
Journal Title 0 (2017) 1–0 1
IOS Press

The Knowledge Graph as the Default Data
Model for Learning on Heterogeneous
Knowledge
Xander Wilcke a,b,* Peter Bloem aand Victor de Boer a

a Faculty of Sciences, Vrije Universiteit Amsterdam
b Faculty of Spatial Economics, Vrije Universiteit Amsterdam
Amsterdam, The Netherlands

Abstract. In modern machine learning, raw data is the pre-
ferred input for our models. Where a decade ago data scien-
tists were still engineering features, manually picking out the
details we thought salient, they now prefer the data in their
raw form. As long as we can assume that all relevant and ir-
relevant information is present in the input data, we can de-
sign deep models that build up intermediate representations
to sift out relevant features. However, these models are often
domain specific and tailored to the task at hand, and therefore
unsuited for learning on heterogeneous knowledge: informa-
tion of different types and from different domains. If we can
develop methods that operate on this form of knowledge, we
can dispense with a great deal more ad-hoc feature engineer-
ing and train deep models end-to-end in many more domains.
To accomplish this, we first need a data model capable of ex-
pressing heterogeneous knowledge naturally in various do-
mains, in as usable a form as possible, and satisfying as many
use cases as possible. In this position paper, we argue that the
knowledge graph is a suitable candidate for this data model.
We further describe current research and discuss some of the
promises and challenges of this approach.

Keywords: Knowledge Graphs, Semantic Web, Machine
Learning, End-to-End Learning, Position paper

1. Introduction

In the last decade, the methodology of Data Science
has changed radically. Where machine learning prac-
titioners and statisticians would generally spend most
of their time on extracting meaningful features from
their data, often creating a derivative of the origi-

*Corresponding Author, E-mail: w.x.wilcke@vu.nl.

nal data in the process, they now prefer to feed their
models the data in their raw form. Specifically, data
which still contains all relevant and irrelevant infor-
mation rather than having been reduced to features se-
lected or engineered by data scientists. This shift can
largely be attributed to the emergence of deep learn-
ing, which showed that we can build layered mod-
els of intermediate representations to sift out rele-
vant features, and which allows us to dispense with
manual feature engineering.

For example, in the domain of image analysis, pop-
ular feature extractors like SIFT [Low99] have given
way to Convolutional Neural Networks [LDH+90,
KSH12], which naturally consume raw images. These
are used, for instance, in facial recognition models
which build up layers of intermediate representations:
from low level features built on the raw pixels like lo-
cal edge detectors, to higher level features like spe-
cialized detectors for the eyes, the nose, up to the face
of a specific person [Le13]. Similarly, in audio anal-
ysis, it is common to use models that consume audio
data directly [GMH13] and in Natural Language Pro-
cessing it is possible to achieve state-of-the-art per-
formance without explicit preprocessing steps such as
POS-tagging and parsing [NG15].

This is one of the strongest benefits of deep learning:
we can directly feed the model the dataset as a whole,
containing all relevant and irrelevant information, and
trust the model to unpack it, to sift through it, and to
construct whatever low-level and high-level features
are relevant for the task at hand. Not only do we not
need to choose what features might be relevant to the
learning task—making ad-hoc decisions and adding,

0000-0000/17/$00.00 c© 2017 – IOS Press and the authors. All rights reserved

mailto:w.x.wilcke@vu.nl

2

removing, and reshaping information in the process—
we can let the model surprise us: it may find features
in our data that we would never have thought of our-
selves. With feature engineering now being part of the
model itself, it becomes possible to learn directly from
the data. This is called end-to-end learning (further ex-
plained in the text box below).

However, most present end-to-end learning meth-
ods are domain-specific: they are tailored to images,
to sound, or to language. When faced with heteroge-
neous knowledge—information of different types and
from different domains—we often find ourselves re-
sorting back to manual feature engineering. To avoid
this, we require a machine learning model capable of
directly consuming heterogeneous knowledge, and a
data model suitable of expressing such knowledge nat-
urally and with minimal loss of information. In this
paper, we argue that the knowledge graph is a suit-
able data model for this purpose and that, in order to
achieve end-to-end learning on heterogeneous knowl-
edge, we should a) adopt the knowledge graph as the
default data model for this kind of knowledge and b)
develop end-to-end models that can directly consume
these knowledge graphs.

Concretely, we will use the term heterogeneous
knowledge to refer to: entities (things), their rela-
tions, and their attributes. For instance, in a com-
pany database, we may find entities such as employ-
ees, departments, resources and clients. Relations ex-
press which employees work together, which depart-
ment each employee works for and so on. Attributes
can be simple strings, such as names and social secu-
rity numbers, but also richer media like short biogra-
phies, photographs, promotional videos or recorded in-
terviews.

Of course, no data model fits all use cases, and
knowledge graphs are no exception. Consider, for in-
stance, a simple image classification task: it would
be extremely inefficient to encode the individual pix-
els of all images as separate entities in a knowledge
graph. We can, however, consider encoding the im-
ages themselves as entities, with the raw image data
as their single attribute (e.g., as hex-encoded binary
data). In this case, we would pay little overhead, but
we would also gain nothing over the original simple
list of images. However, as soon as more informa-
tion becomes available (like geotags, author names, or

camera specifications) it can be easily integrated into
this knowledge graph.

This, specifically, is what we mean when we argue
for the adoption of the knowledge graph as the default
data model for heterogeneous knowledge: not a one-
size-fits-all solution, but a first line of attack that is de-
signed to capture the majority of use cases. For those
cases where it adds little, we can design our models so
that it does not hurt either, while still providing a data
model and machine learning pipeline that allows us to
extend our dataset with other knowledge.

We will first explain the principles behind the
knowledge graph model with the help of several prac-
tical examples, followed by a discussion on the poten-
tial of knowledge graphs for end-to-end learning and
on the challenges of this approach. We will finish with
a concise overview of promising current research in
this area.

1.1. Use cases

Throughout the paper, we will use three different use
cases as running examples:

Spam detection is one of the first classification prob-
lems to be solved well enough to be widely
implemented in commercial products. Early ap-
proaches tackled this task by converting email
text to term vectors, and using these term vectors
in a naive Bayes classifier.

Movie recommendation is a standard use case for
recommender systems. Here, we have a set of
users, and a set of movies. Some users have given
ratings to some movies. In one early successful
model, ratings are written as a matrix, which is
then decomposed into factors that are multiplied
back again to produce new ratings from which
recommendations are derived.

Market basket analysis is one of earliest success sto-
ries which helped retailers understand customer
purchasing behaviour, and which allowed them
to adjust their strategy accordingly. The break-
through that allowed this came with association
rule mining, which converts all transactions into
vectors and then computes their inner and outer
correlations.

3

End-to-End Learning

Why is end-to-end learning so important to data scientists? Is this just a modern affectation? Paul Mineiro provides
a good reason to consider this a more fundamental practice [Min]. In most areas of software engineering, solving
a complex problem begins with breaking the problem up into subproblems: divide and conquer. Each subproblem
is then solved in one module, and the modules are chained together to produce the required end result. If, however,
these modules use machine learning, we have to take into account that their answers are necessarily inexact.

“Unfortunately, in machine learning we never exactly solve a problem. At best, we approximately solve a problem. This is
where the technique needs modification: in software engineering the subproblem solutions are exact, but in machine learning
errors compound and the aggregate result can be complete rubbish. In addition apparently paradoxical situations can arise
where a component is “improved” in isolation yet aggregate system performance degrades when this “improvement” is
deployed (e.g., due to the pattern of errors now being unexpected by downstream components, even if they are less frequent).

Does this mean we are doomed to think holistically (which doesn’t sound scalable to large problems)? No, but it means you
have to be defensive about subproblem decomposition. The best strategy, when feasible, is to train the system end-to-end,
i.e., optimize all components (and the composition strategy) together rather than in isolation.”

- Paul Mineiro, 15-02-2017 [Min]

Even if we are forced to pre-train each component in isolation, it is crucial to follow that pre-training up with a
complete end-to-end training step when all the modules are composed [Bot]. This puts a very strong constraint
on the kind of modules that we can use: an error signal needs to be able to propagate though all layers of the
architecture, from the output back to the original data that inspired it.
Any pre-processing done on the data, any manual feature extraction, harmonization and/or scaling can be seen as
a module in the pipeline that cannot be tweaked, and does not allow a final optimization end-to-end. Any error
introduced by such modules can never be retrieved. Since these are often modules at the start of our pipeline, even
the smallest mistake or suboptimal choice can be blown up exponentially as we add layers to the model.

2. The knowledge graph

The aforementioned use cases share several common
aspects: in each case we have a set of instances,
and we have a collection of diverse and heteroge-
neous facts representing our knowledge about these
instances. Some facts link instances together (John is
a friend of Mary, John likes Jurassic Park) and some
describe attributes of instances (Jurassic Park was re-
leased on June 9, 1993).

The question of how to represent such knowledge is
not a new one. It has been studied by AI researchers
since the invention of the field, and before [DSS93].
The most recent large-scale endeavour in this area is
undoubtedly the Semantic Web, where knowledge is
encoded in knowledge graphs.

The knowledge graph data model used in the Se-
mantic Web is based on three basic principles:

1. Encode knowledge using statements.
2. Express background knowledge in ontologies.
3. Reuse knowledge between datasets.

We will briefly discuss each of these next.

2.1. Encode knowledge using statements

The most fundamental idea behind the Semantic Web
is that knowledge should be expressed using state-
ments. Consider the following example:

Kate knows Mary.

Mary likes Pete.

Mary age “32“.

Pete brother_of Kate.

Pete born_on “27-03-1982”.

All of the above are statements that comply with the
Resource Description Framework (RDF), a data model
which forms the basic building block of the Semantic
Web.1 This model specifies that each statement should
consist of a single binary property (the verb) which re-
lates two resources (the subject and object) in a left-
to-right order. Together, these three are referred to as
an RDF triple. We can also represent this example as a
directed graph as shown in Figure 1.

1https://www.w3.org/RDF/

4

Figure 1. Graphical representation of the example given in §2. Edges
represent binary relations. Vertices’ shapes reflect their roles: solid
circles represent entities, empty circles represent their attributes.

Resources can be either entities (things) or liter-
als which hold values such as text, numbers, or dates.
Triples can either express relations between entities
when the resources on both sides are things, or they can
express attributes when the resource on the right-hand
side is a literal. For instance, the last line of our ex-
ample set expresses an attribute of Pete (date of birth)
with value “27-03-1982”.

Apart from the few rules already listed, the RDF
data model itself does not impose any further re-
strictions on how knowledge engineers should model
their knowledge: we could have modelled our exam-
ple differently, for instance by representing dates as re-
sources. In general, such modelling choices depend on
the domain and on the intended purposes of the dataset.

2.2. Express background knowledge in ontologies

Where the RDF data model gives free rein over mod-
elling choices, ontologies offer a way to express how
knowledge is structured in a given domain and by a
given community. For this purpose, ontologies contain
classes (entity types) and properties that describe the
domain, as well as constraints and inferences on these
classes and properties. For instance, an ontology might
define Person as the class containing all individual
persons. It might likewise define type as the property
that assigns an entity to a class. As an example, let us
use these to extend our example set with the following
statements:

Kate type Person.

Mary type Person.

Pete type Person.

Kate, Mary, and Pete are now all said to be instances
of the class Person. This class may hold various prop-
erties, such as that it is equivalent to the class Human,
disjoint with the class Animal, and that it is a sub-
class of class Agent. This last property is an exam-
ple of a recursive property, and can be expressed us-

ing the RDF Schema (RDFS) ontology2 which extends
the bare RDF model with several practical classes and
properties. The other two relations are more complex,
and require a more expressive ontology to be stated.
OWL, the Web Ontology Language, is generally the
preferred choice for this purpose.3

Ontologies can be used to derive implicit knowledge.
For instance, knowing that Kate is of the type Person,
and that Person is itself a subclass of Agent, allows
a reasoning engine to derive that Kate is an Agent as
well. We will return to this topic in Section 4.2.

2.3. Reuse knowledge between datasets

Reusing knowledge can be done by referring to re-
sources not by name, but by a unique identifier. On
the Semantic Web, these identifiers are called Inter-
nationalized Resource Identifiers, or IRIs, and gen-
erally take the form of a web address. For instance,
we can use the IRIs http://vu.nl/staff/KateBishop and
http://vu.nl/staff/MaryWatson to refer to Kate and Mary,
respectively. More often, we would write these IRIs as
vu:KateBishop and vu:MaryWatson, with vu: as short-
hand for the http://vu.nl/staff/ namespace. We can now
rewrite the first statement of our example set as

vu:KateBishop knows vu:MaryWatson .

This statement implies the same as before, but now we
can safely add other people also named Kate or Mary
without having to worry about clashes. Of course, we
can do the same for our properties. To spice things up,
let us assume that we used an already existing ontol-
ogy, say the widely used FOAF (Friend Of A Friend)
ontology.4 This lets us write the statement as

vu:KateBishop foaf:knows vu:MaryWatson .

We now have a triple that is fully compliant with the
RDF data model, and which uses knowledge from a
shared and common ontology.

The principle of reusing knowledge is a simple idea
with several consequences, most particular with re-
spect to integrating, dereferencing, and disambiguat-
ing knowledge:

Integrated knowledge
Integrating datasets is as simple as linking two

2https://www.w3.org/TR/rdf-schema/
3https://www.w3.org/OWL/
4https://xmlns.com/foaf/spec/

5

Figure 2. Extension of the original example (Fig. 1) with a dataset on
VU employees. Resources Kate and Pete occur in both graphs
and can therefore be used to link the datasets together.

knowledge graphs at equivalent resources. If such
a resource holds the same IRI in both datasets
an implicit coupling already exists and no fur-
ther action is required. In practice, this boils down
to simply concatenating one set of statements to
another. For instance, we can extend our exam-
ple set with another dataset on VU employees as
long as that dataset contains any of the three re-
sources: Kate, Mary, or Pete (Fig. 2). Of course,
integration on the data level does not mean that
the knowledge itself is neatly integrated as well:
different knowledge graphs can be the result of
different modelling decisions. These will persist
after integration. We will return to this topic in
more detail in Section 4.4.

Dereferenceable knowledge
An IRI is more than just an identifier: it can also
be a web address pointing to the location where
a resource or property is described. For these
data points, we can retrieve the description us-
ing standard HTTP. This is called dereferencing,
and allows for an intuitive way to access external
knowledge. In practice, not all IRIs are derefer-
enceable, but many are.

Disambiguated knowledge
Dereferencing IRIs allows us to directly and un-
ambiguously retrieve relevant information about
entities in a knowledge graph, amongst which are
classes and properties in embedded ontologies.
Commonly included information encompasses
type specifications, descriptions, and various con-
straints. For instance, dereferencing foaf:knows
tells us it is a property used to specify that a cer-
tain person knows another person, and that we

can infer that resources that are linked through
this property are of type Person.

We have recently seen uptake of these principles on a
grand scale, with the Linked Open Data (LOD) cloud
as prime example. With more than 38 billion state-
ments from over 1100 datasets (Fig. 3), the LOD cloud
constitutes a vast distributed knowledge graph which
encompasses almost any domain imaginable.

With this wealth of data available, we now face the
challenge of designing machine learning models capa-
ble of learning in a world of knowledge graphs.

3. Learning in a world of knowledge graphs

We will revisit the three use cases described in the in-
troduction and discuss how they can benefit from the
use of knowledge graphs as data model and how this
leads to a suitable climate for end-to-end learning by
removing the need for manual feature engineering.

3.1. Spam detection

Before, we discussed how early spam detection meth-
ods classified e-mails based solely on the content of
the message. We often have much more information
at hand. We can distinguish between the body text,
the subject heading, and the quoted text from previous
emails. But we also have other attributes: the sender,
the receiver, and everybody listed in the CC. We know
the IP address of the SMTP server used to send the
email, which can be easily linked to a region. In a
corporate setting, many users correspond to employ-
ees of our companies, for whom we know dates-of-
birth, departments of the company, perhaps even por-
trait images or a short biography. All these aspects
provide a wealth of information that can be used in
the learning task.

In the traditional setting, the data scientist must de-
cide how to translate all this knowledge into feature
vectors, so that machine learning models can learn
from it. This translation has to be done by hand and the
data scientist in question will have to make a judge-
ment in each case whether the added feature is worth
the effort. Instead, it would be far more convenient and
effective if we can train a suitable end-to-end model
directly on the dataset as a whole, and let it learn the
most important features itself. We can achieve this by
expressing this dataset in a knowledge graph.

An example of how such a knowledge graph might
look is depicted in Figure 4. Here, information about

6

Figure 3. A depiction of the LOD cloud, holding over 38 billion
facts from more than 1100 linked datasets. Each vertex represents
a separate dataset in the form of a knowledge graph. An edge be-
tween two datasets indicates that they share at least one IRI. Figure
from [AMB+].

who sent the e-mails, who received them, which e-
mails are replies, and which SMTP servers were used
are combined in a single graph. The task is now to la-
bel the vertices that represent emails as spam or not
spam—a straightforward entity classification task.

3.2. Movie Recommendation

In traditional recommender systems, movie recom-
mendations are generated by constructing a matrix of
movies, people and received ratings. This approach as-
sumes that people are likely to enjoy the same movies
as people with a similar taste, and therefore needs ex-
isting ratings for effective recommendation [KBV09].
Unfortunately, we do not always have actual ratings
yet and are thus unable to start these computations.
This is a common issue in the traditional setting, called
the cold-start problem.

We can circumvent this problem by relying on addi-
tional information to make our initial predictions. For
instance, we can include the principal actors, the di-
rector, the genre, the country of origin, the year it was
made, whether it was adapted from a book, et cetera.
Including this knowledge solves the cold start problem
because we can link movies and users for which no
ratings are yet available to similar entities through this
background data.

An example of a knowledge graph about movies is
depicted in Figure 5. The dataset featured there con-
sists of two integrated knowledge graphs: one about

movies in general, and another containing movie rat-
ings provided by users. Both graphs refer to movies
by the same IRIs, and can thus be linked together
via those resources. We can now recast the recom-
mendation task as link prediction, specifically the pre-
diction of the property likes that binds users to
movies. Background knowledge and existing ratings
can both be used, as their availability allows. For in-
stance, while the movie Indiana_Jones has no rat-
ings, we do know that it is of the same genre and
from the same director as Jurassic_Park. Any user
who likes Jurassic_Park might therefore also like
Indiana_Jones.

3.3. Market Basket Analysis

Before, we mentioned how retailers originally used
transactional information to map customer purchase
behaviour. Of course, we can include much more in-
formation than only anonymous transactions. For in-
stance, we can take into account the current discount
on items, whether they are healthy, and where they
are placed in the store. Consumers are already pro-
viding retailers with large amounts of personal infor-
mation as well: age, address, and even indirectly in-
formation about their marital and financial status. All
these attributes can contribute to a precise profile of
our customers.

Limiting the data purely to items imposes an up-
per bar on the complexity of the patterns our meth-
ods can discover. However, by integrating additional
knowledge on products, ingredients, and ecological re-
ports, our algorithms can discover more complex pat-
terns. They might, for example, find that Certified Hu-
mane5 products are often bought together, that people
who buy these products also buy those which are eco-
friendly, or that products with a low nutritional value
are more often bought on sunny days.

An example of how a knowledge graph on transac-
tions might look is shown in Figure 6. Each transac-
tion is linked to the items that were bought at that mo-
ment. For instance, all three transactions involve buy-
ing drumsticks. This product consist of chicken, which
we know due to the coupling of the knowledge graph
on transactions with that of product information. We
further extended this by integrating external datasets
about suppliers and ecological reports.

5http://certifiedhumane.org/

7

Figure 4. An example dataset on email conversations used in the use case on spam detection of §3.1.

3.4. The default data model?

All three use cases benefited from the use of knowl-
edge graphs to model heterogeneous knowledge, as
opposed to the current de facto default: the table. There
are however, more data models capable of express-
ing heterogeneous knowledge natively. This raises the
question whether the same can also be accomplished
by modelling our knowledge in some other data model.
Let us consider two popular alternatives: XML and the
relational model (for database management).

The tree structure of XML is a limiting factor com-
pared to knowledge graphs. Any graph structure we
want to store in XML loses information which can-
not be expressed using only hierarchical relations. If,
for instance, we want to store a social network in an
XML format, say with a single element for each per-
son, the relations between these people must be en-
coded by links between these elements that are not na-
tive to the data model. A learning model designed to
consume XML would exploit the tree structure, but not
the ad-hoc graph structure between these elements.

The differences between the relational model and
the knowledge graph are more subtle. Indeed, there are
often very seamless translations between the two. Nev-
ertheless, there are some differences, mostly based on
the way these models are currently used (rather than
their intrinsic properties), that make knowledge graphs
a more practical candidate for end-to-end learning on
heterogeneous knowledge.

One important difference is how both data models
allow data integration: where it is a simple task to inte-
grate two knowledge graphs at the data level—we only
need one IRI shared by both—this is a considerable
problem with relational databases and typically re-
quires various complex table operations [HS95, HJ11].
While data integration by matching IRIs is certainly

no silver bullet (as discussed further in Section 4.4),
it does allow a seamless data-level integration with-
out human intervention. The end result is again fully
compliant with the RDF data model and can thus di-
rectly be used as input to any suitable machine learn-
ing model. This is important in the context of end-to-
end learning, because it makes it possible, in principle,
to let the model learn the rest of the data integration.6

Another difference is simply the availability of data.
Relational databases are typically designed for a spe-
cific purpose and often operate as solitary units in an
enclosed environment. Data hosted as such is usually
in some proprietary format and difficult to retrieve as a
single file, and in a standardized open format. Knowl-
edge graphs, however, are widely published and have
a mature stack of open standards available to them.

Of course, there are domains in which the knowl-
edge graph is a less suitable choice of data model.
Specifically, there exists a spectrum of datasets, where
at one end, the relevant information is primarily en-
coded in the literals and, at the other, the relevant data
is primarily encoded in the graph structure itself. As
mentioned in the introduction, a typical use case is im-
age classification: it would be highly impractical to en-
code every individual pixel of every individual image
as a separate vertex in a knowledge graph. However,
it is feasible to represent these images themselves as
literals. This allows us to present the raw image data,
together with their metadata, in a unified format.

Similar encoding strategies are found in other do-
mains, such as linguistics [CMCF13] and in multime-

6A similar effect could be achieved for relational databases if IRIs
(or some other universal naming scheme) were adopted to create
keys between databases, but we are not aware of any practical efforts
to that effect.

8

Figure 5. An example dataset on movies and ratings used in the use case on movie recommendations of §3.2.

dia [ATS+07], and also with other forms of data such
as temporal [RA06] and streaming data [SC09].

4. The challenges ahead

In the previous section, we argued that expressing
heterogeneous knowledge in knowledge graphs holds
great promise. We assumed in each case that effective
end-to-end learning models are available. However, to
develop such models some key challenges need to be
addressed, specifically on how to deal with incom-
plete knowledge, implicit knowledge, heterogeneous
knowledge, and differently-modelled knowledge. We
will briefly discuss each of these problems next.

4.1. Incomplete knowledge

Knowledge graphs are inherently forgiving towards
missing values: rather than to force knowledge engi-
neers to fill in the blanks with artificial replacements—
NONE, NULL, -1, 99999, et cetera—missing knowl-
edge is simply omitted altogether. When dealing with
real-world knowledge, we are often faced with large
amounts of these missing values: for many properties
in such a dataset, there may be more entities for which
the value is missing, than for which it is known.

While the occasional missing value can be dealt
with accurately enough using current imputation meth-
ods, estimating a large number of them from only a
small sample of provided values can be problematic.
Ideally, models for knowledge graphs will instead sim-
ply use the information that is present, and ignore the
information that is not, dealing with the uneven distri-
bution of information among entities natively.

4.2. Implicit knowledge

Knowledge graphs contain a wealth of implicit knowl-
edge, implied through the interplay of assertion knowl-

edge and background knowledge. Consider class in-
heritance: for any instance of class C1 holds that, if
C1is a subclass of C2, then it is also an instance of class
C2. Here, additional knowledge is derived by exploit-
ing the property’s transitivity.

In the case of end-to-end learning, the ability to ex-
ploit implicit knowledge should ideally be part of the
model itself. Already, studies have shown that machine
learning models are capable of approximating deduc-
tive reasoning with background knowledge [PS16]. If
we can incorporate such methods into end-to-end mod-
els, it becomes possible to let these models learn the
most appropriate level of inference themselves.

4.3. Heterogeneous knowledge

Recall that literals allow us to state explicit values—
texts, numbers, dates, IDs, et cetera—as direct at-
tributes of resources. This means that literals contain
their own values, which contrasts with non-literal re-
sources for which their local neighbourhood—their
context—is the ‘value’. Simply treating literals the
same as non-literal resources will therefore be ineffec-
tive. Concretely, this would imply that literals and non-
literals can be compared using the same distance met-
ric. However, any comparison between explicit values
and contexts is unlikely to yield sensible results. In-
stead, we must treat literals and non-literals as separate
cases. Moreover, we must also deal with each different
data type separately and accordingly: texts as strings,
numbers and dates as ordinal values, IDs as nominal
values, et cetera.

For instance, in our spam detection example, both
the e-mails’ title and body were modelled as string lit-
erals. The simplest solution would be to simply ignore
these attributes and to focus solely on non-literal re-
sources, but doing so comes at the cost of losing po-
tentially useful knowledge. Instead, we can also design
our models with the ability to compare strings using
some string similarity metric, or represent them using

9

Figure 6. An example dataset on transactions, their items, and additional information used in the use case on market basket analysis of §3.3.

a learned embedding. That way, rather than perceiving
the title “Just saying hello” as totally different from
“RE: Just saying hello”, our models would discover
that these two titles are actually very similar.

4.4. Differently-modelled knowledge

Different knowledge engineers represent their knowl-
edge in different ways. The choices they make are re-
flected in the topology of the knowledge graphs they
produce: some knowledge graphs have a relatively
simple structure while others are fairly complex, some
require one step to link properties while others use
three, some strictly define their constraints while oth-
ers are lenient, et cetera.

Recall how easy it is to integrate two knowledge
graphs: as long as they share at least one IRI, an im-
plicit integration already exists. Of course, this integra-
tion only affects the data layer: the combined knowl-
edge expressed by these data remains unchanged. This
means that differences in modelling decisions remain
present in the resulting knowledge graph after inte-
gration. This can lead to an internally heterogeneous
knowledge graph.

As a concrete example, consider once more the use
case of movie recommendations (Fig 5). To model the
ratings given by users, we linked users to movies using
a single property: X likes Y. We can also model the
same relation using an intermediate vertex—a movie
rating—and let it link both to the movie which was
rated and to the literal which holds the actual rating
itself:

Mary has_rating Mary_Rating_7.
Mary_Rating_7 rates Jurassic_Park.
Mary_Rating_7 has_value "1.0".
Mary_Rating_7 timestamp "080517T124559".

Dealing with knowledge modeled in different ways re-
mains a challenge for effective machine learning. Suc-

cessful end-to-end models need to take this topological
variance into account so they can recognize that sim-
ilar information is expressed in different ways.7 Even
then, there may be cases where the respective topolo-
gies are simply too different, and no learning algorithm
could learn the required mapping without supervision.
In this case, however, we can still use active learning:
letting a user provide minimal feedback to the learning
process, without hand-designing a complete mapping
between different data-sources.

5. Current approaches

Recent years witnessed a growing interest in the
knowledge graph by the machine learning commu-
nity. Initial explorations focused primarily on how en-
tire knowledge graphs can be ‘flattened’ into plain
tables—a process known as propositionalization—for
use with traditional learning methods, whereas more
recent studies are looking for more natural ways to pro-
cess knowledge graphs. This has lead to various meth-
ods which can be split into two different approaches:
1) those which extract feature vectors from the graph
for use as input to traditional models, and 2) those
which create an internal representation of the knowl-
edge graph itself.

5.1. Extracting feature vectors

Rather than trying to learn directly over knowledge
graphs, we could also first translate them into a more-
manageable form for which we already have many

7Note that since we are learning end-to-end, we do not we re-
quire a full solution to the automatic schema matching problem. We
merely require the model to correlate certain graph patterns to the
extent that it aids the learning task at hand. Even highly imperfect
matching can aid learning.

10

methods available. Specifically, we can try to find fea-
ture vectors for each vertex in the graph that repre-
sents an instance—an instance vertex—in our train-
ing data. We will briefly discuss two prominent exam-
ples that use this approach: substructure counting and
RDF2Vec. Clearly, these methods fall short of the ideal
of end-to-end learning, but they do provide a source of
inspiration for how to manage the challenges posed in
the previous chapter.

5.1.1. Substructure counting
Substructure counting graph kernels [dVdR15], are a
family of algorithms that generate feature vectors for
instance vertices by counting various kinds of sub-
structures that occur in the direct neighbourhood of the
instance vertex. While these methods are often referred
to as kernels, they can be used equally well to gener-
ate explicit feature vectors, so we will view them as
feature extraction methods here.

The simplest form of substructure counting method
takes the neighbourhood up to depth d around an in-
stance vertex, and simply counts each label: that is,
each edge label and each vertex label. Each label en-
countered in the neighbourhood of an instance ver-
tex then becomes a feature, with its frequency as the
value. For instance, for each e-mail in our example
dataset (Fig. 4), the feature space consists of at least
one sender (e.g., from_Mary: 1), one main recipient
(e.g., to_John: 1), and zero or more other recipients
(e.g., cc_Pete: 0 and bcc_Kate:0).

More complex kernels define the neighbourhood
around the instance vertex differently (as a tree, for
instance) and vary the structures that are counted to
form the features (for instance, paths or trees). The
Weisfeiler-Lehman (WL) graph kernel [SSL+11] is
a specific case, and is the key to efficiently com-
puting feature vectors for many substructure-counting
graph methods.

5.1.2. RDF2Vec
The drawback of substructure-counting methods is that
the size of the feature vector grows with the size of the
data. RDF2Vec [RP16] is a method which generates
feature vectors of a given size, and does so efficiently,
even for large graphs. This means that, in principle,
even when faced with a machine learning problem on
the scale of the web, we can reduce the problem to a set
of feature vectors of, say, 500 dimensions, after which
we can solve the problem on commodity hardware.

RDF2Vec is a relational version of the idea behind
DeepWalk [PARS14], an algorithm that finds embed-
dings for the vertices of unlabeled graphs. The prin-

ciple is simple: extract short random walks starting at
the instance vertices, and feed these as sentences to
the Word2Vec [MCCD13] algorithm. This means that
a vertex is modeled by its context and a vertex’s con-
text is defined by the vertices up to d steps away. For
instance, in our example dataset on customer transac-
tions (Fig. 6), a context of depth 3 allows RDF2Vec to
represent each transaction via chains such as

transaction_X → ingredients_X → ingredient_Y
transaction_X → ingredients_X → ingredient_Z

For large graphs, reasonable classification perfor-
mance can be achieved with samples of a few as 500
random walks. Other methods for finding embeddings
on the vertices of a knowledge graph include TransE
[BUGD+13] and ProjE [SW16].

5.2. Internal graph representation

Both the WL-kernel and RDF2Vec are very effective
ways to perform machine learning on relational knowl-
edge, but they fall short of our goal of true end-to-
end learning. While these methods consume heteroge-
neous knowledge in the form of RDF, they operate in a
pipeline of discrete steps. If, for instance, they are used
to perform classification, both methods first produce
feature vectors for the instance vertices, and then pro-
ceed to use these feature vectors with a traditional clas-
sifier. Once the feature vectors are extracted, the error
signal from the task can no longer be used to fine-tune
the feature extraction. Any information lost in trans-
forming the data to feature vectors is lost forever.

In a true end-to-end model, every step can be fine-
tuned based on the learning task. To accomplish this,
we need models capable of directly consuming knowl-
edge graphs and which can hold internal representa-
tions of them. We next briefly discuss two prominent
models that employ this approach: tensors and graph
convolutional networks.

5.2.1. Tensor representation
A tensor is the generalization of a matrix into more
than two dimensions, called orders. Given that knowl-
edge graph statements consist of three elements, we
can use a third-order tensor to map them: two orders
for entities, and another order for properties. The in-
tersection of all three orders, a point, will then repre-
sent a single statement. This principle is depicted in
Figure 7. As an example, let i, j, k be the indices of a
tensor T used to represent our dataset on movie rec-
ommendations (Fig 5). If now T[i] = John, T[j] =

11

Figure 7. Representing statements as points in a third-order tensor.
Two statements are illustrated: s1 and s2, with s2 = John likes
Jurassic_Park

Jurassic_Park, and T[k] = likes, then intersection
T[i, j, k] will constitute the statement John likes Juras-
sic_Park.

A tensor representation allows for all possible com-
binations of entities and properties, even those which
are false. To reflect this, the value at each point holds
the truth value of that statement: 1.0 if it holds, and 0.0
otherwise. In that sense, it is the tensor analogue of an
adjacency matrix.

To predict which unknown statements might also be
true, we can apply tensor decomposition. Similar to
matrix decomposition, this approach decomposes the
tensor into multiple second-order tensors by which la-
tent features emerge. These tensors are again multi-
plied to create an estimate of the original tensor. How-
ever, where before some of the points had 0.0 as value,
they now have a value somewhere between 0.0 and 1.0.

This application of tensor decomposition was first
introduced as a semantically-aware alternative
[FSSS09] to authority ranking algorithms such as
PageRank and HITS, but gained widespread popular-
ity after being reintroduced as a distinct model for
collective learning on knowledge graphs [NTK11].
Others have later integrated this tensor model as a
layer in a regular [SCMN13] or recursive neural net-
work [SPW+13].

5.2.2. Graph Convolutional Neural Networks
Graph Convolutional Networks (GCNs) strike a bal-
ance between modeling the full structure of the graph
dynamically, as the tensor model does, and model-
ing the local neighbourhood structure through ex-
tracted features (as substructure counting methods
and RDF2Vec do). The Relational Graph Convolu-
tional Network (RGCN) introduced in [SKB+17], and
the related column networks [PTPV17] are relatively
straightforward translation of GCNs [KW16, BZSL13]

to the domain of knowledge graphs. We will briefly
explain the basic principle behind GCNs, to give the
reader a basic intuition of the principle.

Assume that we have an undirected graph with N
vertices, with a small feature vector x for each vertex.
We can either use the natural features of the vertex in
the data, or if the data does not label the vertices in
any way, we can assign each vertex i a one-hot vec-
tor8of length N. For this example, we will assume that
each vertex is assigned a random and unique color, rep-
resented by a vector of length 3 (a point in the RGB
color space).

Let x0 be the color of vertex i. We define xk as
the mixture of the colors of all vertices in the graph,
weighted by the probability that a length-k random
walk from vertex i ends up in each vertex. If X0 is
the N by 3 matrix containing all original vertex fea-
tures we can define this principle mathematically as
Xk+1 = AXk, where A is the normalized adjacency
matrix of graph G. If we start with one-hot vectors in-
stead of colors, xk becomes a probability vector with
xk

j the probability that a random walk of k steps from
vertex i ends up in vertex j.

For most graphs, xk converges with k to a single vec-
tor independent of the starting vertex. This gives us a
specific-to-generic sequence of representations for ver-
tex i: x0 is too specific, and xk is too generic. Some-
where in-between, we have a good representation, ex-
pressing both similarities and differences.

The GCN model (Fig. 8) uses these ideas to create a
differentiable map from one vector representation into
another. We start with a matrix of one-hot vectors X.
These are multiplied by A, and then translated down
to a lower dimensional feature space by a matrix W.
W represents the “weights” of the model; the elements
that we will modify to fit the model to the data. The
result is then transformed by a nonlinearity σ (com-
monly a linear rectifier) to give us our intermediate
representations H:

H = f σW(X) = σ(AXW).

Row i of matrix H now contains a feature vector of
length 16, describing vertex i.

To create a classifier with M classes, we normally
compose two such "layers", giving the second a soft-
max9restriction on the output vectors. This gives us
a length-M probability vector y for each vertex, rep-

8A vector u representing element i out of a set of N elements: u is
0 for all indices except for ui, which is 1.

12

Figure 8. The Graph Convolutional Neural Network. Vertices are represented as one-hot vectors, which are translated to a lower-dimensional
space from which class probabilities are obtained with a softmax layer.

resenting the classification. Thus, the complete model
becomes

Y = f softmax
V (A f σW(AXW)V) ,

where X is the identity matrix (i.e. a stack of one-hot
vectors for each vertex), and Y is an N×M matrix with
Yi j the probability that vertex i has class j. We then
learn the weights V and W by minimizing the cross-
entropy between the training examples and the corre-
sponding rows of Yi j through gradient descent.

For the RGCN model, we have one adjacency ma-
trix per relation in the graph, one for its inverse of
each relation, and one for self-connections. Also, like
RDF2Vec, they learn fixed-size intermediate represen-
tations of the vertices of the graph. Unlike RDF2Vec
however, the transformation to this representation can
use the error signal from the next layer to tune its
parameters. The price we pay is that these models
are currently much less scalable than alternatives like
RDF2Vec.

In [vdBKW17] first steps are made towards recom-
mendation using graph convolutions, with the knowl-
edge graph recommendation use case described above
as an explicit motivation. Other promising approaches
include GraphSAGE [HYL17], which replaces the
convolution by a learnable aggregator function, and
[Joh17], which provides learnable transformations
from one knowledge graph to another.

5.3. The challenges ahead, revisited

In Section 4, we discussed four important challenges.
How do the approaches described above address these
problems?

9This ensures that the output values for a given node always sum
to one.

All approaches discussed in this section treat knowl-
edge graphs as nothing more than labeled multi-
digraphs. The silver lining of this simplified view
is that incomplete knowledge—information which is
missing or inaccessible—is inherently dealt with:
edges that are present are used to create meaningful
embeddings, and edges that are absent are not required
to be imputed for the algorithms to work. The tensor
factorization approach provides some insight into what
is happening under the hood: the embeddings which
are learned for each vertex already contain an implicit
imputation of missing links that emerges when the em-
beddings are re-multiplied into a low-rank tensor.

Implicit knowledge—information implied through
the interplay of assertion knowledge and ontologies—
is not considered by any of these methods. A simple
solution would be to make this knowledge explicit be-
forehand by materializing all implied statements but,
as noted in [dVdR15], this does not seem to strongly
affect performance either way.

Heterogeneous knowledge—information of differ-
ent types and from different domains—is ignored in
all approaches described here. In neural models like
RDF2Vec and (R)GCNs, such knowledge could eas-
ily be incorporated by using existing state-of-the-art
architectures like CNNs and LSTMs to produce em-
beddings for the literals, either by pre-training or in an
end-to-end fashion.

Finally, the issue of differently-modeled knowl-
edge—different datasets expressing similar informa-
tion differently—seems entirely unaddressed in the
machine learning literature, most likely because cur-
rent methods are evaluated only on benchmark datasets
from a single source.

13

6. Conclusion

When faced with heterogeneous knowledge in a tra-
ditional machine learning context, data scientists craft
feature vectors which can be used as input for learn-
ing algorithms. These transformations are performed
by adding, removing, and reshaping data, and can re-
sult in the loss of information and accuracy. To solve
this problem, we require end-to-end models which can
directly consume heterogeneous knowledge, and a data
model suited to represent this knowledge naturally.

In this paper we have argued—using three run-
ning examples—for the potential of using knowledge
graphs for this purpose: a) they allow for true end-to-
end-learning by removing the need for feature engi-
neering, b) they simplify the integration and harmo-
nization of heterogeneous knowledge, and c) they pro-
vide a natural way to integrate different forms of back-
ground knowledge.

The idea of end-to-end learning on knowledge
graphs suggests many research challenges. These in-
clude coping with incomplete knowledge, (how to fill
the gaps), implicit knowledge (how to exploit implied
information), heterogeneous knowledge, (how to pro-
cess different data types), and differently-modelled
knowledge (how to deal with topological diversity).
We have shown how several promising approaches
both deal with these challenges, and fail to do so.

The question may rise whether we are simply mov-
ing the goalposts. Where data scientists were previ-
ously faced with the task of creating feature vectors
from heterogeneous knowledge, we are now asking
them to find an equivalent knowledge graph instead
or to create such a knowledge graph themselves. Our
claim is that the translation from the original knowl-
edge to a knowledge graph may be equally difficult,
but that it preserves all information, relevant or oth-
erwise. Hence, we are presenting our learning models
with the whole of our knowledge or as close a repre-
sentation as we can make. Relatedly, knowledge graph
are task-independent: once created, the same knowl-
edge graph can be used for many different tasks, even
those beyond machine learning. Finally, because of
this re-usability, a great deal of data is already freely
available in knowledge graph form.

End-to-end learning models that can be applied to
knowledge graphs off-the-shelf will provide further in-
centives to knowledge engineers and data owners to
produce even more data that is open, well-modeled,
and interlinked. We hope that in this way, the Semantic

Web and Data Science communities can complement
and strengthen one another in a positive feedback loop.

Acknowledgements This work was supported by the
Amsterdam Academic Alliance Data Science (AAA-
DS) Program Award to the UvA and VU Universities.

References

[AMB+] A Abele, JP McCrae, P Buitelaar, A Jentzsch, and
R Cyganiak. Linking open data cloud diagram.
http://lod-cloud.net. Accessed: 2017-03-01.

[ATS+07] Richard Arndt, Raphaël Troncy, Steffen Staab, Lynda
Hardman, and Miroslav Vacura. Comm: designing a
well-founded multimedia ontology for the web. In
The semantic web, pages 30–43. Springer, 2007.

[Bot] Leon Bottou. Two big challenges in machine learning.
http://icml.cc/2015/invited/LeonBottouICML2015.pdf.
Accessed: 2017-03-01.

[BUGD+13] Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko. Trans-
lating embeddings for modeling multi-relational data.
In Advances in neural information processing sys-
tems, pages 2787–2795, 2013.

[BZSL13] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and
Yann LeCun. Spectral networks and locally connected
networks on graphs. CoRR, abs/1312.6203, 2013.

[CMCF13] Christian Chiarcos, John McCrae, Philipp Cimiano,
and Christiane Fellbaum. Towards open data for lin-
guistics: Linguistic linked data. In New Trends of Re-
search in Ontologies and Lexical Resources, pages 7–
25. Springer, 2013.

[DSS93] Randall Davis, Howard Shrobe, and Peter Szolovits.
What is a knowledge representation? AI magazine,
14(1):17, 1993.

[dVdR15] Gerben Klaas Dirk de Vries and Steven de Rooij. Sub-
structure counting graph kernels for machine learning
from rdf data. Web Semantics: Science, Services and
Agents on the World Wide Web, 35:71–84, 2015.

[FSSS09] Thomas Franz, Antje Schultz, Sergej Sizov, and Stef-
fen Staab. Triplerank: Ranking semantic web data by
tensor decomposition. The Semantic Web-ISWC 2009,
pages 213–228, 2009.

[GMH13] Alex Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. Speech recognition with deep recurrent neu-
ral networks. In Acoustics, speech and signal process-
ing (icassp), 2013 ieee international conference on,
pages 6645–6649. IEEE, 2013.

[HJ11] Robin Hecht and Stefan Jablonski. Nosql evaluation:
A use case oriented survey. In Cloud and Service
Computing (CSC), 2011 International Conference on,
pages 336–341. IEEE, 2011.

[HS95] Mauricio A Hernández and Salvatore J Stolfo. The
merge/purge problem for large databases. In ACM
Sigmod Record, volume 24, pages 127–138. ACM,
1995.

[HYL17] William L Hamilton, Rex Ying, and Jure Leskovec.
Inductive representation learning on large graphs.
arXiv preprint arXiv:1706.02216, 2017.

14

[Joh17] Daniel D Johnson. Learning graphical state transi-
tions. Proceedings of the International Conference on
Learning Representations (ICLR), 2017.

[KBV09] Yehuda Koren, Robert M. Bell, and Chris Volinsky.
Matrix factorization techniques for recommender sys-
tems. IEEE Computer, 42(8):30–37, 2009.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. Imagenet classification with deep convolutional
neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

[KW16] Thomas N. Kipf and Max Welling. Semi-supervised
classification with graph convolutional networks.
CoRR, abs/1609.02907, 2016.

[LDH+90] B Boser LeCun, JS Denker, D Henderson,
RE Howard, W Hubbard, and LD Jackel. Handwritten
digit recognition with a back-propagation network. In
Advances in Neural Information Processing Systems.
Citeseer, 1990.

[Le13] Quoc V Le. Building high-level features using large
scale unsupervised learning. In Acoustics, Speech
and Signal Processing (ICASSP), 2013 IEEE Interna-
tional Conference on, pages 8595–8598. IEEE, 2013.

[Low99] David G Lowe. Object recognition from local scale-
invariant features. In Computer vision, 1999. The pro-
ceedings of the seventh IEEE international conference
on, volume 2, pages 1150–1157. Ieee, 1999.

[MCCD13] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. Efficient estimation of word representations in
vector space. CoRR, abs/1301.3781, 2013.

[Min] Paul Mineiro. Software engineer-
ing vs machine learning concepts.
http://www.machinedlearnings.com/2017/02/software-
engineering-vs-machine.html. Accessed: 2017-03-01.

[NG15] Thien Huu Nguyen and Ralph Grishman. Relation
extraction: Perspective from convolutional neural net-
works. In Proceedings of NAACL-HLT, pages 39–48,
2015.

[NTK11] Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. A three-way model for collective learning on
multi-relational data. In Proceedings of the 28th inter-
national conference on machine learning (ICML-11),
pages 809–816, 2011.

[PARS14] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena.
Deepwalk: Online learning of social representations.
In Proceedings of the 20th ACM SIGKDD interna-
tional conference on Knowledge discovery and data
mining, pages 701–710. ACM, 2014.

[PS16] Heiko Paulheim and Heiner Stuckenschmidt. Fast ap-
proximate a-box consistency checking using machine

learning. In International Semantic Web Conference,
pages 135–150. Springer, 2016.

[PTPV17] Trang Pham, Truyen Tran, Dinh Q. Phung, and Svetha
Venkatesh. Column networks for collective classifi-
cation. In Satinder P. Singh and Shaul Markovitch,
editors, Proceedings of the Thirty-First AAAI Confer-
ence on Artificial Intelligence, February 4-9, 2017,
San Francisco, California, USA., pages 2485–2491.
AAAI Press, 2017.

[RA06] Yves Raimond and Samer Abdallah. The timeline on-
tology. OWL-DL ontology, 2006.

[RP16] Petar Ristoski and Heiko Paulheim. Rdf2vec: Rdf
graph embeddings for data mining. In International
Semantic Web Conference, pages 498–514. Springer,
2016.

[SC09] Juan F Sequeda and Oscar Corcho. Linked stream
data: A position paper. In Proceedings of the
2nd International Conference on Semantic Sen-
sor Networks-Volume 522, pages 148–157. CEUR-
WS.org, 2009.

[SCMN13] Richard Socher, Danqi Chen, Christopher D Man-
ning, and Andrew Ng. Reasoning with neural ten-
sor networks for knowledge base completion. In
Advances in neural information processing systems,
pages 926–934, 2013.

[SKB+17] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem,
Rianne van den Berg, Ivan Titov, and Max Welling.
Modeling relational data with graph convolutional
networks. arXiv preprint arXiv:1703.06103, 2017.

[SPW+13] Richard Socher, Alex Perelygin, Jean Y Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng,
Christopher Potts, et al. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the conference on empirical meth-
ods in natural language processing (EMNLP), vol-
ume 1631, page 1642. Citeseer, 2013.

[SSL+11] Nino Shervashidze, Pascal Schweitzer, Erik Jan van
Leeuwen, Kurt Mehlhorn, and Karsten M Borgwardt.
Weisfeiler-lehman graph kernels. Journal of Machine
Learning Research, 12(Sep):2539–2561, 2011.

[SW16] Baoxu Shi and Tim Weninger. Proje: Embedding
projection for knowledge graph completion. arXiv
preprint arXiv:1611.05425, 2016.

[vdBKW17] Rianne van den Berg, Thomas N. Kipf, and Max
Welling. Graph convolutional matrix completion.
arXiv preprint arXiv:1706.02263, 2017.

	Introduction
	Use cases

	The knowledge graph
	Encode knowledge using statements
	Express background knowledge in ontologies
	Reuse knowledge between datasets

	Learning in a world of knowledge graphs
	Spam detection
	Movie Recommendation
	Market Basket Analysis
	The default data model?

	The challenges ahead
	Incomplete knowledge
	Implicit knowledge
	Heterogeneous knowledge
	Differently-modelled knowledge

	Current approaches
	Extracting feature vectors
	Substructure counting
	RDF2Vec

	Internal graph representation
	Tensor representation
	Graph Convolutional Neural Networks

	The challenges ahead, revisited

	Conclusion
	References

