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Abstract. Old approaches that manipulate missing values may lead to biased 

estimations. In addition, they may also decrease or magnify the statistical 

influence, which could result in unacceptable conclusions. The performance of 

various missing value imputation algorithms may depend on the amount of the 

missing values in the dataset and the dataset’s dimension. In this paper, the authors 

proposed a new algorithm for handling missing data against some registered 

practical imputation methods. The proposed algorithm depends on the Bayesian 

Ridge technique, which operates in a cumulative order with the aid of gain ratio 

feature selection to select the candidate feature to be imputed. The imputed feature 

will be included in the Bayesian Ridge equation to impute missing values in the 

next candidate feature. Here, the authors are attempting to choose the best 

imputation method succeeded to give high imputation accuracy with less 

imputation time. Finally, we applied the proposed algorithm on eight datasets with 

various missing values proportions generated from the missingness mechanisms. 

The empirical study indicates the effectiveness of the proposed algorithm with any 

missingness mechanism and with any missing data percentage. 

Keywords: missing value, imputation, missingness mechanism, Bayesian Ridge 

and Gain ratio. 

1. Introduction 

Avoiding missing data is the best approach for dealing with incomplete instances. All 
skilled researchers still encounter missing values that would happen for unpredictable 

reasons. In the data gathering stage, the researcher has the prospect to make decisions 

about what data to collect and the way to screen data gathering. Both, the distribution 

and scale of the features within the data along with the causes for missing data are two 

acute topics to select the right method for handling missing data[1]. 

Data preparation is considered the most important and time consuming task, 

which toughly impacts the success of the research. Feature selection lies in detecting a 

valuable subset of possible predictors from a huge set of candidates. Refusing features 

with a large proportion of missing values (e.g., >50 %) is often a good rule of thumb. 

Nevertheless, it is not a risk-free route. Refusing a feature may lead to a loss of 

analytical power and capability to observe statistically significant differences, and it is 

often a cause of bias, affecting the representativeness of the outcomes. For these 



reasons, feature selection needs to be custom-made to the missing data mechanism. 

Imputation is often completed beforehand or later of feature selection[2].  

1.1. Handling missing data 

To elect how to manage missing data, it is important to know the reason of the 

missingness. This paper takes into consideration three general missingness 

mechanisms[2–5]: 

 Missing completely at random (MCAR): If the likelihood of missingness is 
identical for all instances. The cause for the missingness in a feature X does 

not depend on X itself or any other feature within the dataset. In MCAR, 

missing value deletion does not bias your conclusions[6]. 

 Missing at random (MAR): If the likelihood of missingness is identical only 

within the data that are observed. The cause for the Missingness in a feature X 

depends on other features within the dataset, not on the feature X itself. It is 

frequently rational to model this process as a logistic regression, where the 

resulting feature equals 1 for detected cases and 0 for missing cases[6]. 

 Missing not at random (MNAR): If the likelihood of missingness for a feature 

X depends on X itself or other features that already include missing values[6]. 

The best approach for handling missing data is to avoid it through careful data 
gathering and follow up, along with determining missing data after the fact (for 

example, by detecting missing data or re-contacting study members). However, it is 

commonly impossible to avoid missing data in total, therefore, statistical methods for 

dealing with missing data are required. Since missing data are exceptionally complex, 

statisticians cannot create a universal set of rules that manipulate all cases. So, they run 

emulation to detect the best method[7]. The approaches for handling missing data have 

to be tailored to the causes of missingness, the dataset, and the percentage of missing 

data[2]. The best approach to handle missing data is to get rid of instances that involve 

missing values. In general, case deletion methods result in valid conclusions just for 

MCAR[8]. Imputation is the alternative approach for handling missing data and 

overwhelmed the disadvantages of the deletion approach[4]. 
The proposed algorithm depends on Bayesian ridge regression, so it is a regression 

model with a regularization parameter for the coefficients. The model satisfies the 

following[9]: 
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So   follows a normal distribution characterized by variance   and        
  .    and   are regularizing parameters that follow gamma distribution.  

                are hyper-parameters of the gamma prior distributions.  

The rest of the paper is organized as follows: Section 2 presents the literature 

review of manipulating the missing data, Section 3 and 4 present the proposed 

algorithm and discuss the experimental implementation respectively, results and 

discussion are demonstrated in section 5.  Finally, Section 6 concludes the paper. 

2. Literature review 

For manipulating a dataset that contains missing values, one can use deletion; Deletion 

might be ‘complete deletion’, ‘list-wise deletion’, or ‘Complete Case Analysis’, where 

all observations contain one or more of their feature values missing are removed[4,10]. 

There might also be ‘specific deletion’, where only those observations are removed, 
which contain more than a pre-specified percentage of their feature values that are 

missing[4,7,10,11]. There can also be ‘pair-wise deletion’ or ‘variable deletion’ where 

the observations contain missing values in the features involved in the running analysis 

removed. In the worst case, each feature contains missing values through many 

observations that may cause the deletion of the whole dataset[12]. 

Imputation approaches benefit from all the information available within the 

dataset to predict the missing value, in which an applicable value is imputed instead of 

the missed value[10,11,13]. The imputed value might be mean, mode, median or any 

pre-specified value of the feature that contains missing value[14–16], or might be 

acquired from case substitution. Imputed value can also be estimated using KNN(k 

nearest neighbors), regression models[3], cold deck imputation[17], EM (expectation 

maximization) imputation[18–20], hot deck imputation[21], etc. In techniques contain 
prediction models, a model is build based on available information within the dataset, 

then this model is used to predict values for the missing data[22]. Imputation methods 

are used to deal with missing values if the missing values are of MCAR or MAR type, 

and if each record or feature in the dataset is important and a single observation does 

not include missing values across many features[12]. For MCAR type, missing values 

in a dataset may be managed by using deletion, if possible listwise deletion or 

maximum likelihood methods. There are not any general approaches to deal with 

MNAR missing values type[4,23]. Imputation types are single imputation or multiple 

imputation. In single imputation, a single applicable value is imputed rather than 

missed value[17]. Multiple imputation, in which ‘m’ full datasets are acquired by 

imputing the missing values ‘m’ times, the finale imputed dataset being the analysis 
average of these ‘m’ datasets[24]. Although multiple imputation requires more 

resources[25], it has benefits over other approaches, namely maximum likelihood 

techniques, single imputation, and deletion[26].  

Single imputation approaches deal with all data values, even imputed ones as true 

values, which lead to inflated type I error as a result of not accounting uncertainty for a 

missing value. Inverse Probability Weighting (IPW) methods also good for dealing 

with missing data, which depend on the inverse of the detected probability to weight 

detected observations, in this way representing the entire data even the missing values. 

Nevertheless, the imputation method produces more reliable performance[4,27]. 

Ordinary least squares (OLS), partial least squares (PLS), and singular value 



decomposition (SVD) are also good choices for multiple imputation[4]. For datasets 

having binary and ordinal features, Multi Variate Normal Imputation (MVNI) and 

Fully Conditional Specification (FCS) approaches generate similar results and usually 

less biased. Model specification is easily provided by MVNI, but as a result, of its 

unrealistic nature, more or fewer people may have a problem with it. FCS tends to have 

a complex model specification as a result of requiring a single regression model for 

each feature whose missing values are going to be imputed[28]. KNN is used by 
FINNIM (which is an effective nonparametric iterative multiple imputation approach) 

to predict missing values[29]. Sequential regression trees used as a Multiple imputation 

conditional model, which has the facility to detect complex relation and need slight 

correction by the user[30]. Handling missing values with predictive mean matching 

(PMM) approach is accomplished using a randomly drawn observation from a set of 

detected observations whose predictive mean is near to predictive mean of missing 

values[4]. Local residual draw (LRD) approach handles missing value using the 

predictive mean as in the situation of PMM, with extra randomly drawn from the 

residuals of a set of detected instances with predictive means near to that of the missing 

value[31]. Reinforcement programming (RP), which depends on Reinforcement 

Learning gives, better performance over mean per category imputation, zero imputation, 
and genetic algorithm (GA) in terms of the sum of square error and computational 

time[32]. Cumulative linear regression, which depends on the linear regression 

algorithm to handle missing data, works well for small and large datasets[3]. Handling 

missing values in features of concern with the aid of detected values from other 

features depends on the similarities of the instance values within the donor feature to 

deal with the missing values within the recipient feature. It works well when the 

proportion of the missing values is large[33]. 

3. Proposed algorithm 

Table 1 contains a list of terminologies that help in elaborating the proposed algorithm. 

For any dataset, two cases may happen; the first case when all features contain missing 

values, even the dependent feature, and the second case when there is at least one 

complete feature. Suppose that the dependent feature y does not involve any missing 

data and   *          + is the set of all independent features. The proposed 

algorithm splits the input dataset into two separate datasets  (   ) and (    ) . The 

selection of the candidate features from  (   ) to be imputed, must exhibit the highest 
information gain ratio with the target feature y using Eq. (4). The candidate feature will 

be the dependent feature, and y and  (    ) will be independent. The model is fitted to 

impute the missing values in that feature, and then the imputed feature     will be 

removed from  (   )and added to (    ). Another feature from  (   )will be selected 

to be the dependent feature, and the model will be fitted using (    ),    
(   )

 and, y as 

independent features. In the same way, another feature will be selected until  (   ) be 
empty. The proposed algorithm is presented in Figure 1, and Figure 2 shows the 

algorithm flow chart. 
 



 Initialization 

o Identify features that contain missing values. 
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 Feature selection 

o From  (   ), find   
(   )

   *     +  select the feature with: 

 Higher Gain Ratio (  
(   )

  ) 

 Imputation 

o For each column in  (   ): 
 Fit the model with cumulative Bayesian Ridge Regression 

equation: 
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 Impute missing values. 

o Repeat until all missing values in all columns are imputed. 

Figure 1. Algorithm: CBRG (Cumulative Bayesian Ridge regression with Gain-ratio) 



 

Table 1. List of terminologies 

Terms Description Comments 

n number of all variables Comp + Miss = n 

 (    ) set of complete variables  

 (   ) set of incomplete variables  

    
(   )

 imputed variable from X(Miss)  

c number of complete independents c +m = n 

m number of variables contain missing values  

          set of missing observations in the dependent variable y  

          
(   )

 set of missing observations in the independent variable Xi  

4. Experimental implementation 

4.1. Datasets 

The authors perform an analysis on the effect of the proportion of missing values and 

dataset dimension on imputation time and the accuracy of such imputation. To 

accomplish this study the authors used eight different datasets that are usually used 

within the literature (Table 2). 

 

Table 2. Datasets specifications 

Dataset name Instances Features References 

graduate admissions 500 8 [34] 

profit estimation of companies 1000 6 [35] 

red & white wine dataset 4898 23 [36] 

California 20640 9 [37] 

diamonds 53940 21 [38] 

BNG_heart_statlog 1,000,000 14 [39] 

Poker Hand Dataset 1,025,010 11 [40] 

diabetes 442 22 [41] 

Figure 2. Algorithm flowchart 



The missing values were generated from the three missingness mechanisms with 

different proportions 10%, 20%, 30%, and 40% missingness ratios for each type. 

Analysis for BNG_heart_statlog and Poker Hand datasets were completed on randomly 

sampled sub datasets of 10000, 15000, 20000, and 50000 of instances[4].  

4.2. Feature selection  

Information gain's feature selection main disadvantage is that it is biased towards 

selecting features with lots of values, which encouraged Quinlan to define the Gain 
Ratio given by Eq. (4), which reduces this bias[42]. 
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Where: 

 IG is the information gain X is the set of examples. 

   specifies the entropy, and E is the expected information of the attribute     
 n is the number of possible values of attribute   , and IV is the intrinsic value. 

    is the Gain ratio. 

In the feature selection stage, the proposed algorithm depends on selecting the 

feature that presents the greatest information gain ratio with the target feature. The 

proposed algorithm named CBRG (Cumulative Bayesian Ridge regression with Gain-

ratio). 

4.3. Performance evaluation 

The performance of the proposed algorithm evaluated using RMSE, MAE, and R2, 

and time of imputation in seconds (t)[3]. 
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Where    and   ̂  are the real and predicted values of the lth observation, 

respectively, and n is the number of samples. 

5. Results and discussion 

The imputation method is considered to be effective if it imputes missing data in a 

short time and exhibits high accuracy. The results evaluated by taking the average 

performance of missing values imputation for every missingness mechanism for the 

four generated proportions. Figures 3 to 16 exhibit the results. 
From the perspective of imputation time: The selection of the candidate feature to 

be imputed by the CBRG depends on the feature selection technique of information 

gain ratio. Calculating the information gain ratio depends on calculating the entropy, 

which is computationally expensive. Therefore, the CBRG consumes time during the 

imputation. However, CBRG exhibits a good imputation time with samples data and 

small size datasets. The MICE (Multivariate Imputation by Chained Equations) is not 

efficient in imputation time. LeastSquares and Norm offer the best imputation time 

with all datasets. Fast KNN and EMI offer a good imputation time with small datasets 

but consume big imputation time when dealing with large datasets. 

From the perspective of performance: The proposed algorithm selects the most 

relevant feature (that offers higher information gain ratio) with the output feature, to be 

imputed and involving the imputed feature within the Bayesian ridge equation to 
impute another candidate feature, and so on until the imputation of all missing values 

within the dataset. Besides, the CBRG depends on the Bayesian Ridge, which in turn, is 

a probabilistic model with a ridge parameter. So the CBRG exhibits good prediction 

accuracy and low error. LeastSquares and MICE exhibit better performance against 

other mentioned methods. LeastSquares and Stochastic depend on the least squares 

approach. LeastSquares impute the missing data via the best fit line from a set of 

predictors. Stochastic adds a random draw to the prediction from samples from the 

regression's error distribution. Norm constructs a Gaussian distribution from the sample 

mean besides variance of the detected data, and then random samples from this 

distribution are used to impute missing data.  

The results also revealed that the proposed method works well with any 
missingness mechanism and with any amount of missing data percentage. The CBRG, 

LeastSquares, and MICE present the best performance among other mentioned methods. 



 
Figure 3. Comparison between the proposed method, LeastSquares, Stochastic, Norm, MICE, Fast KNN, and 

Expectation-Maximization Imputation (graduate admission dataset). 

 
Figure 4. Comparison between the proposed method, LeastSquares, Stochastic, Norm, MICE, Fast KNN, and 

Expectation-Maximization Imputation (diabetes dataset). 
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Figure 5. Comparison between the proposed method, LeastSquares, Stochastic, Norm, MICE, Fast KNN, and 

Expectation-Maximization Imputation (Profit dataset). 

 

Figure 6. Comparison between the proposed method, LeastSquares, Stochastic, Norm, MICE, Fast KNN, and 

Expectation-Maximization Imputation (wine dataset). 
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Figure 7. Comparison between the proposed method, LeastSquares, Stochastic, Norm, MICE, Fast KNN, and 

Expectation-Maximization Imputation (California dataset). 

 

Figure 8. Comparison between the proposed method, LeastSquares, Stochastic, Norm, MICE, Fast KNN, and 

Expectation-Maximization Imputation (diamond dataset). 
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Figure 9. Comparison between the proposed method, LeastSquares, Stochastic, Norm, MICE, Fast KNN, and 

Expectation-Maximization Imputation (BNG (10000) dataset). 

 

Figure 10. Comparison between the proposed method, LeastSquares, Stochastic, Norm, MICE, Fast KNN, 

and Expectation-Maximization Imputation (BNG (15000) dataset). 
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Figure 11. Comparison between the proposed method, LeastSquares, Stochastic, Norm, MICE, Fast KNN, 

and Expectation-Maximization Imputation (BNG (20000) dataset). 

 

Figure 12. Comparison between the proposed method, LeastSquares, Stochastic, Norm, MICE, Fast KNN, 

and Expectation-Maximization Imputation (BNG (50000) dataset). 
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Figure 13. Comparison between the proposed method, LeastSquares, Stochastic, Norm, MICE, Fast KNN, 

and Expectation-Maximization Imputation (Poker (10000) dataset). 

 

Figure 14. Comparison between the proposed method, LeastSquares, Stochastic, Norm, MICE, Fast KNN, 

and Expectation-Maximization Imputation (Poker (15000) dataset). 
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Figure 15. Comparison between the proposed method, LeastSquares, Stochastic, Norm, MICE, Fast KNN, 

and Expectation-Maximization Imputation (Poker (20000) dataset). 

 

Figure 16. Comparison between the proposed method, LeastSquares, Stochastic, Norm, MICE, Fast KNN, 

and Expectation-Maximization Imputation (Poker (50000) dataset). 
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6. Conclusion 

It is essential to handle missing data, as it happens in nearly all real-world research. 

Handling incomplete instances is very significant for observational analyses with 

several predictors. 

In this paper, we have for a short time studied, a set of old published approaches 

that are to deal with missing data, reviewed their implementation on different datasets 

with different proportions of missing values generated from the three missingness 
mechanisms. Proposing a new algorithm Cumulative Bayesian Ridge Regression works 

in a cumulative order to impute all missing values in all features one after one. The 

candidate feature to be imputed is selected based on the information gain ratio. The 

proposed algorithm gives a better performance against the stated approaches even when 

its accuracy is sometimes a little worse than some packages but very close to them, in 

some cases, it is better than all of them. The proposed algorithm shows an acceptable 

running time and considered a fast method but not the fastest, as a result of calculating 

the gain ratio is computationally expensive. 

In future research, it is advisable to study the proposed imputation algorithm in 

additional datasets; additional units of standard error (like T-value and P-value) will be 

taken into mind when picking the candidate feature. The best future trend is to take the 
help of algorithms that deal with optimization problems with mixed features such as the 

GSA-GA algorithm[43]. 
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