Data Science

Methods, Infrastructure, and Applications

an IOS Press journal

Aims and Scope

Data Science is an interdisciplinary journal that addresses the development that data has become a crucial factor for a large number and variety of scientific fields. This journal covers aspects around scientific data over the whole range from data creation, mining, discovery, curation, modeling, processing, and management to analysis, prediction, visualization, user interaction, communication, sharing, and re-use. We are interested in general methods and concepts, as well as specific tools, infrastructures, and applications. The ultimate goal is to unleash the power of scientific data to deepen our understanding of physical, biological, and digital systems, gain insight into human social and economic behaviour, and design new solutions for the future. The rising importance of scientific data, both big and small, brings with it a wealth of challenges to combine structured, but often siloed data with messy, incomplete, and unstructured data from text, audio, visual content such as sensor and weblog data. New methods to extract, transport, pool, refine, store, analyze, and visualize data are needed to unleash their power while simultaneously making tools and workflows easier to use by the public at large. The journal invites contributions ranging from theoretical and foundational research, platforms, methods, applications, and tools in all areas. We welcome papers which add a social, geographical, and temporal dimension to Data Science research, as well as application-oriented papers that prepare and use data in discovery research.

Core Topics

This journal focuses on methods, infrastructure, and applications around the following core topics: