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Abstract. Knowledge graph embeddings models are widely used to provide scalable
and efficient link prediction for knowledge graphs. They use different techniques
to model embeddings interactions, where their tensor factorisation based versions
are known to provide state-of-the-art results. In recent works, developments on
factorisation based knowledge graph embedding models were mostly limited to
enhancing the ComplEx and the DistMult models, as they can efficiently provide
predictions within linear time and space complexity. The evaluation of these models
was also limited to general knowledge benchmarks and it did not include any other
applications in specialised domains. In this work, we aim to extend the works of the
ComplEx and the DistMult models by proposing a new factorisation model, TriVec,
which uses three part embeddings to model a combination of symmetric and asym-
metric interactions between embeddings. We perform an empirical evaluation for
the TriVec model compared to other tensor factorisation models on different training
configurations (loss functions and regularisation terms), and we show that the TriVec
model provides the state-of-the-art results in all configurations. In our experiments,
we use standard benchmarking datasets (WN18, WN18RR, FB15k, FB15k-237,
YAGO10) along with a new NELL based benchmarking dataset (NELL239) that we
have developed. To complement the evaluation of our method on standard, but rather
artificial datasets, we also present a more realistic benchmark based on the real-world
problem of predicting effects of chemical-protein interactions. More specifically,
we build a knowledge graph benchmark of chemicals, proteins and the effects of
their interactions, and we desing an evaluation pipeline that uses knowledge graph
embedding to predict new chemical-protein interactions and their effects. We then
show by experimental evaluation that our model provides the best results in terms of
the area under the ROC and precision recall curves in the prediction of the effects
of chemical-protein interactions compared to other knowledge graph embedding
models.
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1. Introduction

In recent years, knowledge graph embedding (KGE) models have witnessed rapid de-
velopments that have allowed them to excel in the task of link prediction for knowledge
graphs [1]. They learn embeddings using different techniques like tensor factorisation,
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latent distance similarity and convolutional filters in order to rank facts in the form of
(subject, predicate, object) triples according to their factuality. In this context, their tensor
factorisation based versions like the DistMult [2] and the ComplEx [3] models are known
to provide state-of-the-art results within linear time and space complexity [1]. The scal-
able and efficient predictions achieved by these models have encouraged researchers to
investigate advancing the DistMult and the ComplEx models by utilising different training
objectives and regularisation terms [4,5].
In this work, our objective is to propose a new factorisation based knowledge graph
embedding model that extends the works of the DistMult and the ComplEx models while
preserving their linear time and space complexity. We achieve that by modifying two of
their main components: the embedding representation, and the embedding interaction
function.

While both the DistMult and the ComplEx models use the bilinear product of the subject,
the predicate and the object embeddings as an embedding interaction function to encode
knowledge facts, they represent their embeddings using different systems. The DistMult
model uses real values to represent its embedding vectors, which leads to learning a sym-
metric representation of all predicates due to the symmetric nature of the product operator
on real numbers. On the other hand, the ComplEx model represents embeddings using
complex numbers, where each the embeddings of an entity or a relation is represented
using two vectors (real and imaginary parts). The ComplEx model also represents entities
in the object mode as the complex conjugate of their subject form [3]. This enables the
ComplEx model to encode both symmetric and asymmetric predicates.

Since the embeddings of the ComplEx models are represented using two part embeddings
(real and imaginary parts), their bilinear product (ComplEx’s embedding interaction
function) consists of different interaction components unlike the DisMult model with
only one bilinear product component. Each of these components is a bilinear product of
a combination of real and imaginary vectors of the subject, the predicate and the object
embeddings, which gives the ComplEx model its ability to model asymmetric predicates.

In this work, we investigate both the embedding representation and the embedding inter-
action components of the ComplEx model, where we show that the ComplEx embedding
interaction components are necessary but not sufficient to model asymmetric predicates.
We also show that our proposed model, TriVec, can efficiently encode both symmetric
and asymmetric predicates using simple embedding interaction components that rely on
embeddings of three parts [6]. To assess our model compared to the ComplEx model, we
carry experiments on both models using different training objectives and regularisation
terms, where our results show that our new model, TriVec, provide equivalent or better
results than the ComplEx model on all configurations. We also propose a new NELL [7]
based benchmarking dataset that contains a small number of training, validation and
testing facts that can be used to facilitate fast development of new knowledge graph
embedding models.

Previous work on the evaluation of KGE models is mostly focused on general human
knowledge benchmarks which are based on knowledge graphs such as YAGO, Freebase,
WordNet, etc. However, an evaluation on a real world application on a specialised domain
is largely missing, which means it is rather hard to assess the practical value of the
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existing predictive models based on knowledge graphs. To address this gap, we present
the problem of predicting the biological effects of chemical-protein interactions. This is a
biological task motivated by a real world need [8] that we use to evaluate the accuracy of
KGE models. We model the chemical-protein interactions and their effects as tensors, we
then use KGE models to learn representation of chemicals, proteins and the biological
effects in order to be able to predict new chemical, protein and effects combinations. We
execute an evaluation pipeline where we compare between the predictive accuracy of
our model and other KGE model. The results of our experiments show that our model
outperforms other approaches in terms of the area under the ROC and precision recall
curves.

2. Background and Related Works

Knowledge graph embedding models learn low rank vector representation i.e. embeddings
for graph entities and relations. In the link prediction task, they learn embeddings in order
to rank knowledge graph facts according to their factuality. The process of learning these
embeddings consists of different phases. First, they initialise embeddings using random
noise. These embeddings are then used to score a set of true and false facts, where a score
of a fact is generated by computing the interaction between the fact’s subject, predicate
and object embeddings using a model dependent scoring function. Finally, embeddings
are updated by a training loss that usually represents a min-max loss, where the objective
is to maximise true facts scores and minimise false facts scores.

In this section we discuss scoring functions and training loss functions in state-of-the-
art knowledge graph embedding models. We define our notation as follows: for any given
knowledge graph, E is the set of all entities, R is the set of all relations i.e. predicates, Ne
and Nr are the numbers of entities and relations respectively, T is the set of all known true
facts, e and w are matrices of sizes Ne×K and Nr×K respectively that represent entities
and relations embeddings of rank K, φspo is the score of the triple (s, p,o), and L is the
model’s training loss.

2.1. Scoring Functions

Knowledge graph embedding models generate scores for facts using model dependent
scoring functions that compute interactions between facts’ components embeddings.
These functions use different approaches to compute embeddings interactions like dis-
tance between embeddings [9], embedding factorisation [3] or embeddings convolutional
filters [10].

In the following, we present these approaches and specify some examples of knowl-
edge graph embedding models that use them.

• Distance-based embeddings interactions: The Translating Embedding model
(TransE) [9] is one of the early models that use distance between embeddings to generate
triple scores. It interprets triple’s embeddings interactions as a linear translation of the
subject to the object such that es +wp = eo, and generates a score for a triple as follows:

φ
TransE
spo = ‖es +wp− eo‖l1/l2, (1)
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where true facts have zero score and false facts have higher scores. This approach provides
scalable and efficient embeddings learning as it has linear time and space complexity.
However, it fails to provide efficient representation for interactions in one-to-many,
many-to-many and many-to-one predicates as its design assumes one object per each
subject-predicate combination.

• Factorisation-based embedding interactions: Interactions based on embedding
factorisation provide better representation for predicates with high cardinality. They have
been adopted in models like DistMult [2] and ComplEx [3]. The DistMult model uses
the bilinear product of embeddings of the subject, the predicate, and the object as their
interaction, and its scoring function is defined as follows:

φ
DistMult
spo =

K

∑
k=1

esk wpk eok (2)

where esk is the k-th component of subject entity s embedding vector es. DistMult achieved
a significant improvement in accuracy in the task of link prediction over models like
TransE. However, the symmetry of embedding scoring functions affects its predictive
power on asymmetric predicates as it cannot capture the direction of the predicate. On
the other hand, the ComplEx model uses embedding in a complex form to model data
with asymmetry. It models embeddings interactions using the the product of complex
embeddings, and its scores are defined as follows:

φ
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spo = Re(
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where Re(x) represents the real part of complex number x and all embeddings are in
complex form such that e,w ∈ C, er and ei are respectively the real and imaginary parts
of e, and eo is the complex conjugate of the object embeddings eo such that eo = er

o− iei
o

and this introduces asymmetry to the scoring function. Using this notation, ComplEx
can handle data with asymmetric predicates, and to keep scores in the real spaces it only
uses the real part of embeddings product outcome. ComplEx preserves both linear time
and linear space complexities as in TransE and DistMult, however, it surpasses their
accuracies in the task of link prediction due to its ability to model a wider set of predicate
types.

• Convolution-based embeddings interactions: Following the success of convolutional
neural networks image processing tasks, models like R-GCN [11] and ConvE [10] utilized
convolutional networks to learn knowledge graph embeddings. The R-GCN model learns
entity embeddings using a combination of convolutional filters of its neighbours, where
each predicate represent a convolution filter and each neighbour entity represents an
input for the corresponding predicate filter. This approach is combined with the DistMult
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Figure 1. Plots of different knowledge graph embedding loss functions and their training error slopes. Red lines
represent the score/loss slopes of the false triples and blue lines represent the score/loss slopes of the true triples.

model to perform link prediction. Meanwhile, the ConvE model concatenates subject
and predicate embeddings vectors into an image (a matrix form), then it uses a 2D
convolutional pipeline to transform this matrix into a vector and computes its interaction
with the object entity embeddings to generate a corresponding score as follows:

φ
ConvE
spo = f (vec( f ([es;wp]∗ω))W )eo (4)

where es and wp denotes a 2D reshaping of es and wp, ω is a convolution filter, f denotes
a non-linear function, vec(x) is a transformation function that reshape matrix x of size
m×n into a vector of size mn×1.

2.2. Loss Functions

The task of link prediction can generally be cast as a learning to rank problem where the
object is to rank knowledge graph triples according to their factuality. Thus, knowledge
graph embedding models traditionally use ranking loss approaches like pairwise and
pointwise loss functions as in TransE and ComplEx respectively to model their training
loss during the learning process. In these approaches a set of negative facts i.e. corruptions,
is generated using a uniform random sample of entities to represent false facts, where
training loss uses a min-max approach to maximise true facts scores and minimise false
facts scores. Meanwhile, recent attempts considered using a multi-class loss to represent
training error, where a triple (s, p,o) is divided into an input (s, p) and a corresponding
class o and the objective is to assign class o to the (s, p) input.

In the following, we discuss these two approaches with examples from state-of-the-art
knowledge graph embedding models.

• Ranking loss functions: Knowledge graph embedding models has adopted different
pointwise and pairwise ranking losses like hinge loss and logistic loss to model their
training loss. Hinge loss can be interpreted as a pointwise loss or a pairwise loss that
minimises the scores of negative facts and maximise the scores of positive facts to reach a
specific configurable value. This approach is used in HolE [12], and it is defined as:

L
Hinge

= ∑
x∈X

[λ − l(x) · f (x)]+, (5)
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where l(x) = 1 if x is true and−1 otherwise and [c]+ is equal to max(c,0). This effectively
generates two different loss slopes for positive and negative scores as shown in Fig. 1.

The squared error loss can also be adopted as a pointwise ranking loss function. For
example, the RESCAL [13] model uses the squared error to model its training loss with
the objective of minimising the difference between model scores and their actual labels:

L
SE

=
1
2

n

∑
i=1

( f (xi)− l(xi))
2. (6)

The optimal score for true and false facts is 1 and 0, respectively, as shown in Fig. 1. Also,
the squared loss requires less training time since it does not require configurable training
parameters, shrinking the search space of hyperparameters compared to other losses (e.g.,
the margin parameter of the hinge loss).

The ComplEx [3] model uses a logistic loss, which is a smoother version of pointwise
hinge loss without the margin requirement (cf. Fig. 1). Logistic loss uses a logistic function
to minimise negative triples score and maximise positive triples score. This is similar to
hinge loss, but uses a smoother linear loss slope defined as:

L
logisticPt

= ∑
x∈T

log(1+ exp(−l(x) · f (x))), (7)

where l(x) is the true label of fact x that is equal to 1 for positive facts and is equal to −1
otherwise.

•Multi-class loss approach: ConvE model proposed a new binary cross entropy multi-
class loss to model its training error. In this setting, the whole vocabulary of entities is used
to train each positive fact that for a triple (s, p,o) all facts (s, p,o′) with o′ ∈ E and o′ 6= o
are considered false. Despite the extra computational cost of this approach, it allowed
ConvE to generalise over a larger sample of negative assistances therefore surpassing other
approaches in accuracy [10]. In a recent work, Lacroix et. al. [5] introduced a softmax
regression loss to model the training error of the ComplEx model as a multi-class problem.
In this approach, the objective for each triple (s, p, o) is to minimise the following losses:

Llog−softmax
spo = Lo′

spo+Ls′
spo,

Lo′
spo =−φspo + log(∑o′ exp(φspo′)

Ls′
spo =−φspo + log(∑s′ exp(φs′po)

(8)

where s′ ∈ E, s′ 6= s, o′ ∈ E and o′ 6= o. This resembles a log-loss of the softmax value
of the positive triple compared to all possible object and subject corruptions where the
objective is to maximise positive facts scores and minimise all other scores. This approach
achieved a significant improvement to the prediction accuracy of ComplEx model over all
benchmark datasets [5].
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Table 1. A comparison between the ComplEx model and different variants of its scoring functions on standard
benchmarking datasets

Model Definition
NELL239 WN18RR FB237

MRR H@10 MRR H@10 MRR H@10

ComplEx i1+i2+i3-i4 0.35 0.51 0.44 0.51 0.22 0.41
ComplEx-V1 i1+i2+i3 0.34 0.51 0.45 0.52 0.22 0.40
ComplEx-V2 i2+i3+i4 0.34 0.50 0.44 0.51 0.21 0.38
ComplEx-V3 i1+i2-i4 0.34 0.51 0.45 0.52 0.22 0.40
ComplEx-V4 i1+i3-i4 0.33 0.50 0.45 0.50 0.21 0.39

2.3. Ranking Evaluation Metrics

Learning to rank models are evaluated using different ranking measures including Mean
Average Precision (MAP), Normalised Discounted Cumulative Gain (NDCG), and Mean
Reciprocal Rank (MRR). In this study, we only focus on the Mean Reciprocal Rank
(MRR) since it is the main metric used in previous related works.

Mean Reciprocal Rank (MRR). The Reciprocal Rank (RR) is a statistical measure used
to evaluate the response of ranking models depending on the rank of the first correct
answer. The MRR is the average of the reciprocal ranks of results for different queries in
Q. Formally, MRR is defined as:

MRR =
1
n

n

∑
i=1

1
R(xi, f )

,

where xi is the highest ranked relevant item for query qi. Values of RR and MRR have a
maximum of 1 for queries with true items ranked first, and get closer to 0 when the first
true item is ranked in lower positions.

3. The TriVec Model

In this section, we motivate for the design decision of TriVec model, and we present its
way to model embeddings interaction and training loss.

3.1. Motivation

Currently, models using factorisation-based knowledge graph embedding approaches
like DistMult and ComplEx achieve state-of-the-art results across all benchmarking
datasets [5]. In the DistMult model, embeddings interactions are modelled using a sym-
metric function that computes the product of embeddings of the subject, the predicate and
the object. This approach was able to surpass other distance-based embedding techniques
like TransE [2]. However, it failed to model facts with asymmetric predicate due to its
design. The ComplEx model tackle this problem using a embeddings in the complex
space where its embeddings interactions use the complex conjugate of object embeddings
to break the symmetry of the interactions. This approach provided significant accuracy
improvements over DistMult as it successfully models a wider range of predicates.
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The ComplEx embeddings interaction function (defined in Sec. 2) can be redefined
as a simple set of interactions of two part embeddings as follows:

φ
ComplEx
spo = ∑

k
i1 + i2 + i3− i4 (9)

where ∑k is the sum of all embeddings components of index k = {1, ...,K}, and interac-
tions i1, i2, i3 and i4 are defined as follows:

i1 = e1
s w1

pe1
o, i2 = e2

s w1
pe2

o, i3 = e1
s w2

pe2
o, i4 = e2

s w2
pe1

o

where e1 represents embeddings part 1, and e2 is part 2 (1→ real and 2→ imaginary).
Following this notation, we can see that the ComplEx model is a set of two symmetric in-
teraction i1 and i2 and two asymmetric interactions i3 and i4. Furthermore, this encouraged
us to investigate the effect of using other forms of combined symmetric and asymmetric
interactions to model embeddings interactions in knowledge graph embeddings. We inves-
tigated different combination of interactions i1, i2, i3 and i4, and we have found that by
removing and/or changing the definition of one of these interactions (maintaining that the
interactions use all triple components) will preserve similar or insignificantly different
prediction accuracy across different benchmarking datasets (See Table 1). This led us to
investigate other different forms of interactions that uses a combination of symmetric and
asymmetric interactions where we found that using embeddings of three parts can lead to
better predictive accuracy than the ComplEx and the DistMult models.

3.2. TriVec Embeddings Interactions

In the TriVec model, we represent each entity and relation using three embedding vectors
such that the embedding of entity i is {e1

i ,e
2
i ,e

3
i } and the embedding of relation j is

{w1
j ,w

2
j ,w

3
j} where em denotes the m part of the embeddings and where m ∈ 1,2,3 is used

to represent the three embeddings parts.
The TriVec model is a tensor factorisation based model, where its embeddings

interaction function (scoring function) is defined as follows:

φ
TriPart
spo =

K

∑
k=1

e1
skw1

pke3
ok + e2

skw2
pke2

ok + e3
skw3

pke1
ok (10)
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where k denotes the index of the embedding vector entries. The model uses a set of
three interactions: one symmetric interaction: (e2

s w2
pe2

o) and two asymmetric interactions:
(e1

s w1
pe3

o) and (e3
s w3

pe1
o) as shown in Fig. 2. This approach models both symmetry and

asymmetry in a simple form similar to the DistMult model where the DisMult model can
be seen as a special case of the TriVec model if the first and third embeddings part are
equivalent (e1 = e3).

3.3. Training the TriVec Model

Trouillon et. al. [14] showed that despite the equivalence of HolE and ComplEx models’
scoring functions, they produce different results as they use different loss functions. They
concluded that the logistic loss version of ComplEx outperforms its hinge loss version. In
addition, we have investigated different other ranking losses with the ComplEx model,
and we have found that squared error loss can significantly enhance the performance of
ComplEx on multiple benchmarking datasets.

The TriVec model performs its learning process using two different training loss configura-
tions: the traditional ranking loss and the multi-class loss. In the ranking loss configuration,
the TriVec model uses the squared error (Eq. 6) and the logistic loss (Eq. 7) to model its
training error, where a grid search is performed to choose the optimal loss representation
for each dataset. In the multi-class configuration, it uses the negative-log softmax loss
(Eq. 8) with the nuclear 3-norm regularisation [5] which is defined as follows:

LTriVec
spo =−φspo + log(∑o′ exp(φspo′))

−φspo + log(∑s′ exp(φs′po))

+
λ

3 ∑
K
k=1 ∑

3
m=1(|e

m
s |3 + |wm

p |3 + |em
o |3)

(11)

where m denotes the embedding part index, λ denotes a configurable regularisation weight
parameter and |x| is the absolute value of x. This allows the model to answer the link
prediction task in both directions: (subject, predicate, ?) and (?, predicate, object). We
also consider the use of predicate reciprocals in training as described in Lacroix et. al. [5],
where inverses of training predicates are added to the training set and trained with their
corresponding original facts as shown in the following:

LTriVec
spo =−φspo + log(∑o′ exp(φspo′))

−φspo + log(∑s′ exp(φo(p+Nr)s))

+
λ

3 ∑
K
k=1 ∑

3
m=1(|e

m
s |3 + |wm

p |3 + |wm
p+Nr |3 + |em

o |3)

(12)

where predicate p+Nr is the inverse of the predicate p where the model learns and
evaluates inverse facts using inverses of their original predicates. For all the multi-class
configurations, the TriVec model regularises the training facts embeddings using a dropout
layer [15] with weighted probability that it learns during the grid search.



Januray 2020

Table 2. Statistics of the benchmarking datasets.

Dataset Ent. count Rel. count Training Validation Testing

WN18 41k 18 141k 5k 5k
WN18RR 41k 11 87k 3k 3k
FB15k 15k 1k 500k 50k 60k
FB15k-237 15k 237 272k 18k 20k
YAGO10 123k 37 1M 5k 5k
NELL239 48k 239 74k 3k 3k

4. Experiments

In this section, we discuss the setup of our experiments where we present the evaluation
protocol, the benchmarking datasets and our implementation details.

4.1. Data

In our experiments we use six knowledge graph benchmarking datasets:

• WN18 & WN18RR: subsets of the WordNet dataset [16] that contains lexical
information of the English language [9,10].

• FB15k & FB15k-237: subsets of the Freebase dataset [17] that contains information
about general human knowledge [9,18].

• YAGO10: a subset of the YAGO3 dataset [19] that contains information mostly
about people and their citizenship, gender, and professions knowledge [20].

• NELL239: a subset of the NELL dataset [7,21] that we have created as a small
benchmark for fast prototyping and testing for our model, which contains general
knowledge about people, places, sports teams, universities, etc.

Table 2 contains statistics about our experiments’ benchmarking datasets 1.

4.2. Implementation

We use TensorFlow framework (GPU) along with Python 3.5 to perform our ex-
periments. All experiments were executed on a Linux machine with processor In-
tel(R) Core(TM) i70.4790K CPU @ 4.00GHz, 32 GB RAM, and an nVidia Titan Xp
GPU. An implementation of the proposed model is available on the github repository:
https://github.com/samehkamaleldin/libkge.

4.3. Experiments Setup

We perform our experiments in two different configurations:
(1) Ranking loss based learning: the models are trained using a ranking based loss function,
where our model chooses between squared error loss and logistic loss using grid search.

1All the benchmarking datasets can be downloaded using the following url: https://figshare.com/s/
88ea0f4b8b139a13224f

https://github.com/samehkamaleldin/libkge
https://figshare.com/s/88ea0f4b8b139a13224f
https://figshare.com/s/88ea0f4b8b139a13224f
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(2) Multi-class loss based learning: the models is trained using a multi-class based training
functions, where our model uses the softmax negative log loss functions described in
Eq. 11 and Eq. 12.

In all of our experiments we initialise our embeddings using the Glorot uniform random
generator [22] and we optimise the training loss using the Adagrad optimiser, where the
learning rate lr ∈ {0.1,0.3,0.5}, embeddings size K ∈ 50,75,100,150,200 and batch size
b ∈ {1000,3000,5000,8000} except for YAGO10 where we only use b ∈ {1000,2000}.
The rest of the grid search hyper parameters are defined as follows: in the ranking loss
approach, we use the negative sampling ratio n ∈ {2,5,10,25,50} and in the multi-class
approach we use regularisation weight λ ∈ {0.1,0.3,0.35,0.01,0.03,0.035} and dropout
d ∈ {0.0,0.1,0.2,0.01,0.02}. The number of training epochs is fixed to 1000, where in
the ranking loss configuration we do an early check every 50 epochs to stop training when
MRR stop improving on the validation set to prevent over-fitting.

In the evaluation process, we only consider filtered MRR and Hits@10 metrics [9]. In
addition, in the ranking loss configuration, TriVec model uses a softmax normalisation
of the scores of objects and subjects corruptions, that a score of a corrupted object triple
(s, p,oi) is defined as:

φspoi =
exp(φspoi)

∑o′∈E exp(φspo′)
,

similarly, we apply a softmax normalisation to the scores of all possible subject entities.

5. Results and Discussion

In this section we discuss findings and results of our experiments shown in Table 3 and
Table 4, where the experiments are divided into two configurations: models with ranking
loss functions and models with multi-class based loss functions.

5.1. Results of The Ranking Loss Configuration

In the results of the ranking loss configuration shown in Table 3, the results show that
the TriVec model achieves best results in terms of MRR and hits@10 in five out of six
benchmarking datasets with a margin of up to 10% as in the YAGO10 dataset. However, on
the FB15k-237 ConvKB [23] retains state-of-the-art results in terms of MRR and Hits@10.
Results also show that the factorisation based models like the DistMult, ComplEx, R-
GCN and TriVec models generally outperform distance based models like the TransE
and ConvKB models. However, on the FB15k-237 dataset, both distance based models
outperform all other factorisation based models with a margin of up to 15% in the case of
the ConvKB and the TriVec model. We intend to perform further analysis on this dataset
compared to other datasets to investigate why tensor factorisation models fail to provide
state-of-the-art results in future works.
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Table 3. Link prediction results on standard benchmarking datasets. ? Results taken from [3] and our own
experiments.

Model
WN18 WN18RR FB15k FB15k-237 YAGO10 NELL239

MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10

R
an

ki
ng

lo
ss

CP 0.08 0.13 - - 0.33 0.53 - - - - - -
TransE ? 0.52 0.94 0.20 0.47 0.52 0.76 .29 0.48 0.27 0.44 0.27 0.43
ConvKB - - 0.25 0.53 - - 0.40 0.52 - - - -
DistMult ? 0.82 0.94 0.43 0.49 0.65 0.82 0.24 0.42 0.34 0.54 0.31 0.48
ComplEx ? 0.94 0.95 0.44 0.51 0.70 0.84 0.22 0.41 0.36 0.55 0.35 0.52
R-GCN 0.81 0.96 - - 0.70 0.84 0.25 0.42 - - - -

TriVec 0.95 0.96 0.50 0.57 0.73 0.86 0.25 0.43 0.46 0.62 0.37 0.53

Table 4. Link prediction results on standard benchmarking datasets. † Results taken from [5] with embedding
size (K) limited to 200.

Model
WN18 WN18RR FB15k FB15k-237 YAGO10 NELL239

MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10

M
ul

ti-
cl

as
s

lo
ss

ConvE 0.94 0.95 0.46 0.48 0.75 0.87 0.32 0.49 0.52 0.66 0.37 0.45
CP-N3 † 0.12 0.18 0.08 0.14 0.35 0.56 0.22 0.42 0.40 0.64 - -
ComplEx-N3 † 0.92 0.95 0.44 0.52 0.58 0.79 0.30 0.51 0.46 0.67 - -
CP-N3-R † 0.93 0.94 0.41 0.45 0.62 0.78 0.30 0.47 0.55 0.69 - -
ComplEx-N3-R † 0.95 0.96 0.47 0.54 0.79 0.88 0.35 0.54 0.57 0.70 - -

TriVec- N3 0.95 0.96 0.47 0.54 0.84 0.91 0.35 0.54 0.57 0.71 0.41 0.57
TriVec-N3-R 0.95 0.96 0.47 0.54 0.81 0.91 0.35 0.54 0.57 0.70 0.41 0.58

5.2. Results of The Multi-class Loss Configuration

Results of the multi-class based approach show that TriVec model provide state-of-the-
art result on all benchmarking datasets, where the ComplEx models provide equivalent
results on 3 out 6 datasets. Our reported results of the ComplEx model with multi-class
log-loss introduced by Lacroix et. al. [5] are slightly different from their reported results
as we re-evaluated their models with restricted embeddings size to a maximum of 200.
In their work they used an embedding size of 2000, which is impractical for embedding
knowledge graphs in real applications. And other previous works using the TransE,
DistMult, ComplEx, ConvE, and ConvKB models have limited their experiments to a
maximum embedding size of 200. In our experiments, we limited our embedding size
to 200 and we have re-evaluated the models of [5] using the same restriction for a fair
comparison 2.

5.3. Ranking and Multi-class Approaches

In the link prediction task, the objective of knowledge graph embedding models is to learn
embeddings that rank triples according to their faculty. This is achieved by learning to rank
original true triples against other negative triple instances, where the negative instances
are modelled in different ways in ranking approaches and multi-class loss approaches.

2We have used the code provided at: https://github.com/facebookresearch/kbc for the evaluation
of the models: CP-N3, CP-N3-R, ComplEx-N3 and ComplEx-N3-R

https://github.com/facebookresearch/kbc
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Table 5. Properties of scoring functions of state-of-the-art models compared to our model

Model Scoring Function Rel. Parameters O-Time O-Space

RESCAL [13] eT
s Wreo RK×K O(K2) O(K2)

TransE [9] ‖es +wp− eo‖l1/l2 RK O(K) O(K)

DistMult [2] < es,wp,eo > RK O(K) O(K)

ComplEx [3] < es,wp,eo > CK O(K) O(K)

TriVec (ours) < e1
s w1

pe3
o >+< e2

s w2
pe2

o >+< e3
s w3

pe1
o > R3K O(K) O(K)

In learning to rank approach, models use a ranking loss e.g. pointwise or pairwise loss
to rank a set of true and negative instances [24], where negative instances are generated
by corrupting true training facts with a ratio of negative to positive instances [9]. This
corruption happens by changing either the subject or object of the true triple instance. In
this configuration, the ratio of negative to positive instances is traditionally learnt using a
grid search, where models compromise between the accuracy achieved by increasing the
ratio and the runtime required for training.

On the other hand, multi-class based models train to rank positive triples against
all their possible corruptions as a multi-class problem where the range of classes is the
set of all entities. For example, training on a triple (s, p, o) is achieved by learning the
right classes "s" and "o" for the pairs (?, p, o) and (s, p, ?) respectively, where the set
of possible class is E of size Ne. Despite the enhancements of the predictions accuracy
achieved by such approaches [10,5], they can have scalability issues in real-world large
sized knowledge graphs with large numbers of entities due to the fact that they use the
full entities’ vocabulary as negative instances [25].

In summary, our model provides significantly better results than other SOTA models
in the ranking setting, which is scalable and thus better-suited to real-world applications.
In addition to that, our model has equivalent or slightly better performance than SOTA
models on the multi-class approach.

6. Analysis

In this section, we study the difference between the TriVec model and KGE models in
terms of scalability. We first discuss the time and space complexities of the TriVec model
and other KGE models. We then execute some experiments to validate these complexities,
where we discuss the relation between the training runtime of the TriVec model and other
factors such as the embedding size, number of negative samples and the training data size.

6.1. Time and Space Complexities

Knowledge graph embedding models are known to operate with linear time and space
complexity [3] as they use linear operations on vector to model embeddings interactions.
However, some KGE models such as the RESCAL model [13] operate using higher
complexities (quadratic time and space complexity) due to modelling embedding using
matrices instead of vectors.

In our case, the TriVec model operate similar to the Complex model with an extra
embedding vector. Since the ComplEx model is known to have a linear time and space
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complexity [3], our model also operates with linear time and space complexity as shown
in Table 5. These complexities, however, apply only to the ranking based objective settings
of both the complex and TriVec models. On the other hand, the multi-class loss version of
these models operate with a quadratic space complex since it use one versus all negative
sampling.

6.2. Scalability of Training

In the following, we describe and discuss our experiments to examine the scalability of
the TriVec model compared to other KGE models in relation to three factors: embedding
size, negative sampling and training data size. We ran all our experiments on the KGE
models with ranking based objectives.

In our experiments, we use a portion of the drug polypharmacy side-effects
dataset [26] where we use the drug-drug interactions and their outcome side-effects as
a knowledge graphs. In this context, our triplets are processed in the format of (drug,
side-effect, drug) where drugs are modelled as entities and their resulting side effects are
modelled as predicates. We then execute multiple experiments to assess the scalability of
TriVec model in relation to different factors.

We first train the TransE, DistMult, ComplEx and TriVec modes on different portions
of the dataset with different sizes to asses the models scalability in relation to the change
of training data size. The outcomes of our experiment is illustrated in Fig. 3 plot (A)
which shows that the training runtime of all the investigated models including the TriVec
model grows linearly in relation to the size of the training dataset. The results also show
that the ComplEx and TriVec models generally have longer training runtime than the
DistMult and TransE models which can be a result of their use of multiple vectors to
represent their embeddings.

Secondly, we training the KGE models on the whole a fixed size portion of the dataset
using different embedding size and we report the corresponding runtime of each run in
plot (B) in Fig. 3. The results show that the training time of all the models grows linearly
in relation to increase of the embedding size. They also show that both the ComplEx
and TriVec models have significantly higher growth factor than the DistMult and TransE
models which is also a result of their use of multiple vectors to represent their embeddings
as in the previous experiment.

Finally, we ran train our models with different negative sampling ratios to examine
the relation between the them and the training runtime of each model. We report the
results of this experiment in plot (C) in Fig. 3. The results show that all the models grow
linearly in relation to the growth of the negative sampling ration while the DistMult and
TransE models have relatively shorter training runtime compared to the ComplEx and
TriVec models as in the previous experiments.

7. Example Biological Application

In this section, we present and example real life biological application of our newly
proposed method, the TriVec model compared to other knowledge graph embedding
techniques. We examine our method in modelling interaction networks of chemicals and
human protein and their associated biological biological effects.
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Figure 3. A scalability comparison between different knowledge graph embedding models in terms of the
growth with relation to embedding size, negative samples and batch size.

Chemicals can have different types of effects on their target proteins such as change
of expression, abundance, secretion, etc. These different effects then play various roles in
the mechanism-of-action of chemicals in living systems. Therefore, understanding the
chemical–protein interactions with their respective effects is crucial to elucidating the
mechanism-of-action of therapeutic chemical substances.

We thus examine the of use computational methods such as the KGE models in the
prediction of chemical-protein interactions and their associated biological effects. First,
We build a benchmarking dataset that consists of known chemical–protein interactions
with their associated chemical effects extracted from the Comparative Toxicogenomics
Database (CTD) [27,28]. We them use different KGE models to generate embeddings of
chemicals, their targeted proteins and corresponding chemical effects. We then use these
embeddings to predict new possible chemical–protein interactions and their associated
chemical effects. Finally, we show by computational experimental evaluation on our
benchmark dataset that the TriVec model outperforms all other approaches in the task of
predicting chemical–protein interactions and their associated chemical effects.

7.1. Data

We use a drug target interaction dataset extracted from the Comparative Toxicogenomics
Database (CTD) [27,28]. The CTD database contains data on chemicals, pathways,
diseases, exposures, genes and phenotypes. It also contains different types of associations
between these entities. In our study, we only consider the chemical gene associations
where we filter out the interactions according to the related species to keep only the
interactions assigned to humans.

We build a new benchmarking dataset, the CTD38E dataset, which contains asso-
ciations between chemicals and their human protein targets from the CTD data. It also
includes the different effect types related to these associations between the chemicals and
proteins. The dataset includes a set of 38 different chemical effects which are filtered
according to their coverage where we only keep effects that have 500 instances or more.
We further divide the dataset into training and testing splits with 90% and 10% ratios
respectively for the training and evaluation pipeline.
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Figure 4. A scalability comparison between different knowledge graph embedding models in terms of the
growth with relation to embedding size, negative samples and batch size.

7.2. Experiments

In our experiments, we form the chemical-protein interactions and their effects as (chemi-
cal,effect,protein) triplets where chemicals and proteins are modelled as entities and the
associated biological effects are modelled as predicates between these entities. We then
train differnt standard KGE models such as the TransE, DistMult and ComplEx models
along with our proposed TriVec model with its two configurations: multi-class (MC)
and pointwise ranking (Pt) objectives on the training split of the benchmark dataset and
evaluate it on the testing split.

Our testing split only contains true instance, therefore, we generate negative instances
using uniform random sampling of chemicals and protein for each biological effect with
different positive to negative ratios (1:1, 1:10 and 1:50). We then use the are under the
ROC and precision recall curves to evaluate all the predictions of the KGE models on
the different negative sampling ratios. We execute the evaluation of all the investigated
models for each biological effect, and we then compute the averages of the two evaluation
metrics to denote the models’ overall metrics scores.

Further information about the problem, dataset and the use of KGE models to predict
chemical-protein interactions can be found in the study of Mohamed et. al. [29].

7.3. Results

Fig. 4 presents a comparison between the TriVec method and other approaches in terms of
predictive accuracy. The results show that the TriVec model achieves significantly better
scores compared to other approaches in terms of the 1-versus-all negative to positive
metrics (MRR and Hits@10). The results also show that the TriVec model with the
multi-class loss approach achieves the best results in terms of all the predictive accuracy
metrics.

The multi-class version of the TriVec model also achieves the best results in terms of
the area under the ROC and precision recall curves. However, the difference between its
scores and the scores of other models is small (ranges from 1% to 2%) in all the negative
sampling configurations. The results also show that the achieved enhancements of the
TriVec model positively correlate with the negative to positive ratio. This shows that the
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TriVec model is able to provide better results than other approaches in harder evaluation
settings (N50).

8. Conclusions and Future Work

In this work, we have presented the TriVec model, a new tensor factorisation based knowl-
edge graph embedding model that represents knowledge entities an relation using three
parts embeddings, where its embedding interaction function can model both symmetric
and asymmetric predicates. We have shown by experiments that the TriVec model out-
performs other tensor factorisation based models like the ComplEx and the DistMult on
different training objectives and across all standard benchmarking datasets. We have also
introduced a new challenging small size benchmarking datasets, NELL239, that can be
used to facilitate fast development of new knowledge graph embedding models. We also
analysed the scalability of our proposed model compared to other KGE models in terms
of time and space complexity, and the scalability of its training in relation to different
factors where we showed that our model have is highly scalable in training due to its
linear time and space complexity.

Finally, we have compared our method to other KGE model on a real biological use
case where we used the task of predicting the effects of chemical-protein interactions as a
comparison application. We first built a benchmarking dataset based on the CTD database,
then we used an experimental evaluation to show that our model outperforms other KGE
models in predicting the biological effects of chemical-protein interactions in terms of
both the area under the ROC and precision recall curves.

In our future works, we intend to investigate new possible approaches to model
embedding interactions of tensor factorisation models, and we intend to analyse the effects
of properties of knowledge graph datasets like FB15k-237 on the efficiency of tensor
factorisation based models.
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