploration of Arangopipe and the Web Ul, a test data generator
[46] that provides example meta-data is also provided. The test data generation utility runs linear regres-
sion models on bootstrapped versions of the California Housing dataset and logs meta-data from model
evaluations.

6. Conclusion

The capture of meta-data from the machine learning life cycle is important to both researchers and
practitioners. Tools that capture and facilitate analysis of such meta-data are therefore useful to both
these communities. The multi-model feature of ArangoDB presents some unique advantages in the cap-
ture and analysis of data from machine learning pipelines. A graph is a natural abstraction for this
application since most tools used in developing machine learning pipelines model the computation as a
graph. The document-oriented feature of ArangoDB offers flexibility in capturing meta-data from cus-
tom machine learning pipelines. Pipelines do not have to define the structural constraints about the types
of elements in the meta-data obtained from machine learning pipelines before persisting it, as is the case
for example with relational databases. However, if such constraints are desired, then it is possible to en-
force them with a schema. The data model offered with Arangopipe captures the basic elements of any
machine learning pipeline. This model is extensible and should a particular application need it, the pack-
age offers methods to make the desired changes. ArangoDB is tracking standards development initiatives
around machine learning meta-data, such as ML spec. ArangoDB is committed to the further develop-
ment of Arangopipe. Feedback and questions about Arangopipe are welcome in the ArangoML slack
channel and the issues section of the project repository.

References

[1] Global survey: The state of Al in 2020 | McKinsey. https://www.mckinsey.com/business-functions/mckinsey-analytics/
our-insights/global-survey-the-state-of-ai-in-2020.

[2] Algorithmia, State of Enterprise ML, a 2020 survey. https:/info.algorithmia.com/hubfs/2019/Whitepapers/
The- State-of-Enterprise- ML-2020/Algorithmia_2020_State_of_Enterprise_ML.pdf.

[3] Kaggle, State of Data Science and Machine Learning 2020. https://www.kaggle.com/kaggle-survey-2020.

[4] Anaconda, State of Data Science 2020. https://www.anaconda.com/state-of-data-science-2020.

[5] E.Breck, S. Cai, E. Nielsen, M. Salib and D. Sculley, The ml test score: A rubric for ml production readiness and technical
debt reduction, in: 2017 IEEE International Conference on Big Data (Big Data), IEEE, 2017, pp. 1123-1132.

[6] X. Bouthillier, C. Laurent and P. Vincent, Unreproducible research is reproducible, in: International Conference on Ma-
chine Learning, PMLR, 2019, pp. 725-734.

[71 S. Schelter, F. BieBmann, T. Januschowski, D. Salinas, S. Seufert and G. Szarvas, On Challenges in Machine Learning
Model Management, IEEE Data Eng. Bull. 41(4) (2018), 5-15. http://sites.computer.org/debull/A18dec/p5.pdf.

[8] M. Vartak and S. Madden, MODELDB: Opportunities and Challenges in Managing Machine Learning Models, IEEE
Data Eng. Bull. 41(4) (2018), 16-25. http://sites.computer.org/debull/A18dec/p16.pdf.

[9] M. Zaharia, A. Chen, A. Davidson, A. Ghodsi, S.A. Hong, A. Konwinski, S. Murching, T. Nykodym, P. Ogilvie,
M. Parkhe, F. Xie and C. Zumar, Accelerating the Machine Learning Lifecycle with MLflow, IEEE Data Eng. Bull.
41(4) (2018), 39-45. http://sites.computer.org/debull/A18dec/p39.pdf.

[10] K. Katsiapis and K. Haas, Towards ML Engineering with TensorFlow Extended (TFX), in: Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019, pp. 3182-3182.

[11] S. Schelter, J.-H. Boese, J. Kirschnick, T. Klein and S. Seufert, Automatically tracking metadata and provenance of
machine learning experiments, in: Machine Learning Systems Workshop at NIPS, 2017, pp. 27-29.

[12] ML Spec. https://github.com/mlspec/MLSpec.

[13] Arangopipe Project Repository. https://github.com/arangoml/arangopipe/blob/master/documentation/README.md.

0 J o 0w N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

https://github.com/arangoml/arangopipe/blob/master/arangopipe/tests/test_data_generator/generate_model_data.py
https://arangodb-community.slack.com/archives/CN9LVJ24S
https://arangodb-community.slack.com/archives/CN9LVJ24S
https://github.com/arangoml/arangopipe/tree/master/documentation
https://www.mckinsey.com/business-functions/mckinsey-analytics/our-insights/global-survey-the-state-of-ai-in-2020
https://www.mckinsey.com/business-functions/mckinsey-analytics/our-insights/global-survey-the-state-of-ai-in-2020
https://info.algorithmia.com/hubfs/2019/Whitepapers/The-State-of-Enterprise-ML-2020/Algorithmia_2020_State_of_Enterprise_ML.pdf
https://info.algorithmia.com/hubfs/2019/Whitepapers/The-State-of-Enterprise-ML-2020/Algorithmia_2020_State_of_Enterprise_ML.pdf
https://www.kaggle.com/kaggle-survey-2020
https://www.anaconda.com/state-of-data-science-2020
http://sites.computer.org/debull/A18dec/p5.pdf
http://sites.computer.org/debull/A18dec/p16.pdf
http://sites.computer.org/debull/A18dec/p39.pdf
https://github.com/mlspec/MLSpec
https://github.com/arangoml/arangopipe/blob/master/documentation/README.md

0 J o 0w N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

14

[14]
[15]
[16]
[17]

[18]
[19]

[20]

[21]
[22]

[23]
[24]

[25]
[26]

[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]
[40]
[47]
[48]

[49]

J. Schad et al. / Arangopipe

Google Colab. https://colab.research.google.com/notebooks/.

Arangopipe, an overview. https://www.arangodb.com/2021/01/arangoml-series-multi-model-collaboration/.

Arangopipe, a collaboration scenario. https://www.arangodb.com/2021/01/arangoml-series-multi-model-collaboration/.
R.K. Pace and R. Barry, Sparse spatial autoregressions, Statistics & Probability Letters 33(3) (1997), 291-297, Publisher:
Elsevier.

CMU Statlib. http:/lib.stat.cmu.edu/datasets/.

Arangopipe Basic Workflow. https:/github.com/arangoml/arangopipe/blob/master/examples/Arangopipe_Feature
Examples.ipynb.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg et al., Scikit-learn: Machine learning in Python, the Journal of machine Learning research 12 (2011), 2825—
2830, Publisher: JIMLR. org.

Tensorflow Data Validation. https://colab.research.google.com/github/arangodb/interactive_tutorials/blob/master/
notebooks/ML_Collab_Article/example_output/Arangopipe_Generate_TF_Visualization_output.ipynb.

Tensorflow Data Validation. https://colab.research.google.com/github/arangodb/interactive_tutorials/blob/master/
notebooks/ML_Collab_Article/example_output/ML_Collaboration_Hyperopt_Integration_output.ipynb.

JSON pickle. https://jsonpickle.readthedocs.io/en/latest/.

Arangopipe Model Bias. https://colab.research.google.com/github/arangoml/arangopipe/blob/master/examples/
Arangopipe_Feature_Example_ext]1.ipynb.

L. Breiman, Random forests, Machine learning 45(1) (2001), 5-32, Publisher: Springer.

Dataset Drift. https://colab.research.google.com/github/arangoml/arangopipe/blob/master/examples/Arangopipe_
Feature_ext2.ipynb.

Pytorch. https://pytorch.org/.

Tensorflow. https://www.tensorflow.org/.

Arango Query Language. https://www.arangodb.com/docs/stable/aql/.

AQL Web Interface. https://www.arangodb.com/docs/stable/aql/invocation- with-web-interface.html.

P. Goyal and E. Ferrara, Graph embedding techniques, applications, and performance: A survey, Knowledge-Based Sys-
tems 151 (2018), 78-94, Publisher: Elsevier.

ArangoDB Networkx Adapter. https://github.com/arangoml/networkx-adapter/blob/master/examples/IMDB_Networkx_
Adapter.ipynb.

A. Grover and J. Leskovec, node2vec: Scalable feature learning for networks, in: Proceedings of the 22nd ACM SIGKDD
international conference on Knowledge discovery and data mining, 2016, pp. 855-864.

Calling R from Python. https://rstudio.github.io/reticulate/articles/calling_python.html.

Using R with Arangopipe. https://github.com/arangoml/arangopipe/blob/master/examples/R_Example_Colab.ipynb.
Arangopipe ML Spec Integration. https://github.com/arangoml/arangopipe/blob/master/examples/MLSpec_AP_
Example.ipynb.

ONNX. https://onnx.ai/.

Airflow. https://airflow.apache.org/docs/apache-airflow/stable/concepts.html.

Luigi. https://luigi.readthedocs.io/en/stable/execution_model.html.

D. Baylor, E. Breck, H.-T. Cheng, N. Fiedel, C.Y. Foo, Z. Haque, S. Haykal, M. Ispir, V. Jain, L. Koc et al., Tfx: A
tensorflow-based production-scale machine learning platform, in: Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2017, pp. 1387-1395.

M. Zaharia, A. Chen, A. Davidson, A. Ghodsi, S.A. Hong, A. Konwinski, S. Murching, T. Nykodym, P. Ogilvie, M. Parkhe
et al., Accelerating the Machine Learning Lifecycle with MLflow., I[EEE Data Eng. Bull. 41(4) (2018), 39-45.

J. Tsay, T. Mummert, N. Bobroff, A. Braz, P. Westerink and M. Hirzel, Runway: machine learning model experiment
management tool, in: Conference on Systems and Machine Learning (SysML), 2018.

Arangopipe Project Repository. https://github.com/arangoml/arangopipe/tree/master/documentation.

Arangopipe Build Instructions. https://github.com/arangoml/arangopipe/tree/master/documentation.

Arangopipe Test Cases. https://github.com/arangoml/arangopipe/blob/master/arangopipe/tests/Cltests/arangopipe_
testcases.py.

Arangopipe Test Data Generator. https://github.com/arangoml/arangopipe/blob/master/arangopipe/tests/test_data_
generator/generate_model_data.py.

K. Katsiapis and K. Haas, Towards ML Engineering with TensorFlow Extended (TFX), in: Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019, pp. 3182-3182.

G.C. Publio, D. Esteves, A. \Lawrynowicz, P. Panov, L. Soldatova, T. Soru, J. Vanschoren and H. Zafar, ML-schema:
exposing the semantics of machine learning with schemas and ontologies, arXiv preprint arXiv:1807.05351 (2018).

S. Studer, T.B. Bui, C. Drescher, A. Hanuschkin, L. Winkler, S. Peters and K.-R. Miiller, Towards CRISP-ML (Q): a
machine learning process model with quality assurance methodology, Machine Learning and Knowledge Extraction 3(2)
(2021), 392-413, Publisher: Multidisciplinary Digital Publishing Institute.

0 J o 0w N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

https://colab.research.google.com/notebooks/
https://www.arangodb.com/2021/01/arangoml-series-multi-model-collaboration/
https://www.arangodb.com/2021/01/arangoml-series-multi-model-collaboration/
http://lib.stat.cmu.edu/datasets/
https://github.com/arangoml/arangopipe/blob/master/examples/Arangopipe_Feature_Examples.ipynb
https://github.com/arangoml/arangopipe/blob/master/examples/Arangopipe_Feature_Examples.ipynb
https://colab.research.google.com/github/arangodb/interactive_tutorials/blob/master/notebooks/ML_Collab_Article/example_output/Arangopipe_Generate_TF_Visualization_output.ipynb
https://colab.research.google.com/github/arangodb/interactive_tutorials/blob/master/notebooks/ML_Collab_Article/example_output/Arangopipe_Generate_TF_Visualization_output.ipynb
https://colab.research.google.com/github/arangodb/interactive_tutorials/blob/master/notebooks/ML_Collab_Article/example_output/ML_Collaboration_Hyperopt_Integration_output.ipynb
https://colab.research.google.com/github/arangodb/interactive_tutorials/blob/master/notebooks/ML_Collab_Article/example_output/ML_Collaboration_Hyperopt_Integration_output.ipynb
https://jsonpickle.readthedocs.io/en/latest/
https://colab.research.google.com/github/arangoml/arangopipe/blob/master/examples/Arangopipe_Feature_Example_ext1.ipynb
https://colab.research.google.com/github/arangoml/arangopipe/blob/master/examples/Arangopipe_Feature_Example_ext1.ipynb
https://colab.research.google.com/github/arangoml/arangopipe/blob/master/examples/Arangopipe_Feature_ext2.ipynb
https://colab.research.google.com/github/arangoml/arangopipe/blob/master/examples/Arangopipe_Feature_ext2.ipynb
https://pytorch.org/
https://www.tensorflow.org/
https://www.arangodb.com/docs/stable/aql/
https://www.arangodb.com/docs/stable/aql/invocation-with-web-interface.html
https://github.com/arangoml/networkx-adapter/blob/master/examples/IMDB_Networkx_Adapter.ipynb
https://github.com/arangoml/networkx-adapter/blob/master/examples/IMDB_Networkx_Adapter.ipynb
https://rstudio.github.io/reticulate/articles/calling_python.html
https://github.com/arangoml/arangopipe/blob/master/examples/R_Example_Colab.ipynb
https://github.com/arangoml/arangopipe/blob/master/examples/MLSpec_AP_Example.ipynb
https://github.com/arangoml/arangopipe/blob/master/examples/MLSpec_AP_Example.ipynb
https://onnx.ai/
https://airflow.apache.org/docs/apache-airflow/stable/concepts.html
https://luigi.readthedocs.io/en/stable/execution_model.html
https://github.com/arangoml/arangopipe/tree/master/documentation
https://github.com/arangoml/arangopipe/tree/master/documentation
https://github.com/arangoml/arangopipe/blob/master/arangopipe/tests/CItests/arangopipe_testcases.py
https://github.com/arangoml/arangopipe/blob/master/arangopipe/tests/CItests/arangopipe_testcases.py
https://github.com/arangoml/arangopipe/blob/master/arangopipe/tests/test_data_generator/generate_model_data.py
https://github.com/arangoml/arangopipe/blob/master/arangopipe/tests/test_data_generator/generate_model_data.py

0 < o 0w N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

J. Schad et al. / Arangopipe 15

[50] P. Domingos, A few useful things to know about machine learning, Communications of the ACM 55(10) (2012), 78-87,
Publisher: ACM New York, NY, USA.

[51] A. Hagberg, P. Swart and D. S Chult, Exploring network structure, dynamics, and function using NetworkX, Technical
Report, Los Alamos National Lab.(LANL), Los Alamos, NM (United States), 2008.

[52] D. Zheng, M. Wang, Q. Gan, Z. Zhang and G. Karypis, Learning Graph Neural Networks with Deep Graph Library, in:
Companion Proceedings of the Web Conference 2020, 2020, pp. 305-306.

[53] A. Hagberg, P. Swart and D. S Chult, Exploring network structure, dynamics, and function using NetworkX, Technical
Report, Los Alamos National Lab.(LANL), Los Alamos, NM (United States), 2008.

[54] D. Zheng, M. Wang, Q. Gan, Z. Zhang and G. Karypis, Learning Graph Neural Networks with Deep Graph Library, in:
Companion Proceedings of the Web Conference 2020, 2020, pp. 305-306.

[55] T.p.d. team, pandas-dev/pandas: Pandas, Zenodo, 2020. doi:10.5281/zenod0.3509134.

0 J o 0w N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

	Overview
	Data Science Workflow
	Software Implementation
	python-package interface
	Arango DB
	A Web User Interface
	Container Images

	Illustrative Examples of Arangopipe
	Basic Workflow
	Reusing Archived Steps
	Extending the data model
	Experimenting and documenting facts about models and data
	Checking the validity and effectiveness of machine learning models after deployment
	Using the Arangopipe Web User-Interface
	Storing Features From Model Development
	Support for R Models

	Related Work
	Building and Testing
	Conclusion
	References

