
Februrary 2017

Data Science and Symbolic AI: synergies,
challenges and opportunities

Robert HOEHNDORF a,b, Núria QUERALT-ROSINACH c
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Abstract. Symbolic approaches to artificial intelligence represent things within a
domain of knowledge through physical symbols, combine symbols into symbol
expressions and structures, and manipulate symbols and symbol expressions and
structures through inference processes. While a large part of Data Science relies
on statistics and applies statistical approaches to artificial intelligence, there is an
increasing potential for successfully applying symbolic approaches as well. Sym-
bolic representations and symbolic inference are close to human cognitive repre-
sentations and therefore comprehensible and interpretable; they are widely used to
represent data and metadata, and their specific semantic content must be taken into
account for analysis of such information; and human communication largely relies
on symbols, making symbolic representations a crucial part in the analysis of natu-
ral language. Here we discuss the role symbolic representations and inference can
play in Data Science, highlight the research challenges from the perspective of the
data scientist, and argue that symbolic methods should become a crucial component
of the data scientists’ toolbox.
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1. Introduction

1.1. What is Data Science?

The observation of and collection of data about natural processes to obtain practical
knowledge about the world has been crucial for our survival as a species, as well as to
satisfy our curiosity and to understand the world in which we are living. The detection
of regularities such as the daily movement of the sun resulted in the development of
calendars, predicting the migratory movements of animals, to develop methods that al-
low to control nature for a more productive agriculture, and in stellar almanacs that aid
in navigation. The regularities upon which these discoveries were based derive from a
careful observation and collection of records of astronomic events by ancient cultures.
Astronomy, considered the first science or system of knowledge of natural phenomena,
led to the development of mathematics in Mesopotamia, China, or India. In the Middle
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East, Egypt and Mesopotamia expanded and used mathematics for the description of as-
tronomic phenomena as an intellectual play, and generated large volumes of data about
stellar phenomena [8]. Therefore, could we consider ancient Babylonians or Egyptians
as the first, or early, data scientists?

Science, as a way of studying and understanding the physical world, is closely tied
to data. Experiments to test hypothesis are the starting point of data generation. The so-
called data life cycle mainly consists of collecting, processing, analyzing, preserving,
giving access and re-using the data. These steps require decisions and tasks on manage-
ment, storage, (meta)data description, interpretation, archival, publishing, distribution,
and revision, among others. Decisions and actions undertaken during the experiment
and its design will affect the rest of the data cycle, and therefore the generation of data
(through experiments or other means) should also be included in the data life cycle.

Recent advancements in science and technology have led to an explosion of our
ability to generate and collect data, and led to the era of Big Data. Data is now “big”
in volume as well as in heterogeneity (including different representation formats such as
digitized text, audio, video, web logs, transactions, time series, or genome sequences),
and complexity (from multiple sources and about different phenomena spanning several
levels of granularity, possibly incomplete, unstructured, and of uncertain provenance and
quality). Large amounts of complex data are not only generated in empirical science but
data collection and generation now penetrates our whole life: mobile phones, Internet
of Things, social interactions and communication patterns, bank transaction, personal
fitness trackers, and many more. Often, data is collected first and retained to solve specific
questions whenever they arise.

Data Science has as its subject matter the extraction of knowledge from data. While
data has been analyzed and knowledge extracted for millenia, the rise of “Big” data has
led to the emergence of Data Science as its own discipline that studies how to translate
data through analytical algorithms typically taken from statistics, machine learning or
data mining, and turning it into knowledge. Data Science also encompasses the study of
principles and methods to store, process and communicate with data throughout its life
cycle, and starts just after data has been acquired. While the data acquisition process from
experiments is, arguably, not a part of Data Science, capture and analysis of (meta)data
about the measurement and data generation process falls in the realm of Data Science.
In addition, to the analysis, Data Science studies how to store data, and methods such
as “content-aware” compression algorithms (e.g., for genomic data [46]) also fall in the
subject matter of Data Science. We consider Data Science as an emerging discipline at
the intersection of fields in science, technology, and humanities, drawing upon methods
from social science, statistics, information theory, computer science, medicine, biology,
energy, finance, meteorology, particle physics, astrophysics, healthcare and more (see
Figure 1).

1.2. Artificial Intelligence

Data scientists have to deal with large and complex datasets and work with data coming
from diverse scientific areas. Artificial intelligence (AI), i.e., machines and algorithms
that exhibit intelligent behavior, plays a significant role in Data Science. Intelligent ma-
chines can help to collect, store, search, process and reason over both data and knowl-
edge. There are two main approaches to AI: statistical and symbolic. For a long time,
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a dominant approach to AI was based on symbolic representations and treating “intel-
ligence” or intelligent behavior primarily as symbol manipulation. In a physical sym-
bol systems [35], physical entities (tokens, symbols) stand for, or denote, entities, are
combined with other symbols to form complex symbol structures, and are manipulated
by processes. Arguably, human communication occurs through symbols (words and sen-
tences), and human thought – on a cognitive level – also occurs symbolically, so that
symbolic AI resembles human cognitive behavior. Symbolic approaches are useful to
represent theories or laws in a way that is meaningful to the symbol system and can
be meaningful to humans; they are also useful in producing new symbols through sym-
bol manipulation or inference rules. An alternative (or complementary) approach to AI
are statistical approaches in which intelligence is taken as an emergent behavior of a
system. Prominently, connectionist systems [34], in particular artificial neural networks
[44], have gained influence in the past decade with computational and methodological
advances driving new applications [32]. Statistical approaches are useful in learning pat-
terns or regularities from data, and as such have a natural application within Data Sci-
ence. Advancements in computational power, data storage, and parallelization, in com-
bination to methodological advances in applying machine learning algorithms, are con-
tributing to the uptake of statistical approaches in recent years [32], and these approaches
have moved areas such as visual processing, object recognition in images, video label-
ing by sensory systems, and speech recognition by Natural Language Processing (NLP)
significantly forward.

On the other hand, a large number of knowledge bases, knowledge graphs and on-
tologies are generated to explicitly capture the knowledge within a domain. Reasoning
over these knowledge bases allows consistency checking (i.e., detecting contradictions
between facts or statements), classification (i.e., generating taxonomies), and other forms
of deductive inference (i.e., revealing new, implicit knowledge given a set of facts). In
discovering knowledge from data, the knowledge about the problem domain and addi-
tional constraints that a solution will have to satisfy can significantly improve the chances
of finding a good solution or determining whether a solution exists at all. Integrative ap-
proaches to Data Science utilize data analysis methods together with analysis of struc-
tured knowledge. Knowledge-based methods can also be used to combine data from
different domains, different phenomena, or different modes of representation, and link
data together to form a linked Web of data [11]. In Data Science, methods that exploit
the semantics of knowledge graphs and Semantic Web technologies [7] as a way to add
background knowledge to machine learning models have started to emerge. For exam-
ple, neural tensor networks [50] and neural theorem provers [43] can be applied to learn
representation of words and concepts in an unsupervised way while utilizing formalized
background knowledge available in a knowledge base, and knowledge graph embeddings
[36] generate low-dimensional representations of entities in a knowledge grpah.

The Life Sciences have been one of the key drivers behind progress in artificial in-
telligence, and the vastly increasing volume and complexity of data in biology is one of
the drivers in Data Science as well. In computational biology, Semantic Web technolo-
gies such as knowledge graphs and ontologies are especially widely applied to represent
and integrate data [49,10,28], and similarly, Life Sciences are a prime application area
for novel machine learning methods [3,41]. Here, we start from the perspective of Life
Science researchers and explore the role of symbolic representations in Data Science.



Februrary 2017

Figure 1. Data Science as the core intersection of other disciplines.

2. Knowledge as data

Not all data that a data scientist will be faced with consists of raw, unstructured mea-
surements. In many cases, data comes as structured, symbolic representation with (for-
mal) semantics attached, i.e., the knowledge within a domain. In these cases, the aim of
the data scientist is to apply the methods of Data Science to knowledge about a domain
itself. This can be the case when analyzing natural language text, but more so in the
analysis of structured data coming from databases and knowledge bases. In particular
in biology and biomedicine, ontologies, symbolic representations of a conceptualization
of a domain [18], are widely used to annotate, integrate and analyze data [24]. Many
bio-ontologies are specified in the Web Ontology Language (OWL) [17] and come with
a model-theoretic semantics and syntactic inference rules [25]. Similarly, the Resource
Description Framework (RDF) [6] is used very widely in biology and biomedicine, but
also in many other domains, and gives rise to rule-based inference. It is a challenge for
Data Science (and machine learning) to utilize the explicit semantics and inference rules
of a structured, semantically represented data set in data analysis. This challenge is even
more pronounced as Data Science often relies heavily on statistics, but does not generally
emphasize symbolic representations and the role of symbol manipulation.

Several approaches that apply machine learning techniques to structured informa-
tion, in particular to graphs, have been developed [40,36,38,13]. Of particular interest to
symbolic AI are knowledge graphs. A knowledge graph consists of entities and concepts
represented as nodes, and edges of different types that connect these nodes. From the per-
spective of Data Science and machine learning, knowledge graphs are a form of directed
graph with both edge and node labels. Knowledge graphs store information about enti-
ties and their interrelations, and can be used to improve search, generate explanations,
or plans to move a system from one state to another. To analyze and learn from knowl-
edge graphs, approaches were developed based on word embeddings generated through
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Figure 2. Data Science as a discipline that transforms data into knowledge. We explicitly mark “knowledge”
as an input – i.e., subject matter – of Data Science in addition to “data”; knowledge can be used as back-
ground knowledge about the problem domain, to determine if an interpretation of data is consistent with certain
assumptions, or Data Science can treat knowledge as data for its analyses.

random walks [42], methods based on tensor factorization [29,13,37], and a wide range
of semantic similarity measures [20]. Major applications of these approaches are link
prediction (i.e., predicting missing edges between the entities in a knowledge graph),
clustering, or similarity-based analysis and recommendation.

In the Semantic Web [7], knowledge graphs consist of two parts: RDF-structured
data (domain knowledge) and OWL-structured ontologies (conceptual knowledge), or,
in Description Logic terminology, ABox and TBox, respectively [4]. While qualitative
domain data can be represented in the form of an RDF graph, knowledge is usually ex-
pressed through different types of axioms, only some of which (such as subclass axioms)
may give rise to a graph structure [48]. For example, by stating that a biological func-
tion F1 is a subclass of F2 and asserting that protein P has the function F1, it is already
inherent in the semantics of OWL that P also has the function F2. Representing these
axioms and inferences within a graph is not trivial, as axioms can be arbitrarily com-
plex (within the constraints of the language). One option is to consider axiom schemata
with two free variables for nodes within the knowledge graph as defining an edge type,
and using an automated reasoner to determine whether the axiom can be inferred from
the knowledge graph. For example, a part-of edge could be defined through the ax-
iom pattern ?X SubClassOf: part-of some ?Y, and for all pairs of entities (e1,e2)
within a knowledge graph K G , an edge labeled part-of added between e1 and e2 if
K G |= (e1 SubClassOf: part-of some e2). The OBO Flatfile Format and many biomed-
ical ontologies utilize this definition pattern for edges [23,48]. For model-theoretic lan-
guages, it is also possible to analyze model structures instead of syntactically induced
graph representations. While there are usually infinitely many models of arbitrary cardi-
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nality [47], it is possible to focus on special (canonical) models in some languages such
as the Description Logics ALC. These model structures can then be analyzed instead of
syntactically formed graphs, and for example used to define semantic similarity measures
[12]. Ultimately, there is a need to build more hybrid algorithms that specifically account
for the semantics of (graph-)structured data and distinguishes it from axioms expressed
in formal, model-theoretic languages such as Description Logics or first-order logic.

3. Turning data into knowledge

In the opposite direction, methods from Data Science can also be used to directly gen-
erate symbolic representations. For example, statistical approaches in Data Science can
learn to recognize patterns, and recently there has been a big success in pattern recog-
nition and unsupervised feature learning using neural networks [32]. Feature learning
(or deep learning) methods can identify patterns and regularities within a domain and
thereby learn the “conceptualizations” of a domain. An explicit, formal representations
of a conceptualization is an ontology [19,18], and it is an enticing possibility to use meth-
ods from Data Science and statistical AI to automatically learn these formal representa-
tions. This problem is closely related to the symbol grounding problem, i.e., the problem
of how symbols obtain their meaning [21]. Traditional approaches to learning formal rep-
resentations of concepts from a set of facts include inductive logic programming [9] or
rule learning methods [2,33] which find axioms that characterize the data. Recent feature
learning techniques generate distributed representations [22] that represent regularities in
raw data implicitly and can be used to identify instances of a pattern in data. But, they are
not yet symbolic representations (in particular, they are neither directly interpretable nor
can they be combined to form more complex representations). Hence, there is a gap re-
maining between the distributed representations generated by neural networks and sym-
bolic representations (and reasoning) [5]; closing this gap remains a major challenge for
statistical AI and Data Science.

Recent approaches towards solving these challenges include representing symbol
manipulation as operations performed by neural network [43,52], thereby enabling sym-
bolic inference with distributed representations grounded in domain data. Notably, in
biology and biomedicine, where large volumes of experimental data are available, sev-
eral methods have been developed to generate ontologies in a data-driven manner from
high-throughput datasets [31,14,16]. These rely on data-driven generation of concepts
(through clustering of networks) and using ontology mapping techniques [26] to align
these clusters to ontology classes. Other methods rely, for example, on recurrent neural
networks that can combine distributed representations [51,15]. However, the full “neuro-
symbolic” cycle from learning symbolic representations from data, manipulating and
combining the symbols into more complex symbol structures, and providing results back
to classification of data is still unsolved.

4. Limits of Data Science

It is also important to identify fundamental limits for any statistical, data-driven approach
with regard to the scientific knowledge it can possibly generate. Some important domain
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concepts simply cannot be learned from data alone. For example, the set of Gödel num-
bers for halting Turing machines can, arguably, not be “learned” from data or derived sta-
tistically, although the set can be characterized symbolically. Furthermore, many empiri-
cal laws cannot simply be derived from data because they are idealizations that are never
actually observed in nature; examples of such laws include Galileo’s principle of inertia,
Boyle’s gas Law, zero-gravity, point mass, friction-less motion, etc. [39]. Although these
concepts and laws cannot be observed, they form some of the most valuable and predic-
tive components of scientific knowledge. To derive such laws as general principles from
data, an addition creative step seems to be required that abstracts from observations to
scientific laws. This step relates to our human cognitive ability of making idealizations,
and has early been described as necessary for scientific research by philosophers such as
Husserl [27] or Ingarden [1].

Inspired by progress in Data Science and statistical methods in AI, Kitano [30] pro-
posed a new Grand Challenge for AI “to develop an AI system that can make major sci-
entific discoveries in biomedical sciences and that is worthy of a Nobel Prize”. A more
tangible challenge may be to design an algorithm that can identify the principle of iner-
tia, given unlimited data about moving objects and their trajectory over time and all the
knowledge Galileo had about mathematics and physics in the 17th century. This is a task
that Data Science should be able to solve, which relies on the analysis of large (“Big”)
datasets, and for which almost infinite data points can be generated.

One of Galileo’s key contributions was to realize that laws of nature are inherently
mathematical and expressed symbolically, and to identify symbols that stand for force,
objects, mass, motion, and velocity, ground these symbols in perceptions of phenomena
in the world. This task may be achievable through feature learning, or ontology learning,
methods. Additionally, the symbols need to be combined in a way to express the principle
of inertia. However, given sufficient data about moving objects on Earth, any algorithm
will likely come up with Aristotle’s theory of motion [45] instead, not Galileo’s principle
of inertia. On a high level, Aristotle’s theory of motion states that all things come to a
rest, heavy things on the ground and lighter things on the sky, and force is required to
move objects. It was only when a more fundamental understanding of objects outside of
Earth became available through the observations of Kepler and Galileo that this theory
on motion no longer yielded useful results.

The challenges were (1) to identify that motion processes observed on Earth and
the motion observed at stellar objects are essentially instances of the same concept (i.e.,
“motion”), (2) to identify the inconsistency between the established theory on motion
and the data derived from repeated observations (of moving stellar objects), and (3) find-
ing a theory that was more comprehensive and predictive of both phenomena as well
as supported by experimental evidence (data) in both domains or areas of observation.
Identifying the inconsistencies is a symbolic process in which deduction is applied to
the observed data and a contradiction identified. Generating a new, more comprehensive,
theory, i.e., the principle of inertia, is a creative process, with the additional difficulty
that not a single instance of that theory could have been observed (because we know of
no objects on which no force acts). Generating such a theory in the absence of a single
supporting instance is the real grand challenge!

If we ever wish to build machines that can “discover” natural laws from data and
observations, we will need a revolution similar to the scientific revolution in the 16th
and 17th century that resulted in the creation of the scientific method and our modern
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understanding of natural science. Data Science, due to its interdisciplinary nature and
as the scientific discipline that has as its subject matter the question of how to turn data
into knowledge will be the best candidate for a field from which such a revolution will
originate.
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