

BioVenn – an R and Python package for the comparison and
visualization of biological lists using area-proportional Venn diagrams

Tim HULSENa,1
aDepartment of Professional Health Solutions & Services, Philips Research, Eindhoven, The Netherlands
1Corresponding author. E-mail: tim.hulsen@philips.com. ORCID: 0000-0002-0208-8443

Abstract. One of the most popular methods to visualize the overlap and differences between data sets is
the Venn diagram. Venn diagrams are especially useful when they are 'area-proportional' i.e. the sizes of
the circles and the overlaps correspond to the sizes of the data sets. In 2007, the BioVenn web interface
was launched, which is being used by many researchers. However, this web implementation requires
users to copy and paste (or upload) lists of IDs into the web browser, which is not always convenient and
makes it difficult for researchers to create Venn diagrams ‘in batch’, or to automatically update the
diagram when the source data changes. This is only possible by using software such as R or Python. This
paper describes the BioVenn R and Python packages, which are very easy-to-use packages that can
generate accurate area-proportional Venn diagrams of two or three circles directly from lists of
(biological) IDs. The only required input is two or three lists of IDs. Optional parameters include the
main title, the subtitle, the printing of absolute numbers or percentages within the diagram, colors and
fonts. The function can show the diagram on the screen, or it can write output to one of the supported
file formats. The function also returns all thirteen lists. The BioVenn R package and Python package
were created for biological IDs, but it can be used for other IDs as well. Finally, BioVenn can map
Affymetrix and EntrezGene to Ensembl IDs. The BioVenn R package is available in the CRAN
repository, and can be installed by running ‘install.packages(“BioVenn”)’. The BioVenn Python package
is available in the PyPI repository, and can be installed by running ‘pip install BioVenn’. The BioVenn
web interface remains available at https://www.biovenn.nl.

Keywords: Bioinformatics, Visualization, Venn diagram, Combinatorics, Set theory, Genomics, Data
science, R, Python

1. Introduction

In many ‘big data’ projects, it can be very useful to see the overlap between different data sets, in

terms of patient IDs, gene names, etc. One of the most popular methods to visualize the overlap between

data sets is the Venn diagram: a diagram consisting of two or more circles in which each circle

corresponds to a data set, and the overlap between the circles corresponds to the overlap between these

data sets. Venn diagrams are especially useful when they are 'area-proportional' i.e. the sizes of the circles

and the overlaps correspond to the sizes of the data sets. Some web-based tools were created that can

create area-proportional Venn diagrams, such as the (deprecated) tools VennMaster [1] and DrawEuler

[2]. In 2003, the website Venndiagram.tk [3] was launched, followed in 2007 by the BioVenn web

interface [4], which has been used to create publication figures by many researchers [5], and is still

available at this moment. However, the BioVenn web application requires users to copy and paste lists

of IDs (or upload files with lists of IDs) into the web browser, which is not always convenient and makes

it difficult for researchers to create Venn diagrams ‘in batch’. Moreover, when the source data changes,

it needs to be copy-and-pasted again into the web interface. Using programming languages, it is possible

to do batch processing and to quickly rerun a script when the source data has changed. Two of the most

popular programming languages used within many scientific fields are R and Python. There are some R

and Python packages available that can create Venn diagrams, which are listed in the following

paragraphs.

2. Existing R packages

2.1. colorfulVennPlot

The first package is ‘colorfulVennPlot’ [6]. This package can create 2-circle and 3-circle Venn

diagrams, and use ellipses for diagrams of 4 sets. Only the 2-circle diagrams can be made area-

proportional, but the user needs to calculate the circles’ sizes and overlap by using the separate

‘resizeCircles’ function.

2.2. eulerr

A second package is ‘eulerr’ [7], which can generate area-proportional Euler diagrams. A Euler

diagram is a generalization of a Venn diagram, relaxing the criterion that all interactions need to be

represented. In practice, both terms are used interchangeably. This package uses both ellipses and circles.

2.3. nVennR

A third package is ‘nVennR’ [8]. This package can create “quasi-proportional Venn and Euler

diagrams” for an unlimited number of sets. For a large number of sets, the algorithm might be very slow,

because it needs to run many simulation cycles. Because of the resulting complicated shapes, the

diagrams might not be easy to read.

2.4. venn

A fourth package is ‘venn’ [9], which can generate Venn diagrams up to 7 sets, but not in an area-

proportional manner. For more than three sets, it uses pre-set polygon shapes.

2.5. VennDiagram

The most popular package at this moment is ‘VennDiagram’ [10]. This package can generate Venn

and Euler diagrams of up to five sets, but these are not area-proportional, unless the user calculates the

radii and distances between the circles by himself, and passes these numbers through to one of the

draw.*.venn functions.

2.6. venneuler

A sixth package is ‘venneuler’ [11]. This package can create area-proportional Venn diagrams as

well, if the sizes of the overlaps are passed to its venneuler function. The returned object also gives some

mathematical information such as the residuals (percentage difference between input intersection area

and fitted inter-section area) and stress values.

2.7. vennplot

The seventh and final package is ‘vennplot’ [12]. It can create area-proportional Venn diagrams in

2D or 3D, with two or three circles or balls. The 3D functionality is interesting (the diagram can be

rotated), but the mathematics behind it is actually the same as for the 2D plot.

3. Existing Python packages

3.1. matplotlib-venn

The most popular package at this moment is ‘matplotlib-venn’ [13]. Its ‘venn2’ and ‘venn3’

functions can create area-proportional Venn diagrams of two and three circles, respectively. However,

they don’t offer the ID mapping functionality of BioVenn, and the ‘drag-and-drop’ functionality of text

and numbers in the SVG mode of BioVenn is missing as well.

3.2. PyVenn

A second package is ‘PyVenn’ [14]. This package offers plotting of Venn diagrams of two to six

circles, but these are not area-proportional like in BioVenn or Matplotlib-Venn: the shapes are always

the same.

4. Methods

The PHP script that forms the basis for the BioVenn web interface, was rewritten in the R and Python

languages. The only function in the package is “draw.venn” (R) or “draw_venn” (Python), and it follows

these steps:

1. Remove duplicate IDs (note: BioVenn is case-sensitive)

2. Map EntrezGene and Affymetrix IDs to Ensembl IDs (using Biomart [15])

3. Generate lists of the thirteen possible sets, and count them

4. Calculate the radii of the circles so that the areas of the circles correspond to the size of the
datasets they represent

5. Calculate the distances between the centers of the circles, so that the areas of the two-circle
overlaps correspond to the size of the datasets they represent (see figure 1 of [4])

6. Calculate the angles of the XYZ triangle

7. Calculate the centers of the circles

8. Calculate the intersection points of the circles

9. Calculate the points where the numbers will be printed

10. Set output type to file or screen (depending on the output parameter)

11. Print the title and subtitle

12. Print the circles with the calculated centers and radii

13. Print the absolute numbers/percentages

14. Print the texts for the three circles

15. Write to the selected output type and filename

16. If SVG is selected as output type, do some post-processing in order to create the drag-and-
drop functionality of the texts

17. Return the contents of the thirteen lists: X, Y, Z, X only, Y only, Z only, XY, XZ, YZ, XY
only, XZ only, YZ only and XYZ.

Whereas the BioVenn web interface only supports PNG and SVG as output formats, the Python

package also supports JPEG, PDF and TIFF. The R package even supports all of these file formats and

BMP.

5. Results

The BioVenn R/Python package can generate area-proportional Venn diagrams of two or three

circles from lists of (biological) identifiers. It is a lightweight package, depending on only a small number

of other packages, making it more likely that the package will still work in the future. The only function

in the first version is the ‘draw.venn’ function (in R; ‘draw_venn’ in Python), for which the only required

input is two or three lists of identifiers. Optional parameters include the main title, the subtitle, the

printing of absolute numbers or percentages within the diagram, colors and fonts. The function can show

the diagram on the screen, or it can write output to one of the supported file formats. The SVG mode also

supports drag-and-drop of texts and numbers. The function also returns the contents of all possible lists.

The BioVenn R/Python package was created for biological identifiers, but it can be used for other

identifiers as well. Finally, BioVenn can map Affymetrix and EntrezGene IDs to Ensembl IDs.

5.1. R example

The following very simple R code creates the example plot of figure 1, and returns the data of table 1:

list_x <- c("1007_s_at", "1053_at", "117_at", "121_at", "1255_g_at", "1294_at")

list_y <- c("1255_g_at", "1294_at", "1316_at", "1320_at", "1405_i_at")

list_z <- c("1007_s_at", "1405_i_at", "1255_g_at", "1431_at", "1438_at", "1487_at", "1494_f_at")

biovenn <- draw.venn(list_x, list_y, list_z, subtitle="Example diagram", nrtype="abs")

5.2. Python example

The Python code works in a very similar manner:

list_x = ("1007_s_at", "1053_at", "117_at", "121_at", "1255_g_at", "1294_at")

list_y = ("1255_g_at", "1294_at", "1316_at", "1320_at", "1405_i_at")

list_z = ("1007_s_at", "1405_i_at", "1255_g_at", "1431_at", "1438_at", "1487_at", "1494_f_at")

biovenn = draw_venn(list_x, list_y, list_z, subtitle="Example diagram", nrtype="abs")

Note that the code in both R and Python could be even compressed into one line, by adding the lists

directly to the draw_venn command. For improved readability we use a four-line code.

Figure 1. Example BioVenn diagram. This example was created by just entering three lists of IDs and

setting three other parameters (title, subtitle and nrtype).

Variable Data type Contents

$x character [6] 1007_s_at, 1053_at, 117_at, 121_at, 1255_g_at, 1294_at

$y character [5] 1255_g_at, 1294_at, 1316_at, 1320_at, 1405_i_at

$z character [7] 1007_s_at, 1405_i_at, 1255_g_at, 1431_at, 1438_at, 1487_at, 1494_f_at

$x_only character [3] 1053_at, 117_at, 121_at

$y_only character [2] 1316_at, 1320_at

$z_only character [4] 1431_at, 1438_at, 1487_at, 1494_f_at

$xy character [2] 1255_g_at, 1294_at

$xz character [2] 1007_s_at, 1255_g_at

$yz character [2] 1255_g_at, 1405_i_at

$xy_only character [1] 1294_at

$xz_only character [1] 1007_s_at

$yz_only character [1] 1405_i_at

$xyz character [1] 1255_g_at

Table 1. Example output. This example was created by just entering three lists of IDs and setting two
other parameters (subtitle and nrtype).

5.3. Overall comparison

To compare the different R and Python packages, we created Venn diagrams of a dataset showing

orthologous genes that are present in human (Homo sapiens), mouse (Mus musculus) or the African

clawed frog (Xenopus laevis) (available at the OMA Browser [16] through

https://omabrowser.org/All/oma-groups.txt.gz). Since human and mouse are more closely related than

human and Xenopus (and mouse and Xenopus), we expect that the circles of human and mouse have a

larger overlap. Furthermore, Xenopus has more genes, so its circle should be larger than the circles of

human and mouse.

Figure 2 shows the Venn Diagrams created in each of the R packages, in alphabetical order. For each

of the plots, the colours red, green and blue were used, titles were removed, and numbers were printed

in the diagram (if that option was available). The code used to generate the plots can be viewed at

https://www.biovenn.nl/r_python/. We can see that the packages that create area-proportional diagrams

(a, c, d, g, h) give a better impression of what the data looks like: the human and mouse circles indeed

have a larger overlap than with the Xenopus circle, and the Xenopus circle is larger than the other ones.

The nVennR diagram (d) might be visually less appealing, but it displays the information correctly as

well. The non-area-proportional diagrams (b, e, f) need some careful reading of the numbers in the figure

before they can be interpreted.

(a)

(b)

(c)

(d)

(e) (f)

(g)
(h)

Figure 2. Venn diagrams created by each of the R packages: a) BioVenn, b) colorfulVennPlot, c) eulerr,

d) nVennR, e) venn, f) VennDiagram, g) venneuler and h) vennplot.

Figure 3 shows the Venn Diagrams created in each of the Python packages, in alphabetical order,

with the same method as described above. Again, the area-proportional diagrams (a, b) can be understood

much more easily than the non-area-proportional diagram (c).

(a)

(b)
(c)

Figure 3. Venn diagrams created by each of the Python packages: a) BioVenn, b) matplotlib-venn and

c) PyVenn.

Package

name

BioVenn colorfulVennPlot eulerr matplotlib-

Venn

nVennR PyVenn venn vennDiagram venneuler vennplot

Programming

language

R, Python

(and web)

R R (and web) Python R Python R R (and

Cytoscape and

web)

R R

Max. number

of sets

3 4 (>3 uses

ellipses)

Unlimited (in

theory)

3 Unlimited (in

theory)

6 7 5 Unlimited

(in theory)

3

Area

proportionality

Automatically Manually (only

for 2-circle

diagrams)

Automatically Automatically Automatically No No Manually Manually Automatically

Built-in

biological ID

mapping

Yes No No No No No No No No No

Input format Sets of IDs Sets of IDs,

numbers

Sets of IDs,

numbers

Sets of IDs,

numbers

Sets of ID,

numbers

Sets of

IDs,

numbers

Numbers Sets of IDs,

numbers

Sets of

IDs,

numbers

Sets of IDs,

numbers

Output format BMP (only in

R), JPEG,

PDF, PNG,

R graphics R graphics Python

graphics

SVG, R

graphics

Python

graphics

R

graphics

R graphics,

TIFF

R

graphics

R graphics

SVG, TIFF,

R/Python

graphics

Drag-and-drop

of texts, nrs

Only in SVG

mode

No No No No No No No No No

Shapes used Circles Circles/ Ellipses Circles/

Ellipses

Circles Polygons Circles/

Ellipses/

Polygons

Circles/

Ellipses/

Polygons

Circles/

Ellipses

Circles Circles/ Balls

Print absolute

numbers /

percentages

Both Only absolute

numbers

Both Only absolute

numbers

Only absolute

numbers

Both Only

absolute

numbers

Both No No

Set title(s) Title and

subtitle

Only title Only title No No No No Title and

subtitle

No No

Set circle

colors

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Set circle texts Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Set

background

color

Yes No No No No No No No No No

Set text colors Yes No No No No No No Yes No No

Set text fonts

(family, face,

size)

Yes No No No Only font size Only

font size

Only

font size

Yes No No

Table 2. Venn diagram package comparison. All currently available R and Python packages that can
generate Venn diagrams compared. Note that this table only lists built-in functionality; some
functionality such as plotting to certain file formats might be possible by using other R or Python
functions.

Table 2 shows a comparison of all features of BioVenn and the seven other packages mentioned

above. BioVenn is the only package that is available in both R and Python (as well as a web interface).

There are packages that can generate Venn diagrams from more than three sets, but these are either not

area-proportional or inaccurate. Only BioVenn has built-in biological ID mapping functionality, which

earns it the prefix ‘bio’. Some programs support not only the input of IDs, but also the numbers of the

sets and their overlaps. In BioVenn, these are automatically calculated from the ID lists. This also makes

sure that the user cannot mathematically impossible numbers (e.g. overlaps larger than the sets

themselves). BioVenn supports a large number of output formats as well. It needs to be noted here that

this table only lists built-in functionality; some functionality such as plotting to certain file formats might

be possible by using other R or Python functions (e.g. the ‘matplotlib.pyplot’ functions in Python).

BioVenn is the only package that supports drag-and-drop of the texts and numbers (in SVG mode), which

can be a very useful functionality when a set or overlap is very small compared to the rest of the figure,

or when the circle title (e.g. ‘Set X’, ‘Set Y’, ‘Set Z’) overlaps with a number. BioVenn uses only circles,

whereas other packages also use ellipses, polygons or even 3D balls. There are four packages (BioVenn,

eulerr, PyVenn and VennDiagram) that are able to print absolute numbers or percentages in the diagram.

Finally, BioVenn offers the most flexibility in formatting: title, subtitle and circle texts can be changed

(as well as their fonts and colors), and the background color and the circle colors can be set.

6. Conclusion

The BioVenn R and Python packages are a useful addition to the existing web interface, and they

have some unique advantages over existing packages that can create Venn diagrams, such as the mapping

of biological IDs and the drag-and-drop functionality in SVG mode. Other useful functions are the area-

proportionality, printing absolute numbers or percentages, and the possibility to change all colors

(including text and background) and fonts. The BioVenn R package is available in the CRAN repository

[17], and can be installed by running ‘install.packages(“BioVenn”)’. The Python package is available in

the PyPI repository [18], and can be installed by running ‘pip install BioVenn’. The BioVenn web

interface remains available at https://www.biovenn.nl.

7. Acknowledgements

The author would like to thank the numerous people who have sent their suggestions for

improvements over the past years, which have resulted in a more precise web tool (and now also an R

package as well as a Python package).

8. Competing interest statement

Dr. Hulsen is employed by Philips Research.

9. References

[1] H.A. Kestler, A. Muller, J.M. Kraus, M. Buchholz, T.M. Gress, H. Liu, D.W. Kane, B.R.
Zeeberg, and J.N. Weinstein, VennMaster: area-proportional Euler diagrams for functional GO analysis
of microarrays, BMC Bioinformatics 9 (2008), 67. PubMed ID: 18230172.
https://www.ncbi.nlm.nih.gov/pubmed/18230172.
[2] G. Stapleton, Z. Leishi, J. Howse, and P. Rodgers, Drawing Euler Diagrams with Circles: The
Theory of Piercings, IEEE Trans Vis Comput Graph 17 (2011), 1020-1032. PubMed ID: 20855916.
https://www.ncbi.nlm.nih.gov/pubmed/20855916.
[3] T. Hulsen, VennDiagram.tk, http://www.venndiagram.tk.
[4] T. Hulsen, J. de Vlieg, and W. Alkema, BioVenn - a web application for the comparison and
visualization of biological lists using area-proportional Venn diagrams, BMC Genomics 9 (2008), 488.
PubMed ID: 18925949. https://www.ncbi.nlm.nih.gov/pubmed/18925949.
[5] Google Scholar Citations for 'BioVenn – a web application for the comparison and visualization
of biological lists using area-proportional Venn diagrams',
https://scholar.google.com/scholar?cites=16587750604719531070.
[6] E. Noma and A. Manvae, colorfulVennPlot: Plot and add custom coloring to Venn diagrams for
2-dimensional, 3-dimensional and 4-dimensional data, Version 2.4, https://CRAN.R-
project.org/package=colorfulVennPlot.
[7] J. Larsson, eulerr: Area-Proportional Euler and Venn Diagrams with Ellipses, Version 6.1.0,
https://cran.r-project.org/package=eulerr.
[8] J.G. Perez-Silva, M. Araujo-Voces, and V. Quesada, nVenn: generalized, quasi-proportional
Venn and Euler diagrams, Bioinformatics 34 (2018), 2322-2324. PubMed ID: 29949954.
https://www.ncbi.nlm.nih.gov/pubmed/29949954.
[9] A. Dusa, venn: Draw Venn Diagrams, Version 1.9, https://CRAN.R-project.org/package=venn.

[10] H. Chen and P.C. Boutros, VennDiagram: a package for the generation of highly-customizable
Venn and Euler diagrams in R, BMC Bioinformatics 12 (2011), 35. PubMed ID: 21269502.
https://www.ncbi.nlm.nih.gov/pubmed/21269502.
[11] L. Wilkinson and S. Urbanek, venneuler: Venn and Euler diagrams, Version 1.1-0,
https://cran.r-project.org/package=venneuler.
[12] Z. Xu, R.W. Oldford, and M. Lysy, vennplot: Venn Diagrams in 2D and 3D, Version 1.0,
https://cran.r-project.org/package=vennplot.
[13] K. Tretyakov, Matplotlib-Venn Python package at PyPi, Version 0.11.6,
https://pypi.org/project/matplotlib-venn/.
[14] K. Grigorev, PyVenn Python package at PyPi, Version 0.1.3, https://pypi.org/project/venn/.
[15] S. Briois, Biomart Python package at PyPi, Version 0.9.2, https://pypi.org/project/biomart/.
[16] A.M. Altenhoff, C.M. Train, K.J. Gilbert, I. Mediratta, T. Mendes de Farias, D. Moi, Y. Nevers,
H.S. Radoykova, V. Rossier, A. Warwick Vesztrocy, N.M. Glover, and C. Dessimoz, OMA orthology
in 2021: website overhaul, conserved isoforms, ancestral gene order and more, Nucleic Acids Res (2020).
PubMed ID: 33174605. https://www.ncbi.nlm.nih.gov/pubmed/33174605.
[17] T. Hulsen, BioVenn R package at CRAN, Version 1.1.0, https://cran.r-
project.org/package=BioVenn.
[18] T. Hulsen, BioVenn Python package at PyPI, Version 1.1.0, https://pypi.org/project/BioVenn/.

