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Abstract. In modern machine learning, raw data is the pre-
ferred input for our models. Where a decade ago data sci-
entists were still engineering features, manually picking out
the details they thought salient, they now prefer the data as
raw as possible. As long as we can assume that all relevant
and irrelevant information is present in the input data, we
can design deep models that build up intermediate represen-
tations to sift out relevant features. In some areas, however,
we struggle to find this raw form of data. One such area
involves heterogeneous knowledge: entities, their attributes
and internal relations. The Semantic Web community has in-
vested decades of work on just this problem: how to repre-
sent knowledge, in various domains, in as raw and as usable
a form as possible, satisfying many use cases. This work has
led to the Linked Open Data Cloud, a vast and distributed
knowledge graph. If we can develop methods that operate on
this raw form of data—the knowledge graph—we can dispense
with a great deal of ad-hoc feature engineering and train deep
models end-to-end in many more domains. In this position
paper, we describe current research in this area and discuss
some of the promises and challenges of this approach.
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1. Introduction

In the last decade, the methodology of Data Science
has changed radically. Where machine learning prac-
titioners and statisticians would often spend most of
their time on extracting useful features from their data,
they now prefer to feed their models the data in its
most raw form. This shift can largely be attributed to
the emergence of deep learning, which showed that we
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can build layered models of intermediate representa-
tions to sift out relevant features, and which allows us
to dispense with feature engineering.

For example, in the domain of image analysis, pop-
ular feature extractors like SIFT [Low99] have given
way to Convolutional Neural Networks [LDHT90,
KSH12], which consume raw image data. For facial
recognition, deep learning models build up layers of
intermediate representations: from low level features
like local edge detectors, to higher level features like
specialized detectors for eyes, noses, up to the face of
a specific person [Lel3]. Similarly, in audio analysis,
it is common to use models that consume raw audio
data directly [GMH13] and in Natural Language Pro-
cessing it is possible to achieve state-of-the-art per-
formance without explicit preprocessing steps such as
POS-tagging and parsing [NG15].

This is one of the strongest benefits of deep learn-
ing: we can feed the model with the data in its most
raw form, containing all relevant and irrelevant infor-
mation, and trust the model to unpack it, to sift through
it, and to construct whatever low-level and high-level
features are relevant for the task at hand. Not only do
we not need to choose what features might be relevant
to the learning task, we can let the model surprise us: it
may find features in our data that we would never have
thought of ourselves.

However, these methods are all domain-specific:
they are tailored to images, sound or language. When
faced with heterogeneous knowledge—information
in different media and from different domains—we
often find ourselves resorting back to manual pre-
processing. To avoid this, we require a data model
suited to such knowledge and a machine learning
method capable of consuming data in this format. In
this paper we argue that knowledge graphs are a more
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suitable expression of raw heterogeneous knowledge
than the feature vectors commonly used in data sci-
ence.

Concretely, in this paper we will use the phrase het-
erogeneous knowledge to refer to: entities, their re-
lations and their attributes. For instance, in a com-
pany database, we may find entities such as employ-
ees, departments, resources and clients. Relations ex-
press which employees work together, which depart-
ment each employee works for and so on. Attributes
can be simple strings, such as names and social secu-
rity numbers, but also richer media like short biogra-
phies, photographs, and promotional videos.

To perform, say, classification on the employees in
this database, all this information may prove relevant,
from an employee’s coworkers, to their facial features,
to the unstructured information in their biographies. If
we resort to manual pre-processing in order to force
the data into the mold of feature vectors that traditional

methods expect as input, we depart from the ideals
of deep learning: we have made ad-hoc decisions, re-
moved information, and fed our model a derivative of
the raw data.

The alternative is to shape our knowledge not into
feature vectors, but into a data model that can express it
naturally and with minimal loss of information. In this
paper, we will argue that the knowledge graph is that
model. This presents the challenge of designing ma-
chine learning methods that can consume knowledge
graphs without pre-processing.

We will first explain the principle behind the knowl-
edge graph model with the help of several practical ex-
amples, followed by a discussion on the potential of
the knowledge graph for end-to-end learning. We will
finish with a concise overview of promising current re-
search in this area.

End-to-End Learning

together rather than in isolation.”

as we add layers to the model.

Why is end-to-end learning now so important to data scientists? Is this just a modern affectation? Paul
Mineiro provides a good reason to consider this a more fundamental practice [Min]. In most areas of
software engineering, solving a complex problem begins with breaking the problem up into subproblems:
divide and conquer. Each subproblem is then solved in one module, and the modules are chained together
to produce the required end result. If, however, these modules use machine learning, we have to take into
account that their answers are necessarily inexact.

“Unfortunately, in machine learning we never exactly solve a problem. At best, we approximately solve
a problem. This is where the technique needs modification: in software engineering the subproblem
solutions are exact, but in machine learning errors compound and the aggregate result can be complete
rubbish. In addition apparently paradoxical situations can arise where a component is “improved” in
isolation yet aggregate system performance degrades when this “improvement” is deployed (e.g., due to
the pattern of errors now being unexpected by downstream components, even if they are less frequent).

Does this mean we are doomed to think holistically (which doesn’t sound scalable to large problems)?
No, but it means you have to be defensive about subproblem decomposition. The best strategy, when
feasible, is to train the system end-to-end, i.e., optimize all components (and the composition strategy)

Even if we are forced to pre-train each component in isolation, it is crucial to follow that pre-training
up with a complete end-to-end training step when all the modules are composed [Bot]. This puts a very
strong constraint on the kind of modules that we can use: an error signal needs to be able to propagate
though all layers of the architecture, from the output back to the raw data that inspired it.

Any pre-processing done on the data, any manual feature extraction, harmonization and or scaling can
be seen as a module in the pipeline that cannot be tweaked, and does not allow a final optimization end-
to-end. Any error introduced by such modules can never be retrieved. Since these are often modules at
the start of our pipeline, even the smallest mistake or suboptimal choice can be blown up exponentially

- Paul Mineiro, 15-02-2017 [Min]




1.1. Use cases

Throughout the paper, we will use three different use
cases as running examples:

Spam detection is one of the first machine learn-
ing problems to be solved well enough to be
implemented in commercial products. Early ap-
proaches tackled this task by converting email
text to term vectors, and using these term vectors
in a naive Bayes classifier.

Movie recommendation is a standard use case for
recommender systems. Here, we have a set of
users, and a set of movies. Some users have given
ratings to some movies.In one early successful
model, ratings are written to a matrix, which is
then decomposed into factors that are multiplied
back again to produce new ratings from which
recommendations are derived.

Market basket analysis is one of earliest success sto-
ries which helped retailers understand customer
purchasing behaviour, and allowed them to adjust
their strategy accordingly. The breakthrough that
allowed this came with association rule mining,
which converts all transactions into vectors and
then computes their inner and outer correlations.

2. The knowledge graph

The aforementioned use cases share several com-
mon aspects: in each case we have a set of instances,
and we have a collection of diverse and heteroge-
neous facts representing our knowledge about these in-
stances. Some facts link instances together (John is a
friend of Mary, John likes Jurassic Park) and some de-
scribe attributes (Jurassic Park was released on June 9,
1993).

The question of how to represent such knowledge is
not a new one. It has been studied by Al researchers
since the invention of the field, and before [DSS93].
The most recent large-scale endeavour in this area, is
undoubtedly the Semantic Web. In the Semantic Web,
decades of research on knowledge representation can
be condensed and simplified into three basic princi-
ples:

1. encode knowledge using statements,

2. express background knowledge in ontologies,
and

3. reuse knowledge between datasets.

We will briefly discuss each of these next.
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Figure 1. Graphical representation of the example given in Sec-
tion 2. Edges represent binary relations. Vertices’ shapes reflect their
roles: solid circles represent entities, empty circles represent their
attributes.

2.1. Encode knowledge using statements

The most fundamental idea behind the Semantic
Web is that knowledge should be expressed using
statements. Consider the following example:

Kate knows Mary.

Mary likes Pete.

Mary age “32“.

Pete brother_of Kate.
Pete born_on “27-03-1982".

All of the above are statements that comply with
the RDF — Resource Description Framework — data
model, which is the basic building block of the Se-
mantic Web.! This model specifies that each statement
should consist of a single binary property (the verb)
which relates two resources in a left-to-right order. To-
gether, these three are referred to as RDF triples. We
can also represent this example as a directed graph as
shown in Fig. 1.

Resources can be either entities (things) or liter-
als which hold values such as text, numbers or dates.
Triples can either express relations between entities
when the resources on both sides are things, or they
can express attributes when the resource on the right-
hand side is a literal. In Fig. 1, the last line represents
an attribute of Pete with value “27-03-1982".

2.2. Express background knowledge in ontologies

Ontologies are a way to express how knowledge is
modeled in a given domain. They contain classes (en-
tity types) and properties that describe the domain as
well as constraints and inferences on these classes and
properties. For instance, we can define Person as the
class containing all individual persons. We can like-
wise define type as the property that assigns an entity
to a class. As an example, let us use our newly-defined

Uhttps://www.w3.org/RDF/



class and property to extend our example set with the
following statements:

Kate type Person.
Mary type Person.
Pete type Person.

Kate, Mary, and Pete are now all said to be instances

of the class Person. This class may hold various prop-
erties itself, such as that it is equivalent to the class
Human, disjoint with the class Animals, or that it is a
subclass of class Agent. This last property is an exam-
ple of a recursive property, and can be expressed using
the RDFS — RDF Schema — ontology® which extends
the bare RDF model with several practical classes and
properties. The other two relations are more complex,
and require a more expressive ontology to be stated.
OWL, the Web Ontology Language, is generally the
preferred choice for this purpose?.
Once expressed, we can use background knowledge to
derive implied knowledge.For instance, knowing that
Kate is of the type Person, and that Person is itself a
subclass of agent, allows a reasoning engine to derive
that Kate is of the type Agent as well.

2.3. Reuse knowledge between datasets

Re-using knowledge can be done by referring to
resources not by name, but by unique identifier. On
the Semantic Web, these identifiers are called Inter-
nationalized Resource Identifier, or IRIs, and gener-
ally take the form of a web address. For instance,
we can use the IRIs http://vu.nl/staff/KateBishop and
http://vu.nl/staff/MaryWatson to refer to Kate and Mary,
respectively. More often, we would write these IRIs as
vu:KateBishop and vu:MaryWatson, with vu: as short-
hand for the http://vu.nl/staff/ namespace. We can now
rewrite the first statement of our example set as

vu:KateBishop knows vu:MaryWatson .

This statement implies the same as before, but now
we can safely add other people also named Kate
or Mary without having to worry about clashes. Of
course, we can do the same for our properties. To spice
things up, let us assume that we used an already exist-
ing ontology, say the widely used FOAF (Friend Of A
Friend) ontology®. This lets us write the statement as

2https://www.w3.0rg/TR/rdf-schema/
3https://www.w3.0rg/OWL/
“4http://xmins.com/foaf/spec/

vu:KateBishop foaf:knows vu:MaryWatson .

We now have a triple that is fully compliant with the
RDF data model, and which uses knowledge from a
shared and common ontology.

The principle of reusing knowledge is a simple idea
with several consequences, most particular with re-
spect to integrating, dereferencing, and disambiguat-
ing knowledge:

Integrated knowledge
Integrating datasets is as simple as linking two
knowledge graphs at equivalent resources. If such
a resource holds the same IRI in both datasets an
implicit coupling already exists and no further ac-
tion is required. In practice, this boils down to
simply concatenating one set of statements to an-
other.

Dereferenceable knowledge
An IRI is more than just an identifier: it is also
the location at which a resource or property re-
sides. Because IRIs are often web addresses, we
can thus retrieve any data point of which we know
the IRI using standard HTTP. This is called deref-
erencing, and allows for an intuitive way to access
external knowledge.

Disambiguated knowledge
Dereferencing IRIs allows us to directly and un-
ambiguously retrieve relevant information about
entities. This includes information about classes
and properties in the ontology.

We have recently seen uptake of these principles on a
grand scale, with the Linked Open Data (LOD) cloud
as prime example. With more than 38 billion state-
ments from over 1100 datasets (Fig. 2), the LOD cloud
constitutes a vast distributed knowledge graph which
encompasses almost any domain imaginable. As such,
it comes close to the original dream of a Semantic Web.

With this wealth of data available, we now face the
challenge of designing models capable of learning in a
world of knowledge graphs.

3. Learning in a world of knowledge graphs

We now revisit the three use cases described in
the introduction and show how the use of knowledge
graphs can remove the need for feature engineering.
Feature engineering is a cuambersome task which has
to be performed by hand. The data scientist in question
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Figure 2. A depiction of the LOD cloud, holding over 38 billion
facts from more than 1100 linked datasets. Each vertex represents
a separate dataset in the form of a knowledge graph. An edge be-
tween two datasets indicates that they share at least one IRI. Figure
from [AMB™].

will have to make a judgement in each case whether
the added feature is worth the effort. If, instead, we de-
scribe data as a knowledge graph, we can define end-
to-end models that incorporate the feature engineering
as a learnable module.

3.1. Spam detection

Before, we discussed how early spam detection
methods classified e-mails based solely on the content
of the message. We often have much more informa-
tion at hand. We can distinguish between the body text,
the subject heading, and the quoted text from previous
emails. But we also have other attributes: the sender,
the receiver, and everybody listed in the CC. We know
the IP address of the SMTP server used to send the
email, which can be easily linked to a region. In a cor-
porate setting, many users correspond to employees of
our companies, for whom we know dates-of-birth, de-
partments of the company, perhaps even portrait im-
ages or a short biography. All these aspects can be used
as features in the learning task.

However, for all of this knowledge, we must decide
how to translate it to a feature vector, so that our mod-
els can learn from it. This has to be done by hand and
the data scientist in question will have to make a judge-
ment in each case whether the added feature is worth
the effort.

If we have a model that consumes knowledge graphs
rather than feature vectors, we can express our knowl-

edge as shown in Fig 3. The task is now to label the
vertices representing emails as spam or not spam. We
do not need to decide which features contribute to the
spam-detection task, we can let the model discover this
from the data.

3.2. Movie Recommendation

In most recommender systems, movie recommenda-
tions are generated by constructing a matrix of movies,
people and received ratings. This approach assumes
that people are likely to enjoy the same movies as
people with a similar taste, and therefore needs ex-
isting ratings for effective recommendation. Unfortu-
nately, we do not always have actual ratings yet and are
thus unable to start these computations. This cold-start
problem is common in the traditional setting.

We can circumvent this problem by relying on addi-
tional information to make our initial predictions. For
instance, we can include the principal actors, the di-
rector, the genre, the country of origin, the year it was
made, whether it was adapted from a book, et cetera.
Including such attributes solves the cold start prob-
lem because we can link movies and users for which
no ratings are available to similar entities through this
background data. For instance, if Indiana_Jones has
no ratings, but we know that the film is directed by
Steven Spielberg, which John likes, we can recom-
mend Indiana_Jones to John.

Here again, we run into the problem of manual
feature engineering. For each element of background
knowledge added, we need to work out how to trans-
late it to a feature vector and how to integrate it into
the algorithm we use to produce the rating-based rec-
ommendations.

However, consider the knowledge graph fragment
shown in Fig 4, which consists of two integrated
knowledge graphs: one about movies in general, and
another containing movie ratings provided by users.
Both refer to movies by the same IRIs, and are thus
linked via those resources. On this dataset the recom-
mendation task can be recast as link prediction, specif-
ically of the property liked from users to movies.
Background knowledge and existing ratings can both
be used, as their availability allows.

3.3. Market Basket Analysis
To map customer purchase behaviour, we can in-

clude more information than simply anonymous trans-
actions. For instance, we can take into account the
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Figure 4. An example dataset on movies and ratings used in the use case on movie recommendations of section 3.2.

current discount on items, whether they are suppos-
edly healthy, and where they are placed in the store.
Consumers are already providing retailers with large
amounts of personal information as well: age, address,
and even indirectly information about our marital and
financial status. All these attributes can contribute to a
precise pattern of our behaviour as customers.

Consider the example shown in Fig 5, which in-
volves a dataset on transactions from a retailer. Each
transaction is linked to the items that were bought at
that moment. For instance, all three transactions in-
volve the buying of drumsticks. This product can be
seen to consist of chicken, which we know due to the
coupling of the knowledge graph on transactions with
that of product information. We further extended this
by linking to external datasets on suppliers and ecolog-
ical reports.

Where our use of basket analysis has thus far been
limited to the discovery of correlations between the
items themselves, our algorithms are now able to mine
more complex patterns. We might, for example, find
that Certified Humane products are often bought to-
gether, that people who buy these products also buy
those which are eco-friendly, or that products with a
high nutritional value are more often bought on sunny
days. Of course, we can include the additional at-

tributes ourselves and done some manual feature engi-
neering. But once again, it is far more convenient and
effective to train a suitable end-to-end model directly
on a knowledge graph, and let it learn the most impor-
tant features itself.

4. The promises and challenges of knowledge
graphs

In the previous section, we argued that expressing
heterogeneous knowledge in knowledge graphs holds
great promise. We assumed in each case that effec-
tive end-to-end learning models are available. How-
ever, to develop such models some key challenges need
to be addressed. We now discuss several aspects of this
problem.

4.1. Incomplete knowledge

In the traditional setting, inflexible data models
force knowledge engineers to squeeze their data into
an unnatural shape, which often leads to the creation
of artificial replacements — NONE, NULL, -1, 99999, et
cetera — for values which are missing or which are sim-
ply unknown. To deal with these, data scientists can
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Figure 5. An example dataset on transactions, their items, and additional information used in the use case on market basket analysis of section 3.3.

use one of many available imputation methods. These
work well enough for the occasional missing or un-
known value, but can become problematic when hav-
ing to deal with a large number of them. In the case of
heterogenous knowledge, we are often faced with large
amounts of unavailable data. For many properties in a
dataset, there may be more entities for which the data
is missing, than for which it is known, often by a factor
of ten.

As an example, let us consider a normal social net-
work. For a small amount of users, their profile data
is nearly complete: a detailed life history, their birth-
date, hobbies, favourite movies and their future plans.
For a larger group, only basic information is available:
a name, a brief biography, some contact details. For
a large majority only sparse knowledge is available:
their first name and where they work. In short, for ev-
ery instance for which we know attribute X, there will
be many instances for which it is missing.

Knowledge graphs follow the OWA — Open World
Assumption — which implies that only knowledge
which we know is true is available: missing or un-
known values are now simply omitted altogether. This
creates an inherent robustness to incomplete knowl-
edge, and makes the knowledge graph very suitable
to model real-world data with. At the same time,
this means that we no longer have to concern our-
selves with the question of how incomplete knowledge
should be dealt with: any method capable of process-
ing knowledge graphs will need to be designed with
this characteristic in mind. Concretely, having only a
partial view of the world available to us means that we
must find a way to translate differently-sized sets of
attributes to feature vectors of uniform size.

4.2. Implied knowledge

Knowledge graphs allow knowledge engineers to
represent explicit statements as well as background

knowledge that can be used to derive implicit state-
ments. The consequence is that in knowledge graphs,
many implied statements are not explicitly found in the
graph. This avoids redundant and overly large graphs.
An example of such implicit knowledge involves class
inheritance: for any instance of class C; holds that, if
Cqis a subclass of C», it is also an instance of class
Cs. The same holds for properties, which can use the
subPropertyOf property to specify inheritance. This
transitivityoffers a wealth of implicit knowledge which
can be exploited in learning tasks.

For example, movie recommendation can be im-
proved if learning methods are able to take the genre
hierarchy into account. Without this, sub-genres like
action adventure and action fantasy would be seen as
completely distinct classes. If the algorithm can con-
sider the subclass hierarchy, it can exploit the fact that
both are subgenres of action. It can also use the dis-
tance in the graph between genres as a similarity func-
tion.

4.3. Topology of knowledge

Knowledge graph topologies can vary greatly: some
graphs have a relatively shallow hierarchy while oth-
ers are fairly deep, some require one step to link prop-
erties while others use three, some strictly define their
semantics while others are lenient, et cetera. Such vari-
ations are the result of how different communities
choose to represent their knowledge. This freedom re-
leases knowledge engineers from the burden of having
to model their knowledge into an unnatural and rigid
format.

Typical knowledge graphs are often the combination
of several smaller knowledge graphs made by multi-
ple knowledge engineering efforts and can therefore be
internally heterogeneous.Creating features from such
knowledge graphs can be a challenging task. With-
out first thoroughly familiarizing ourselves with the



knowledge, we have no way knowing of how the path
from a resource to a value is modelled, and whether
other parts of the knowledge graph model this differ-
ently.

As an example, consider once more use use case of
movie recommendation (Fig 4). To model the ratings
given by users, we linked users to movies using a sin-
gle property. We can also model the same relation us-
ing an intermediate vertex — a movie rating — and let
it link both to the movie which was rated and to the
literal which holds the actual rating itself:

Mary has_rating Mary_Rating_26.
Mary_Rating_26 rates Jurassic_Park.
Mary_Rating_26 has_value "1.0".

Dealing with knowledge modelled in different ways
remains one of the challenges for effective machine
learning. Successful end-to-end models need to take
this topological variance into account so they can rec-
ognize that similar information is expressed in differ-
ent ways.

4.4. Literal knowledge

Recall that literals allow us to state explicit values—
texts, numbers, dates, IDs, et cetera—as direct at-
tributes of resources. This means that literals contain
their own values. This in contrast to non-literal re-
sources, here their local neighbourhood is the ‘value’.
Simply treating literals the same as these other re-
sources will therefore be ineffective. Concretely, treat-
ing both the same implies that all literals are unique
and evenly separated. Instead, we must deal with each
different data type separately and accordingly: texts as
strings, numbers and dates as ordinal values, IDs as
nominal values, et cetera.

Considering our spam detection example, we have
modelled an e-mail’s title and body using literals.
If we would treat these as all other resources, our
learning method would perceive the title “Just saying
hello!” as totally different from its reply “RE: Just
saying hello!”. Rather, we can alternatively design our
method to compare title values using a string similarity
measure, and discover that these two titles are actually
very similar.

Exploiting literal knowledge when learning from
knowledge graphs is still in its infancy, and typically
reserved for very specific use cases. For example, all
methods discussed in the next section either ignore
statements containing literals or treat literals as unique

vertices. Nevertheless, we can already effectively deal
with such knowledge in traditional machine learning
scenarios. It is therefore a challenge to integrate this
experience into methods that can learn from knowl-
edge graphs.

4.5. Which dataset? the dataset

Knowledge graphs present a new perspective on
datasets. Where we traditionally have a multitude of
datasets, about countless of domains and tailored to
numerous different tasks, we now have only one: a sin-
gle vast distributed knowledge graph. Because every-
thing is stored in the same data model (RDF), learn-
ing on this entire knowledge graph will be no differ-
ent from learning on any of its countless of subgraphs.
We can therefore simply take any subgraph, which it-
self is a valid knowledge graph, and use it as input to
our end-to-end model. If we want to change domain,
scope, or granularity of our dataset, we select a differ-
ent subgraph and rerun our experiment. Similarly, if
our learning task changes, we only need to pick a dif-
ferent model while the dataset can remain the same. In
either case, we greatly reduce the effort of preparing
our setup by largely skipping the pre-processing step.

For the LOD Cloud, there are multiple strategies
to recover relevant subgraphs. This can be done by
dereferencing individual IRIs — follow-your-nose —, by
downloading datasets directly or through query end-
points. Furthermore, LOD search engines allow for
identifying and retrieving datasets. Already, this ap-
proach is being used to construct benchmark datasets
for machine learning [RAVP16].

5. Current approaches

Only recently has the machine learning commu-
nity began to show interest in the knowledge graph.
Initial explorations focused primarily on how knowl-
edge graphs can be ‘flattened’ into plain tables for
use with traditional learning methods, whereas more
recent studies are looking for more natural ways to
process knowledge graphs. This has lead to vari-
ous data models. An early class of methods repre-
sent knowledge using logical rules and use variants
of Inductive Logic Programming (such as, the re-
cent Amie system[GTHS13]) or Probabilistic Soft
Logic [BBHGI15] to infer new knowledge. More re-
cently, tensor representations, embeddings and graph
convolutional networks have become prominent meth-
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ods which present opportunities for end-to-end model-
ing.

5.1. Tensor representation

Tensors are the generalization of a matrix into more
than two dimensions, called orders. Given that knowl-
edge graph statements consist of three elements, we
can use a third-order tensor to map them: two orders
for entities, and another order for properties. The inter-
section of all three orders, a point, will then represent a
single statement. This principle is depicted in Fig 6. As
an example, let i, j, k be the indices of a tensor T used
to represent our dataset on movie recommendations
(Fig 4). If now TJ[i| = John, T[j] = Jurassic_Park,
and T[k] = likes, then intersection T[i, j, k] will con-
stitute the statement John likes Jurassic_Park.

A tensor representation allows for all possible com-
binations of entities and properties, even those which
are false. To reflect this, the value at each intersection
holds the truth value of that statement: 1.0 if it holds,
and 0.0 otherwise. In that sense, it is similar to an ad-
jacency matrix.

To predict which unknown statements might also be
true, we can apply tensor decomposition. Similar to
matrix decomposition, this approach decomposes the
tensor into multiple second-order tensors by which la-
tent features emerge. These tensors are again multi-
plied to create an estimate of the original tensor. How-
ever, where before some of the intersections had 0.0 as
value, they now have a value somewhere between 0.0
and 1.0.

This application of tensor decomposition was first
introduced as a semantically-aware alternative [FSSS09]
to authority ranking algorithms such as PageRank
and HITS, but gained widespread popularity after be-

ing reintroduced as a distinct model for collective
learning on knowledge graphs [NTK11]. Others have
later integrated this tensor model as layer in a regu-
lar [SCMN13] or recursive neural network [SPW*13].

5.2. Embeddings

Rather than trying to learn directly over knowledge
graphs, we could also first translate them into a more-
manageable form for which we already have many
methods available. Specifically, we can try to find fea-
ture vectors for each vertex in the graph that we rep-
resents an instance in our training data (the instance
vertices). For instance, in our email example, we could
simply transform each vertex representing an email
into a feature vector, and then apply any off-the-shelf
classifier to perform classification. The translation of
knowledge graphs to feature vectors is also known as
propositionalization or embedding.

5.2.1. Substructure counting

Substructure counting graph kernels [dVdR15], are
a family of algorithms that generate feature vectors
for instance vertices by counting various kinds of sub-
structure that occur in the direct neighborhood of the
instance vertex. While these methods are often referred
to as kernels, they can equally well be used to generate
explicit feature vectors, so we will not view them as
kernels here.

The simplest form of substructure counting method
takes the k-neighborhood around the instance vertex,
and simply counts each label: that is, each edge la-
bel, and each vertex label. Each label encountered
in the neighborhood of an instance vertex then be-
comes a feature, with its frequency as the value. For in-
stance, for each e-mail in our example dataset (Fig. 3),
the feature space consists of at least one sender (e.g.,
from_Mary: 1), one main recipient (e.g., to_John:
1), and zero or more other recipients (e.g., cc_Pete:
0 and bcc_Kate:0).

More complex kernels define the neighborhood
around the instance vertex differently (as a tree, for
instance) and vary the structures that are counted
to form the features (for instance, paths or trees).
The Weisfeiler-Lehman graph kernel [SSLT11] is
a specific case, and the WL algorithm is the key
to efficiently computing feature vectors for many
substructure-counting graph methods.

5.2.2. RDF2Vec
The drawback of substructure-counting methods is
that the size of the feature vector grows with the size
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of the data. RDF2Vec [RP16] is a method which gen-
erates features vectors of a given size, and does so effi-
ciently, even for large graphs. This means that, in prin-
ciple, even when faced with a machine learning prob-
lem on the scale of the web, we can reduce the problem
to a set of feature vectors of, say, 500 dimension, after
which we can solve the problem locally on commodity
hardware.

RDF2Vec is a relational version of the idea behind
DeepWalk [PARS14], an algorithm that finds embed-
dings for the vertices of unlabeled graphs. The prin-
ciple is simple: extract short random walks starting
at the instance vertices, and feed these as sentences
to the Word2Vec [MCCD13] algorithm. This means
that a vertex is modeled by its context and a ver-
tex’s context is defined by the vertices up to d steps
away. For instance, in our example dataset on cus-
tomer transactions (Fig. 5), a context of depth 3 al-
lows RDF2Vec to represent each transaction via chains
such as transaction X — ingredients_X —

ingredient_Yand transaction_X — ingredients_X

— ingredient_Z.

For large graphs, reasonable classification perfor-
mance can be achieved with samples of a few as
500 random walks. Other methods for finding embed-
dings on the vertices of a knowledge graph are TransE
[BUGD™13] and ProjE [SW16].

5.3. Graph Convolutional Neural Networks

The WL-kernel and RDF2Vec are very effective
ways to perform machine learning on relational knowl-
edge, but they fall short of our goal of true end-to-
end learning. While these methods consume heteroge-
neous knowledge in the form of RDF, they operate in
a pipeline of discrete steps. If, for instance, they are
used to perform classification, both methods first pro-
duce feature vectors for the instance vertices, and then
proceed to used these feature vectors with a traditional
classifier. Once the feature vectors are extracted, the
error signal from the task can no longer be used to
fine-tune the feature extraction. Any information lost
in transforming the data to feature vectors is lost for-
ever.

In a true end-to-end model, every step can be fine-
tuned based on the learning task. One such model is
the Relational Graph Convolutional Network (RGCN)
introduced in [SKBT17], and the related column net-
works [PTPV17]. The RGCN is a relatively straight-
forward translation of the graph-convolutional network
(GCN) [KW16, BZSL13] to the domain of knowledge

graphs. We will briefly explain the basic principle be-
hind GCNs.

Assume that we have an undirected graph with N
vertices, with a small feature vector x for each vertex.
We can either use the natural features of the vertex in
the data, or if the data does not label the vertices in any
way, we can assign each vertex i a one-hot vector’of
length N. For this example, we will assume that each
vertex is assigned a random and unique color, repre-
sented by a vector of length 3 (a point in the RGB color
space).

Let x° be the color of vertex i. We define x* as
the mixture of the colors of all vertices in the graph,
weighted by the probability that a length-k random
walk from vertex i ends up in each vertex. If X° is
the N by 3 matrix containing all original vertex fea-
tures we can define this principle mathematically as
X1 = AXK, where A is the normalized adjacency
matrix of G. If we start with one-hot vectors instead
of colors, x* becomes a probability vector with x’; the
probability that a random walk of k steps from vertex i
ends up in vertex j.

For most graphs, x* converges with k to a single vec-
tor independent of the starting vertex. This gives us a
specific-to-generic sequence of representations for ver-
tex i: x0 is too specific, and x* is too generic. Some-
where in-between, we have a good representation, ex-
pressing both similarities and differences.

The GCN model (Figure ??) uses these ideas to cre-
ate a differentiable map from one vector representation
into another. We start with a matrix of one-hot vec-
tors X. These are multiplied by A, and then translated
down to a lower dimensional feature space by a ma-
trix W. W represents the “weights” of the model; the
elements that we will modify to fit the model to the
data. The result is then transformed by a nonlinearity
o (commonly a linear rectifier) to give us our interme-
diate representations H

H = f5(X) = c(AXW).

Row i of matrix H now contains a feature vector of
length 16, describing vertex i.

To create a classifier with M classes, we normally
compose two such "layers", given the second a softmax
restriction on the output vectors. This gives us a length-
M probability vector y for each vertex, representing the
classification.

3 A vector u representing element i out of a set of N elements: u is
0 for all indices except for u;, which is 1.



Thus, the complete model becomes
Y = (A (AXW)Y),

where X is the identity matrix (i.e. a stack of one-hot
vectors for each vertex), and Y is an N x M matrix with
Y;; the probability that vertex i has class j. We then
learn the weights V and W by minimizing the cross-
entropy between the training examples and the corre-
sponding rows of Y;; through gradient descent.

For the RGCN model, we have one adjacency ma-
trix per relation in the graph, one for its inverse of each
relation, and one for self-connections. For a more com-
plete description, see [SKBT17].

Like RDF2Vec, they RGCNS learn fixed-size inter-
mediate representations of the vertices of the graph.
Unlike RDF2Vec, the transformation to this represen-
tation can use the error signal from the next layer to
tune its parameters. We do however, pay a price: we
must store the whole graph in memory. In the case of
RDF2Vec, we only need to perform random walks on
the graph, which suggests the method should scale to
almost any size.

6. Conclusion

Traditionally, when faced with heterogeneous knowl-
edge in a machine learning context, data scientists pre-
process the data and engineer feature vectors so they
can be used as input for learning algorithms (e.g., for
classification). These transformations can result in loss
of information and introduce bias. To solve this prob-
lem, we require machine learning methods to consume
knowledge in a data model more suited to represent
this heterogeneous knowledge. We argue that knowl-
edge graphs are that data model.

In this paper, we have shown—using three examples
—the benefits of using knowledge graphs: a) they al-
low for true end-to-end-learning, b) they simplify the
integration of heterogeneous data sources and data har-
monization, and c) they provide a natural way to seam-
lessly integrate different forms of background knowl-
edge.

The idea of end-to-end learning on knowledge
graphs suggests many research challenges. These in-
clude coping with missing data, integrating hetero-
geneous structures in the data (such as graph struc-
ture, natural language and numeric values) and includ-
ing implied knowledge through ontologies. We show

11

how several promising approaches address these chal-
lenges.

There is currently an abundance of well-constructed
knowledge graphs in the form of the LOD cloud. End-
to-end learning models that can be applied to these
graphs to derive useful insights will provide further in-
centives to produce even more data that is open, well-
modeled, and interlinked. In this way, we are confident
that the Semantic Web and Data Science communities
can complement and strengthen one another in a posi-
tive feedback loop.
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